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PERTURBED ITERATED FUNCTION
SYSTEMS AND THE EXACT HAUSDORFF

MEASURE OF THEIR ATTRACTORS

Abstract

We define a perturbed iterated function system (pIFS) in Rd as,
loosely speaking, a sequence of iterated function systems (IFSs) whose
constituent transformations converge towards some limiting IFS. We
define the attractor of such a system in a similar style to that of an
IFS, and prove that such a set exists uniquely. We define a partially
perturbed IFS (ppIFS) to be a perturbed IFS with a constant tail. In a
setup with similitudes and the strong separation condition we show that
a pIFS attractor can be approximated by a sequence of ppIFS attractors
in such a way that the Hausdorff measure is preserved in the limit. We
use this result to calculate the exact Hausdorff measure of the pIFS
attractor from that of the limiting IFS.

1 Introduction.

Perturbed Cantor sets, obtained by repeated deletion of varying (typically
non-middle-third) intervals from [0, 1] have been studied in [2]. In this paper
we develop a similar construction in Rd using arbitrary Lipschitz contractions.

We consider a sequence {{Sjt }
p
t=1}j∈N of IFSs (on Rd) with a limiting IFS

{St}pt=1 such that Sjt → St in some sense as j → ∞. Let T j denote the

application of {Sjt }
p
t=1, so as T j(R) =

p⋃
t=1

Sjt (R) for R ⊆ Rd. We define the
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attractor of the system to be the unique non-empty compact set such that

E = lim
j→∞

T 1 ◦ . . . ◦ T j(E)

(in the Hausdorff metric). Reasons why the T j are applied apparently in
reverse order become obvious from drawing the first few prefractals.

Our first section is concerned with the precise statement and proof that
the attractor of a pIFS is well defined and unique.

When looking for the Hausdorff measure of the attractors we do not con-
sider all pIFSs and our second section is devoted to defining the setup and
notation we work in. This is essentially the set of pIFSs whose constituent
transformations are similitudes with a mild convergence condition. We are
only concerned with Hausdorff measure, but various properties of perturbed
Cantor sets have been studied for other measures, see [2] and [4] for some
examples.

The bulk of our results come in two parts. Firstly, we show that given any
pIFS satisfying the conditions above, we can approximate its attractor with
a sequence of attractors of related, but much simpler, pIFSs. Further, the
measure of the pIFS attractor is the limit of the measures of the attractors of
these systems. Secondly, we use this result to obtain a formula for the ratio
of the measures of the attractor of the pIFS and it’s associated limiting IFS.

Our proofs are ‘bare hands’ methods using elementary real analysis. The
only prerequisite definitions are those of an IFS and Hausdorff dimension and
measure; These can be found in [1].

1.1 Our Results.

The following theorems summarise our results in self contained statements.

Theorem 1.1 (Generalising the fundamental theorem of IFSs). We work in
Rd. Let {{Sjt }

p
t=1}j be a sequence of IFSs and {St}pt=1 an IFS. Suppose there

exists a non-empty compact set C such that Sjt (C), St(C) ⊆ C, and suppose
that when restricted to C, Sjt → St in the supremum metric.

Define the attractor of the pIFS {{Sjt }
p
t=1}j} to be the non-empty compact

set E such that
E = lim

j→∞
T 1 ◦ . . . ◦ T j(E)

(in the Hausdorff metric).
Then the attractor E of the pIFS is well defined, unique to the pIFS, non-

empty, compact and independent of the choice of C. Further, if C ′ is another
non-empty compact set such that Sjt (C ′), St(C ′) ⊆ C ′ then E = lim

j→∞
T 1 ◦ . . . ◦

T j(E′) for every non-empty compact E′ ⊆ C ′.
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Theorem 1.2 (On the measure of the attractors of pIFSs). In the setup of
the preceding theorem, let

Sjt (x) = cjt +Ajt (x) and St(x) = ct +At(x)

where cjt , ct ∈ Rd and Ajt , At are linear transformations of Rd. Suppose for
each Ajt , At there exists ajt , at such that

||Ajt (x)|| = ajt ||x|| and ||At(x)|| = at||x||.

Assume the following conditions are met:

(1) There exists λ < 1 and η > 0 such that for all j, t, η ≤ ajt , at ≤ λ.

(2) For all t, cjt → ct in Rd.

(3) For all t, Ajt → At in the || · ||∞ norm on some ball (independent of t)
about 0.

(4) For all t,
∞∑
j=1

|ajt − at| <∞.

(5) For each m ∈ N, for no pair i = {i1, i2, . . .} and j = {j1, j2, . . .} with
i 6= j do either of

lim
n→∞

S1
i1 ◦ . . . ◦ S

n
in(0) = lim

n→∞
S1
j1 ◦ . . . ◦ S

n
jn(0)

lim
n→∞

S1
i1 ◦ . . . ◦ S

m
imSim+1 . . . Sin(0) = lim

n→∞
S1
j1 ◦ . . . ◦ S

m
jmSjm+1 . . . Sjn(0)

occur.

Then the preceding theorem applies. Let F denote the attractor of the
IFS {St}pt=1, and E the attractor of the pIFS {{Sjt }

p
t=1}j. Further, with s =

dimH(F ) (i.e.
p∑
t=1

(at)s = 1),

Hs(E) = Hs(F )×
∞∏
n=1

p∑
t=1

(ajt )
s (1)

where dimH denotes Hausdorff dimension and Hs denotes s-dimensional Haus-

dorff measure. Finally, 0 <
∞∏
n=1

p∑
t=1

(ajt )s <∞, and hence dimH(F ) = dimH(E).
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Condition (5), upon which the proofs given here are heavily reliant, implies
the strong separation condition on the limiting IFS {St}pt=1 (i.e. there exists a
compact set R containing the attractor of {St}pt=1 such that the images St(R)
are positively separated). Weakening this condition seems to cause the precise
result of 1 to fail; see comment 7.1. Weakening (5) can cause the dimension
of the pIFS attractor to vary from that of the limiting IFS. This is of interest
in it’s own right, but is not studied here.

Whilst quite natural, condition (5) is difficult to verify and our final section
proves that it holds in a setup covering many canonical examples of IFSs we
might perturb. The method (which constructs a decreasing sequence of sets
converging to E) serves as a template for checking the condition in other cases.
The result is as follows:

Theorem 1.3 (Satisfying condition (5)). In the setup of the preceding theo-
rem, assuming only conditions (1)-(3), suppose we have the strong separation
condition on {St}pt=1 and also the following:

(5a) For all n, max
t

||cnt ||
1− ant

≤ max
t
|| ct

1− at
|| < min

s6=t

||cns − cnt ||
ans + ant

.

Then condition (5) holds.

The above results correspond to Theorems 2.3, 5.5 and 6.2 (in the text
these do not have self contained statements).

1.2 Notation.

What follows will involve very many superscripts and subscripts. To accommo-
date this we write sequences as superscripts and reserve subscripts for indexes.
Of course (x)n and |x|n still refer to powers. Our perturbed systems will be
denoted by j as opposed to a blank superscript, and we write (j) when we wish
to specify a condition holding both in a perturbed and unperturbed form. For
example, a(j)

t = 0 serves as shorthand for ajt = at = 0 for all t, j. On rare
occasions we will need to raise to a power s, where s denotes Hausdorff dimen-
sion. The distinction between j and s will be apparent from both the symbol
and context, and should not cause confusion.

We write || || as the Euclidean norm, || ||∞ as the supremum norm, and
d( , ) as the Hausdorff metric. We denote the diameter function diam(R) by
|R|. We write the Lipschitz constant as

lip(S) = inf{κ : ∀x, y ∈ the domain of S, ||Sx− Sy|| ≤ κ||x− y||}

and the distance function as

dist(X,Y ) = inf{||x− y|| : x ∈ X, y ∈ Y };
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conv(R) denotes the convex hull of R.
For our purposes, an iterated function system consists of a finite number of

Lipschitz contractions defined on Rd. The strong separation condition (SSC)
is said to hold on the IFS {St}pt=1 when there exists a non-empty compact
set R, containing the attractor of {St}pt=1, such that the images St(R) are
positively separated.

2 Perturbed Iterated Function Systems.

We begin by defining precisely what we mean by a pIFS.
Fix p ∈ N. For each j ∈ N, let {Sjt }

p
t=1 be an IFS. Then {{Sjt }

p
t=1}j is

a sequence of IFSs. Let {St}pt=1 be an IFS and let A({St}pt=1) denote it’s
attractor. Suppose

(i) There exists a non-empty compact set C ⊆ Rd such that for all 1 ≤ t ≤ p
and j, S(j)

t (C) ⊆ C.
Define Sjt and St to be the restrictions of Sjt and St to C. Then {Sjt ,St :
t = 1, . . . p, j ∈ N} is a normed space with the || ||∞ norm (on Rd).
Suppose also,

(ii) Sjt → St in || ||∞.

Then we say {{Sjt }
p
t=1}j} is a perturbed iterated function system (pIFS), in

particular a perturbation of {St}pt=1. We say {St}pt=1 is the limiting IFS of
{{Sjt }

p
t=1}j}.

We refer to C as the parent set of the pIFS. Recall that the set of non-empty
compact subsets of C forms a complete metric space under the Hausdorff
metric d. Call this space KC .

We denote T j =
p⋃
t=1
Sjt and T j = T 1 ◦ T 2 ◦ . . . ◦ T j (where (S ◦ T )(x) =

S(T (x))). Define the attractor of {{Sjt }
p
t=1}j}, denoted A({{Sjt }

p
t=1}j), to be

the unique non-empty compact set E so as E = lim
j→∞

T j(E) (in KC). In order

to answer existence and well-definedness questions we will prove an analogue
of the fundamental theorem of IFSs (Theorem 2.3). First we must establish
some inequalities.

Lemma 2.1. Let A and B be compact. Let T1 and T2, be Lipschitz transfor-
mations on A ∪B, so ||T1 − T2||∞, d(A,B) <∞. Then

d
(
T1(A), T2(B)

)
≤ d(A,B) max

{
lip(T1), lip(T2)

}
+ ||T1 − T2||∞.
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Proof. We prove a slightly stronger result. Since d( , ) is a metric,

d
(
T1(A), T2(B)

)
≤ d
(
T1(A), T1(B)

)
+ d
(
T1(B), T2(B)

)
.

Also, note that
d
(
T1(A), T1(B)

)
≤ d(A,B) lip(T1)

d
(
T1(B), T2(B)

)
≤ sup
x∈B
||T1(x)− T2(x)||

and the result follows.

Lemma 2.2. Let {{Sjt }
p
t=1}j be a perturbation of the IFS {St}pt=1. Then

(i) d(T j(A), T j(B)) ≤ d(A,B)χj

(ii) d
(
T j(A), T k(B)

)
≤ d(T j−v(A), T k−vB)χv

+
v−1∑
l=0

([
max
t=1,...,p

(
||Sj−lt − Sk−lt ||∞

)]
χl
)

where χ is such that sup
t,j

(
lip(S(j)

t )
)
≤ χ < 1.

Proof. Note that T j , Sjt and St all map elements of KC to elements of KC .
Note also that (i) follows from (ii), so we prove (ii). Let A,B ∈ KC . For any
j, k > 1,

d(T j(A), T k(B)) = d
( p⋃
t=1

Sjt (T j−1(A)),
p⋃
t=1

Skt (T k−1(B)
)

≤ max
t

[
d
(
Sjt (T j−1(A)),Skt (T k−1(B))

)]
Applying Lemma 2.1 we get

max
t

[
d
(
Sjt (T j−1(A)),Skt (T k−1(B))

)]
≤ d
(
T j−1(A), T k−1(B)

)
max

t=1,...,p m=j,k

(
| lip(Smt )|

)
+ max
t=1,...,p

(
||Sjt − Skt ||∞

)
.

We note Sjt → St implies lipSjt → lipSt, and also (because of the restricted
domain), lipS(j)

t ≤ lipS(j)
t < 1. t takes values from the finite set {1, . . . , p},

hence there is some χ such that sup
t,j

(
lipS(j)

t

)
< χ < 1. So,

d(T j(A), T k(B))

≤ χd
(
T j−1(A), T k−1(B)

)
+ max
t=1,...,p

(
||Sjt − Skt ||∞

)
.
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Repeated application v times gives, for j, k > v,

d
(
T j(A), T k(B)

)
≤ d(T j−v(A), T k−vB)χv +

v−1∑
l=0

([
max
t=1,...,p

(
||Sj−lt − Sk−lt ||∞

)]
χl
)

which is the result.

Theorem 2.3. Let {{Sjt }
p
t=1}j be a perturbation of the IFS {St}pt=1. Let C be

a parent set of {{Sjt }
p
t=1}j. Then there exists a non-empty compact set E ⊆ C

such that

(I) lim
j→∞

T j(E) = E (under the Hausdorff metric).

(II) If E′ ⊆ C is any non-empty compact set then lim
j→∞

T j(E′) = E.

(III) If C ′ is some other parent set and EC′ is the unique non empty compact
set arising out of using C ′ as the domain for the restricted S

(j)
t , then

E = EC′ .

Proof. Recall KC is the metric space of non-empty compact subsets of C.
We prove first that for some E′ ∈ KC , T j(E′) is a d-Cauchy sequence (and
hence is convergent). We then show that the limit E ∈ KC is independent of
E′. Finally we show E does not depend on C, in the sense of (III) above.

Let E′ ∈ KC , and let ε > 0. Recall that by Lemma 2.2 there exists χ such
that sup

t,l

(
lip(Slt)

)
< χ < 1. Sjt → St and so Sjt is Cauchy, t ∈ {1, . . . , p} so

there exists M1 such that

sup
t, j>k>M1

(
||Sjt − Skt ||∞

)
<
ε

2
(1− χ).

For any A ∈ K, for all j, k, T j(A), T k(A) ⊆ C, and so d(T j(A), T k(A)) ≤ |C|.
Let M2 be sufficiently large so as for v ≥M2,

χv <
ε

2|C|



98 Nicholas Freeman

Now, for j > k > M = M1 +M2, we have (by Lemma 2.2(ii))

d(T j(E′), T k(E′) ≤ d
(
T j−M2(E′), T k−M2(E′)

)
χM2

+
M2−1∑
l=0

(
χl max

t=1,...,p

(
||Sj−lt − Sk−lt ||∞

))
.

In the sum on right, j − l, k − l > M − (M2 − 1) > M1, so

max
t=1,...,p

(
||Sj−lt − Sk−lt ||

)
<
ε

2
(1− χ).

Also d
(
T j−M2(E′), T k−M2(E′)

)
< |C| and χM2 < ε

2 |C|
−1. So

d
(
T j(E′), T k(E′)

)
≤ |C||C|−1 ε

2
+
ε

2
(1−χ)

M2−1∑
l=0

χl ≤ ε

2
+
ε

2
(1−χ)

1
1− χ

= ε.

This proves that T j(E′) is Cauchy. Hence there exists a non-empty com-
pact set E ∈ KC such that T j(E′)→ E under d.
In order to prove (I) and (II) we must show that E did not depend on E′ ∈ KC .

Let A,B ∈ KC . Then, by Lemma 2.2(i), d(T j(A), T j(B)) ≤ d(A,B)χj .
Clearly the RHS of this tends to zero as j →∞. Let E0 be the limit of T j(A);
so that d(T j(A), E0)→ 0. Noting that

d(T j(B), E0) ≤ d(T j(B), T j(A)) + d(T j(A), E0)

we have T j(B)→ E0. Hence any two sets A,B ∈ KC have the same limiting
set under the application of the pIFS; the limit is therefore dependent only on
the pIFS itself.

We still need to prove (III); that E does not depend on C. Let C ′ be some
other set such that Sjt (C ′), St(C ′) ⊆ C ′, and (by (I) and (II)) let EC′ ⊆ C ′

denote the unique non-empty compact set such that lim
j→∞

T j(EC′) = EC′ .

Let δ = d(C,C ′). Since C and C ′ are compact, [C ∪ C ′]δ = {x ∈ Rd :
dist(x,C ∪C ′) ≤ δ} is compact. Let Sjt (x) ∈ Sjt

(
[C ∪C ′]δ

)
. Then there exists

y ∈ C s.t dist(y, x) < δ. Sjt (y) ∈ C, and d
(
Sjt (y), Sjt (x)

)
≤ χdist(y, x). Hence

Sjt (y) ∈ Sjt
(
[C ∪ C ′]δ

)
.

Let S̃jt be the restriction of Sjt to [C ∪ C ′]δ, T̃ j =
p⋃
t=1
S̃jt and T̃ jt = T̃ 1 ◦

. . . ◦ T̃ j . By (I) and (II) there is a unique non-empty compact set E[C∪C′]δ
such that for any non-empty compact set E′′ ⊆ [C ∪ C ′]δ, lim

j→∞
T̃ j(E′′) =

E[C∪C′]δ . Of course, this implies that for any non-empty compact set E′ ⊆ C,
lim
j→∞

T̃ j(E′) = E[C∪C′]δ . Hence E = EC′ = E[C∪C′]δ .
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This result is, of course, proof that the attractor of a pIFS exists, is unique,
and does not depend on the choice of parent set. It generalises the fundamental
theorem of IFSs. We now restrict our attention to a more specialised class of
pIFSs.

3 Setup and Conditions.

Ultimately we are interested in the measure of the attractors of pIFSs. The
reader will have noticed that our definition of a pIFS from an IFS was quite
general. We now restrict ourselves to more familiar ground. We will require
the functions in the IFSs making up our pIFS and it’s limiting IFS to be the
composition of a translation and a linear similarity.

Fix p > 1, and let ct, c
j
t be vectors for t = 1, . . . , p. Let Ajt , At be linear

transformations on Rd. We define Sjt and St by S(j)
t (x) = c

(j)
t +A(j)

t (x). These
are the transformations in our IFS and pIFS.

Will we delay a formal statement of our conditions on the A(j)
t s and c

(j)
t s

until after we have set up more notation. First, we give the natural conditions
under which {{Sjt }

p
t=1}j is a pIFS. Our conditions in 3.4 will trivially imply

the conditions for the following results.

Lemma 3.1. Suppose there exist some constants Ω and λ < 1 such that
||c(j)t || < Ω and ||A(j)

t x|| ≤ λ||x||. Then for large r the set Br(0) = {x :
||x|| ≤ r} is a non-empty compact set so as Sjt (Br(0)), St(Br(0)) ⊆ Br(0).

Proof. This follows from noting ||c(j)t + A
(j)
t x|| ≤ Ω + λ||x|| and taking r ≥

Ω
1−λ .

In other words, {{Sjt }
p
t=1}j has arbitrarily large sets as potential parent

sets.
Bearing this in mind, we restrict Sjt , St to C = Br(0) and work with the

metric spaces (KC , d) and ({f : C → C : f is bounded}, || ||∞). Defining the
transformations and then immediately restricting their domain has avoided a
lot of what is now superfluous notation (the distinction between S and S).
We restrict our A(j)

t similarly.
The natural conditions under which {{Sjt }

p
t=1}j is a pIFS are obvious.

Lemma 3.2. If cjt → ct in || ||, Ajt → At in || ||∞, and {{Sjt }
p
t=1}j has a

parent set, {{Sjt }
p
t=1}j is a pIFS of {St}pt=1.
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Proof. We leave the proof (that defined on C, Sjt → St) to the reader.

Theorem 2.3 applies and the attractor of the pIFS {{Sjt }
p
t=1}j} is well

defined.
We write i = {i1, i2, . . .} and j = {j1, j2, . . .} where ik, jk are drawn from

{1, . . . , p}.
Let

ki,j = sup{n : ∀l ≤ n, il = jl}

so as (ki,j =∞ ⇐⇒ i = j). Define

xi1,...,in = ci1 + . . .+Ai1 . . . Ain−1cin

x′i1,...,in = c1i1 + . . .+A1
i1 . . . A

n−1
in−1

cnin

xni1,...,im = c1i1 + . . .+An−1
in−1

cnin +A1
i1 . . . A

n
in(cin+1 + . . .+Ain+1 . . . Aim−1cim)

Also,

xi = lim
n→∞

xi1,...,in

x′i = lim
n→∞

x′i1,...,in

xni = lim
m→∞

xni1,...,im .

Our conditions in 3.4 will imply that all these sums converge. Define

F{At},{ct}pt=1
= {xi : i ∈ {1, 2, . . . , p}N}

E{{Ajt}j ,{c
j
t}j}

p
t=1

= {x′i : i ∈ {1, 2, . . . , p}N}

En{{Ajt}j ,{c
j
t}j}

p
t=1

= {xni : i ∈ {1, 2, . . . , p}N}.

Call these F -sets, E-sets, and En-sets respectively. Note the En-sets depend
on At and ct as well as their perturbed equivalents; since these may be obtained
as limits from their perturbed equivalents we do not notate this.

i should be thought of as the ‘address’ of the point x?i and the expressions
above define the way in which this address is interpreted. To understand its
geometric meaning, we give the following result.

Theorem 3.3. Suppose all the series xi, x′i and xni converge in C. Then
(i) A({St}pt=1) = F{At},{ct}pt=1

and (ii) A({{Sjt }
p
t=1}j}) = E{{Ajt}j ,{c

j
t}j}

p
t=1

.

If we define a pIFS {{Rjt}
p
t=1}j by Rjt = Sjt for j ≤ n and Rjt = St for j > n

we then have (iii) A({{Rjt}
p
t=1}j) = En{{Ajt}j ,{c

j
t}j}

p
t=1

.
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Proof. Note that all these assertions are special cases of (ii). It is easy for
us to calculate

T 1◦T 2◦. . .◦Tn({0}) = {c1i1+. . .+A1
i1 . . . A

n−1
in−1

cnin : {i1, . . . , in} ∈ {1, . . . , p}n}

and Theorem 2.3 gives that these sets converge to A({Sjt }
p
t=1}j}). It is a

simple matter to show they also converge to E{{Ajt}j ,{cjt}j}pt=1
.

Conditions 3.4.
Our notation is now set up and we state our conditions.

(1) A
(j)
t is linear and there exists a(j)

t such that for all x ∈ Rd,

||A(j)
t x|| = a

(j)
t ||x||.

Moreover, there exists λ < 1 and η > 0 such that for all j, t, η ≤ a(j)
t ≤ λ.

(2) cjt → ct in Rd.

(3) Ajt → At in the || ||∞ norm on functions on the parent set C.

(4) There is some γ > 0 such that for all 1 ≤ t ≤ p, ajt
at
∈ [γ,∞), and

∞∑
j=1

|ajt − at| <∞.

(5) i = j ⇐⇒ x′i = x′j, and for all n, i = j ⇐⇒ xni = xnj .

Linearity and (1) imply that our S(j)
t are similitudes. (1) implies Ajt (0) =

0. Note if at 6= 0 the existence of η and λ is implied by (2). (2) and (3) are
the natural conditions to make our setup a pIFS. Conditions (1)-(3) are more
than sufficient to imply all the preceding results hold.

As we will see, (4) is not only the strength of convergence we require to
approximate our pIFS attractor, but a condition to make it’s measure positive
and finite. The existence of γ is clearly implied by (1) but it will be convenient
for us to have it included as part of (4) as well.

We record a consequence of (5), in particular a consequence of i = j ⇐⇒
xni = xnj .

We say an IFS {St}pt=1 satisfies the strong separation condition (SSC) if
there exists α > 0 and a compact set K such that d(St1(K), St2(K)) > α
when t1 6= t2. Our conditions above, in particular the effect of (5), are more
than enough for the following lemma.
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Lemma 3.5. Assume (1)-(3). Suppose for some n, i = j ⇐⇒ xni = xnj .
Then the SSC holds for {St}pt=1. In particular, there exists some α > 0 such
that for all i 6= j,

||(ciki,j+1 − cjki,j+1) + (Aiki,j+1cik+2 −Ajki,j+1cjki,j+2) + . . . || ≥ α. (2)

Proof. For i and j with i1 6= j1, ||xn1,...,1,i1,i2,... − x
n
1,...,1,j1,j2,...

|| > 0 (where
the index begins with n 1’s), so by (1), ||xi−xj|| > 0. Now consider the action
of {St}pt=1 on its own attractor F{At},{ct}pt=1

. For t1 6= t2, St1(F{At},{ct}pt=1
)

and St2(F{At},{ct}pt=1
) are two non-intersecting closed sets, and hence have a

positive distance between them. There are only finitely many St(F{At},{ct}pt=1
),

hence there is a positive distance between any pair of them. That is to say,
the SSC holds with G = F{At},{ct}pt=1

.
By the SSC, there exists some α > 0 such that for all i and j with i1 6= i2,

||xi − xj|| = ||(ci1 − cj1) + (Ai1ci2 −Aj1cj2) + . . . || ≥ α.

For any i and j we then consider the addresses

i′ = {iki,j+1, iki,j+2, . . .} and j′ = {jki,j+1, jki,j+2, . . .}

which by definition of ki,j satisfy i′1 = iki,j+1 6= j′1 = jki,j+1. Thus

||(ciki,j+1 − cjki,j+1) + (Aiki,j+1cik+2 −Ajki,j+1cjki,j+2) + . . . || ≥ α

which is the result.

4 pIFSs as Limits of ppIFSs.

This section constitutes a proof that in the setup defined in the previous
section, assuming conditions (1)-(5),

Hs(E{{Ajt}j ,{cjt}j}pt=1
) = lim

n→∞
Hs(En{{Ajt}j ,{cjt}j}pt=1

).

We outline our approach. It is clear that the sets En{{Ajt}j ,{cjt}j}pt=1
converge

in some sense to E{{Ajt}j ,{c
j
t}j}

p
t=1

. We define a sequence of transformations
φn : En{{Ajt}j ,{cjt}j}pt=1

→ E{{Ajt}j ,{c
j
t}j}

p
t=1

by φn(xni ) = x′i. We would like
to say that each φn is bilipschitz with bilipschitz bounds tending to 1. The
result would then follow using the standard result concerningH and bilipschitz
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functions (Proposition 2.2 in [1]). We cannot quite achieve this; it turns out
our φn are only bilipschitz when considering points sufficiently close together.
This is a minor inconvenience which we can work around.

Bearing in mind that we hope our φn are bilipschitz, the quantity we should
consider is the following. We note that, providing n < ki,j and writing k = ki,j
in the long formula,

||x′i − x′j||
||xni − xnj ||

=
||A1

i1
. . . AninA

n+1
in+1

. . . Akik
[
(ck+1
ik+1
− ck+1

jk+1
) + (Ak+1

ik+1
ck+2
ik+2
−Ak+1

jk+1
ck+2
jk+2

) + . . .
]
||

||A1
i1
. . . AninAin+1 . . . Aik

[
(cik+1 − cjk+1) + (Aik+1cik+2 −Ajk+1cjk+2) + . . .

]
||

=
( ki,j∏
l=n

alil
ail

) ||Ai,j
ki,j
||

||Bi,j
ki,j
||

where the terms in square brackets in the long formula are

Ai,j
k =

∞∑
l=k+1

[( l−1∏
m=k+1

Amim

)
clil −

( l−1∏
m=k+1

Amjm

)
cljl

]

Bi,j
k =

∞∑
l=k+1

[( l−1∏
m=k+1

Aim

)
cil −

( l−1∏
m=k+1

Ajm

)
cjl

]
(abusing notation slightly in as much as when Π has it’s argument as functions
A?, it signifies function composition rather than multiplication). We used (1)
to make terms with indexes < n cancel on top and bottom. Note that the
formula 2 in Lemma 3.5 can now be rewritten as

||Bi,j
ki,j
|| ≥ α.

We will show in Lemma 4.1 that we can choose δn such that ||xni −xnj || < δn

implies ki,j > n. Then we show that
ki,j∏
l=n

alil
ail

tends uniformly to 1 as n → ∞

with ki,j > n (uniformly over the i’s and j’s). Thirdly, we show we may choose

K such that for all i, j with ki,j > K,
||Ai,j

ki,j
||

||Bi,j
ki,j
||

is arbitrarily close to one. Then,

given ε > 0 we can obtain δn and the uniform convergence will get us the
result.
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Lemma 4.1. For all n there exists δn such that ||xni − xnj || < δn implies
ki,j > n.

Proof. By (5),
⋃

i1,...,in

S1
i1
. . . Snin(F{At},{ct}pt=1

) is a finite disjoint union of

closed sets. Hence there is some ζ > 0 such that

dist
(
S1
i1 . . . S

n
in(F{At},{ct}pt=1

), S1
j1 . . . S

n
jn(F{At},{ct}pt=1

)
)
> ζ

for all {i1, . . . , in} 6= {j1, . . . , jn}.
Let δn = ζ. Then if ||xni −xnj || < ζ we must have {i1, . . . , in} = {j1, . . . , jn},

so ki,j > n.

Lemma 4.2. For all ε > 0 there exists N such that for all k > n > N ,

1− ε <
k∏
l=n

alil
ail

< 1 + ε

for all i, j.

Proof. Let us write blil =
alil
ail

. In view of (1), this allows us to rewrite (4) as:
For all 1 ≤ t ≤ p,

∞∑
j=1

|1− bjt | <∞.

Hence
k∑
j=n

maxt |1− bjt | → 0 as n, k →∞.

k∏
l=n

blil = exp
k∑
l=n

log blil ≤ exp
k∑
l=n

blil − 1 ≤ exp
k∑
l=n

max
t
|1− blt|.

Hence there is some N1 independent of i such that k > n > N1 implies
k∏
l=n

blil < 1 + ε. The lower limit requires more care.

k∏
l=n

blil = exp
k∑
l=n

log blil

≥ exp
k∑
l=n

χ{blil<1} log blil
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where χ is the indicator function, because log is positive on [1,∞). This leaves
us to deal with only blil ∈ [γ, a]. There exists W > 0 such that for all x ∈ [γ, 1],
log x ≥W (x− 1). (We cannot find W such that this holds on [γ,∞) as well).
Thus

k∏
l=n

blil ≥ exp
k∑
l=n

χ{blil<1}W (blil − 1)

≥ exp
(
−W

k∑
l=n

χ{blil<1}1− blil
)

≥ exp
(
−W

k∑
l=n

χ{blil<1}max |1− blil |
)
.

As before, there is some N2 independent of i such that n > N2 implies 1− ε <
k∏
l=n

blil . Taking N = max{N1, N2} gives the result.

This completes the first section of the proof. We show

||Ai,j
ki,j
||

||Bi,j
ki,j
||
→ 1

in two steps, first that ||Ai,j
ki,j
−Bi,j

ki,j
|| → 0 and then we use that∣∣∣∣∣1− ||A

i,j
ki,j
||

||Bi,j
ki,j
||

∣∣∣∣∣ ≤ ||A
i,j
ki,j
−Bi,j

ki,j
||

||Bi,j
ki,j
||

.

Lemma 4.3. Let Λi,j
k = Ai,j

k −B
i,j
k . Then for all ε > 0 there exists K, for all

i = {i1, i2, . . .} and j = {j1, j2, . . .} for which ki,j > K,

||Λi,j
ki,j
|| < ε.

Proof. By (2) there exists ϕ such that for all j and t, ||cjt ||, ||ct|| ≤ ϕ. Let

ε > 0. By (1) (using geometric series), there exists q such that
∞∑
l=q

4λl < ε
3ϕ .
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Writing k = ki,j,

Λi,j
ki,j

=

Y0︷ ︸︸ ︷
(ck+1
ik+1
− cik+1)− (ck+1

jk+1
− cjk+1)

+

Y1︷ ︸︸ ︷
(Ak+1

ik+1
ck+2
ik+2
−Aik+1cik+2)− (Ak+1

jk+1
ck+2
jk+2
−Ajk+1cjk+2)

+

Y2︷ ︸︸ ︷
(Ak+1

ik+1
Ak+2
ik+2

ck+3
ik+3
−Aik+1Aik+2cik+3)− (Ak+1

jki,j+1
Ak+1
jk+1

ck+3
jk+3
−Ajk+1Ajk+2cjk+3)

+ . . .

Define Yl as shown (the index l corresponds to the number of A trans-
formations in the term Yl). Rearrangement is justified as the series converge
geometrically.

By (1), ||Yl|| ≤ 4ϕλl and so,
∞∑
l=q

||Yl|| < ε
3 . By (2) there exists K1 so as

sup
t,j>K1

||cjt − ct|| < ε
6 . By (2) and (3) there exists K2 such that both

sup
t, j>K2

||Ajt −At||∞ <
ε

6(q − 1)(q − 2)
and sup

t, j>K2

||cjt − ct|| <
ε

12(q − 1)
.

We note, writing k = ki,j,∣∣∣∣(Ak+1
ik+1

. . . Ak+l
ik+l

ck+l+1
ik+l+1

)− (Aik+1 . . . Aik+lcik+l+1)
∣∣∣∣

=
∣∣∣∣(Ak+1

ik+1
. . . Ak+l

ik+l
ck+l+1
ik+l+1

−Aik+1A
k+2
ik+2

. . . Ak+l
ik+l

ck+l+1
ik+l+1

)

+ (Aik+1A
k+2
ik+2

Ak+3
ik+3

. . . Ak+l
ik+l

ck+l+1
ik+l+1

−Aik+1Aik+2A
k+3
ik+3

. . . Ak+l
jk+l

ck+l+1
jk+l+1

) + . . .

. . .+ (Aik+1 . . . Aik+lc
k+l+1
ik+l+1

−Aik+1 . . . Aik+lcik+l+1)
∣∣∣∣

≤ ||Ak+1
ik+1
−Aik+1 ||∞ + . . .+ ||Ak+l

ik+l
−Aik+l ||∞ + ||ckik+l+1

− cik+l+1 ||

using (1) to give us ||Atx|| ≤ λ||x|| < ||x|| and ||(Ajt −At)(x)|| ≤ ||Ajt −At||∞.
For k = ki,j > K2,∣∣∣∣(Ak+1

ik+1
. . . Ak+l

ik+l
ck+l+1
ik+l+1

)− (Aik+1 . . . Aik+lcik+l+1)
∣∣∣∣

≤ l sup
t, j>K2

||Ajt −At||∞ + sup
t, j>K2

||cjt − ct||
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A corresponding inequality holds for terms relating to j. Hence
q−1∑
l=1

||Yl|| ≤
q−1∑
l=1

2
(
l sup
t, j>K2

||Ajt −At||∞ + sup
t, j>K2

||cjt − ct||
)

= 2 sup
t, j>K2

||Ajt −At||∞
( q−1∑
l=1

l
)

+ 2(q − 1) sup
t, j>K2

||cjt − ct||

= (q − 1)(q − 2) sup
t, j>K2

||Ajt −At||∞ + 2(q − 1) sup
t, j>K2

||cjt − ct||

<
ε

6
+
ε

6
=
ε

3
.

So for all i, j with ki,j > K = max{K1,K2},

||Λi,j
ki,j
|| =

∣∣∣∣ ∞∑
l=0

Yl
∣∣∣∣ ≤ 2 sup

t,j>K1

||cjt − ct||+
q−1∑
l=1

||Yl||+
∞∑
l=q

||Yl|| < ε,

as required.

Lemma 4.4. For all ε > 0 there exists K, for all i = {i1, i2, . . .} and j =
{j1, j2, . . .} for which ki,j > K,

1− ε <
||Ai,j

ki,j
||

||Bi,j
ki,j
||
< 1 + ε

Proof. Let ε > 0. Note
∣∣∣1 − ||Ai,j

ki,j
||

||Bi,j
ki,j
||

∣∣∣ ≤ ||Bi,j
ki,j
−Ai,j

ki,j
||

||Bi,j
ki,j
||

=
||Λi,j

ki,j
||

||Bi,j
ki,j
||

. Lemma 3.5

gives ||Bi,j
ki,j
|| ≥ α > 0 and by Lemma 4.3 there exists K, such for all i and j

with ki,j > K, ||Λi,j
k || <

ε
α , which implies

∣∣∣1− ||Ai,j
ki,j
||

||Bi,j
ki,j
||

∣∣∣ < ε.

This completes the second part of the proof. It only remains to fit every-
thing together.

Theorem 4.5. For all ε > 0 there exists N such that for all n > N there is
some δn such that for all i and j with ||xni − xnj || < δn,

||xni − xnj ||(1− ε) ≤ ||φn(xni )− φn(xnj )|| ≤ (1 + ε)||xni − xnj ||.
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Proof. Let ε > 0. By Lemma 4.2 there exists M such that for all k ≥ n > M ,
for all i and j,

1− ε

3
≤

n∏
l=n

alil
ail
≤ 1 +

ε

3
.

By Lemma 4.4 there exists K such that for all i, j with ki,j > K,

1− ε

3
≤
||Ai,j

k ||
||Bi,j

k ||
≤ 1 +

ε

3
.

Let N = max{K,M} and consider n > N . By Lemma 4.1 there exists δn such
that ||xni − xnj || < δn implies kij > n.

If i = j then the conclusion is trivial. If not, xni 6= xnj by (5) and

||x′i − x′j||
||xni − xnj ||

=
( ki,j∏
l=n

alil
ail

) ||Ai,j
ki,j
||

||Bi,j
ki,j
||
.

Then

(1− ε/3)2 ≤
||φ(xni )− φ(xnj )||
||xni − xnj ||

≤ (1 + ε/3)2,

and (for small ε),

(1− ε) ≤
||φ(xni )− φ(xnj )||
||xni − xnj ||

≤ (1 + ε).

Multiplying through by ||xni − xnj || gives the result.

We have now established a strong sense in which φn approximates the
identity function. However, our φn are not truly bilipschitz! We only have

||xni − xnj ||(1− ε) ≤ ||φn(xni )− φn(xnj )|| ≤ (1 + ε)||xni − xnj ||

for points close together, in fact those for which ||xni −xnj || < δn. The standard
result about Hausdorff measure and bilipschitz transformations (2.4(b) in [1])
does not apply. However the following is true:

Let F ⊆ Rd and f : F → f(F ) be a bijection. Suppose there is some δ > 0
and λ, λ′ > 0 such that ||x − y|| ≤ δ implies λ′||x − y|| ≤ ||f(x) − f(y)|| ≤
λ||x− y||. Then (λ′)sHs(F ) ≤ Hs(f(F )) ≤ (λ)sHs(F ).

The proof of this is essentially the same as if f were bilipschitz: Let {Ui}
be a cover of F ; then {f(F ∩ Ui)} is a cover of f(F ). For all 0 < σ < δ,
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take |Ui| < σ ≤ δ then |f(F ∩ Ui)| < λσ and from the definition of Hausdorff
measure, Hs(f(F )) ≤ λsHs(F ). The other inequality follows from the same
argument applied to f−1 and f(F ).

It is this result which we now use.

Corollary 4.6. Hs(E{{Ajt}j ,{cjt}j}pt=1
) = lim

n→∞

(
Hs(En{{Ajt}j ,{cjt}j}pt=1

)
)
.

Proof. By (5), φn is a bijection. Let ε > 0. The result above gives

(1− ε)sHs(En{{Ajt}j ,{cjt}j}pt=1
) ≤ Hs(E{{Ajt}j ,{cjt}j}pt=1

)

Hs(E{{Ajt}j ,{cjt}j}pt=1
) ≤ (1 + ε)sHs(En{{Ajt}j ,{cjt}j}pt=1

)

for all n > N for some N . Since (1 ± ε)s → 1 as ε → 0, the stated result
follows.

5 Applying 4.6.

In this section we calculate Hs(En{{Ajt}j ,{cjt}j}pt=1
) in terms of Hs(F{At},{ct}pt=1

)
and hence show that

0 < Hs(E{{Ajt}j ,{cjt}j}pt=1
) <∞

for s = dimH(F{At},{ct}pt=1
).

The following result has been lurking ever since we set up our notation.

Lemma 5.1. For all n,

En{{Ajt}j ,{c
j
t}j}

p
t=1

=
⋃

i1,...,in
∈{1,...p}

S1
i1 ◦ . . . ◦ S

n
in(F{At},{ct}pt=1

).

This union is disjoint.

Proof. The expression follows from our definition of En-sets and F -sets. (5)
gives i = j ⇐⇒ xni = xnj , hence the sets x′i1,...,in + A1

i1
. . . AninF{At},{ct}pt=1

must be disjoint.
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Corollary 5.2. It holds that

Hs(En{{Ajt}j ,{cjt}j}pt=1
) = Hs(F{At},{ct}pt=1

)
∑

i1,...,in
∈{1,...p}

(a1
i1 . . . a

n
in)s

= Hs(F{At},{ct}pt=1
)
n∏
j=1

p∑
t=1

(ajt )
s.

Proof. Note that

S1
i1 ◦ . . . ◦ S

n
in(F{At},{ct}pt=1

) = x′i1,...,in +A1
i1 . . . A

n
inF{At},{ct}pt=1

.

Taking the measure on both sides in (3) and using disjointness we have

Hs(En{{Ajt}j ,{cjt}j}pt=1
) =

∑
i1,...,in
∈{1,...p}

Hs
(
x′i1,...,in +A1

i1 . . . A
n
inF{At},{ct}pt=1

)
=

∑
i1,...,in
∈{1,...p}

Hs
(
A1
i1 . . . A

n
inF{At},{ct}pt=1

)
=

∑
i1,...,in
∈{1,...p}

(a1
i1 . . . a

n
in)s Hs

(
(F{At},{ct}pt=1

)

because the Ajt are similitudes.
The second form of the result follows from noting that

( ∑
i1,...,in
∈{1,...p}

(a1
i1 . . . a

n
in)s

)( p∑
t=1

(an+1
t )s

)
=

∑
i1,...,in+1
∈{1,...p}

(a1
i1 . . . a

n+1
in+1

)s.

It is now clear that the En-sets and the F -set have the same dimension.
We show this is also common to the E-set.

Lemma 5.3. Let s > 0 and 0 < η < λ < 1. Then there exists δ > 0 such that
for some M ≥ 0 and for all x ∈ [η, λ], |ε| < δ, xs−|ε|M ≤ (x+ε)s ≤ xs+|ε|M .

Proof. This is an obvious consequence of the mean value theorem.



pIFSs and the Hausdorff Measure of Their Attractors 111

Theorem 5.4. Let s = dimH(F{At},{ct}pt=1
) be the unique positive real satis-

fying
p∑
t=1
|at|s = 1. Then 0 <

∞∏
j=1

p∑
t=1

(ajt )s <∞, so

0 < Hs(E{{Ajt}j ,{cjt}j}pt=1
) <∞

and dimH(E{Ajt}j ,{cjt}j}pt=1
) = s.

Proof. By Lemma 5.3, let δ > 0 be small enough, and M ≥ 0 be large
enough, so as for all x ∈ (η, λ) and |ε| < δ,

xs − |ε|M ≤ (x+ ε)s ≤ xs + |ε|M.

By (4), there exists J for all j ≥ J , max
t
|ajt − at| < δ. So for all j ≥ J , with

ε = ajt − at,
(at)s − |ε|M ≤

(
at + ε

)s ≤ (at)s + |ε|M,

(at)s − |ε|M ≤ (ajt )
s ≤ (at)s + |ε|M.

Noting that |ε| ≤ max
t
|ajt − at| and summing over t we obtain

p∑
t=1

(
(at)s−M

(
max
t
|ajt−at|

))
≤

p∑
t=1

(atj)
s ≤

p∑
t=1

(
(at)s+M

(
max
t
|ajt−at|

))
.

We shall want the left hand side of this inequality again. Let us refer to it as
(?). Continuing as we were,

1−
(

max
t
|ajt − at|

)
pM ≤

p∑
t=1

(atj)
s ≤ 1 +

(
max
t
|ajt − at|

)
pM

∣∣∣ p∑
t=1

(ajt )
s − 1

∣∣∣ ≤ pM max
t
|ajt − at|.

This tells us that
∞∑
j=J

∣∣∣ p∑
t=1

(ajt )
s − 1

∣∣∣ ≤ pM ∞∑
j=J

max
t
|ajt − at|.

By (2), the right hand side converges absolutely to something finite, so

∞∑
j=1

∣∣∣ p∑
t=1

(atj)
s − 1

∣∣∣ <∞.
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Hence
∞∏
j=1

p∑
t=1

(ajt )s converges and is finite.

Now the lower bound. We work in similar fashion to the lower bound
calculation in 4.2.

N∏
j=J

p∑
t=1

(ajt )
s = exp

N∑
j=J

(
log

p∑
t=1

(ajt )
s
)

≥ exp
N∑
j=J

(
χ[ pP

t=1
(ajt)

s≤1

] log
p∑
t=1

(ajt )
s
)
.

Note that
p∑
t=1

(ajt )s ≥ ηs. If ηs ≥ 1 we already have our lower bound, e0 = 1. If

not, there exists some large W such that x ∈ [ηs, 1] implies W (x− 1) ≤ log x.
Thus

N∏
j=J

p∑
t=1

|ajt |s ≥ exp
N∑
j=J

(
χ[ pP

t=1
(ajt)

s≤1

]W ( p∑
t=1

(ajt )
s − 1

))

= exp
N∑
j=J

(
χ[ pP

t=1
(ajt)

s≤1

]W p∑
t=1

(
(ajt )

s − (at)s
))

≥ exp
[
− pWM

∞∑
j=J

max
t
|ajt − at|

]
where we have used (?) to get the last inequality. By (4) the right hand side

of this is > 0, so
∞∏
j=1

p∑
t=1

(ajt )s > 0. The result is now a consequence of Lemma

5.2

We are now in a position to give the result we have been aiming for.

Theorem 5.5.

Hs
(
E{{Ajt}j ,{c

j
t}j}

p
t=1

)
= Hs

(
F{At},{ct}pt=1

)
×
∞∏
j=1

p∑
t=1

(ajt )
s

and 0 < Hs
(
E{{Ajt}j ,{c

j
t}j}

p
t=1

)
< ∞ so as dimH(E{{Ajt}j ,{cjt}j}pt=1

) = s where

s is the unique solution to
p∑
t=1

(at)s = 1 (i.e. s = dimH
(
F{At},{ct}pt=1

)
).
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Proof. This now follows from Corollary 4.6, Corollary 5.2 and Theorem 5.4.

6 Checking (5).

When the pIFS is known it should not be a problem to determine if (1)-(4)
are satisfied. As yet we have no real means of verifying (5). In this section we
need assume only (1)-(3). Consider the following.

Let {{Sjt }
p
t=1}j be a pIFS of {St}pt=1. We define a strong separation con-

dition for pIFSs as SSC(pIFS): There exists a non-empty set G such that:

(i) A({St}pt=1}) ⊆ G.

(ii) There exists M such that for each m > M there exists ς such that for
any i1, . . . , im, j1, . . . , jm, dist

(
S1
i1
. . . Smim(G), S1

j1
. . . Smjm(G)

)
> ς.

Recall that Em{{Ajt}j ,{cjt}j}pt=1
is composed of pm scaled copies of F{At},{ct}pt=1

.
This condition states that each of these is contained in a scaled copy of G, dis-
joint from other scaled copies of G. If we had the SSC on the limiting IFS,
i 6= j⇒ xi 6= xj and hence i 6= j iff xmi 6= xmj (so (5) would hold).

Our SSC for pIFSs deliberately avoids saying anything about separation
conditions for the limiting IFS. Even if all the IFSs in our pIFS satisfy the
SSC it is not implied that the limiting IFS also does.

We conclude with a simple numerical condition which combined with the
SSC on the limiting IFS implies (5). The case we wish to isolate is when

(i) G is the closed ball about 0 whose radius is

G = sup{||y|| : y ∈ F{At},{ct}pt=1
}.

(ii) For all m ≥ M , i1, . . . , im and t ∈ {1, . . . , p}, S1
i1
. . . SmimS

m+1
t (G) ⊆

S1
i1
. . . Smim(G).

With a little extra effort it should be possible to modify the argument below
to work for more complicated G. The condition which will make (i) and (ii)
occur is:

(5a) For all n, max
t

||cnt ||
1− ant

≤ G < min
s6=t

||cns − cnt ||
ans + ant

.

See 6.2 for a geometrical explanation of the inequalities. We first show how
to calculate G. Note that for t = 1, . . . , p,

sup{||Atx|| : ||x|| ≤ 1} ≤ at < 1.
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It is a standard result that (for linear transformations between Banach spaces)
this implies I −At is invertible, where I denotes the identity transformation.
Hence St has a unique fixed point

yt = (I −A)−1ct.

Lemma 6.1. conv(F{At},{ct}pt=1
) = conv{y1, . . . , yp} where yt is the unique

fixed point of St. Hence

G = max{(I −A)−1(ct) : t = 1, . . . , p}.

Proof. Define Y = conv{y1, . . . , yp}. Hence

Y = {α1y1 + . . .+ αpyp :
p∑
j=1

αj = 1, 0 ≤ αj ≤ 1}.

In this form it is easy to prove that
p⋃
t=1

St(Y ) ⊆ Y . Let T =
⋃
t St, the

application of {St}pt=1. By the fundamental theorem of IFSs (see [1]), Rj =
j times︷ ︸︸ ︷

T ◦ . . . ◦ T (Y ) is a decreasing sequence of sets converging to F{At},{ct}pt=1
. As

yt ∈ F{At},{ct}pt=1
, so conv{y1, . . . , yp} ⊆ conv(F{At},{ct}pt=1

). Hence,

F{At},{ct}pt=1
⊆ conv{y1, . . . , yp} ⊆ conv(F{At},{ct}pt=1

).

Taking convex hulls gives the result.

We conclude with proof that (5a) functions as planned.

Proposition 6.2. In the presence of the SSC on {St}pt=1, condition (5a)
implies that (5) holds with G = BG(0).

Proof. We use induction on the elements in the sequence of prefractals be-
ginning from {0}. First note the consequences of either side of the inequality

in (5a). From max
t

||cnt ||
1− ant

≤ G: Then for all i1, i2, . . . , in we have
||cnin ||

1− anin
≤ G

which implies

||cnin || (a
1
i1 . . . a

n−1
in−1

) + (a1
i1 . . . a

n
in)G ≤ (a1

i1 . . . a
n−1
in−1

)G.
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Geometrically, this means that for each i1, . . . , in−1, for each t, a closed ball of
radius (a1

i1
. . . an−1

in−1
)G about c1i1 + . . . + a1

i1
. . . an−2

in−2
cn−1
in−1

contains all t closed
balls of radius (a1

i1
. . . an−1

in−1
ant )G about c1i1 + . . .+a1

i1
. . . an−1

in−1
cnt . We will refer

to this implication as (†).

From G < min
s6=t

||cns − cnt ||
ans + ant

: Then for all i1, i2, . . . , 1n−1 and s 6= t we have

that

||(c1i1 + . . .+ a1
i1 . . . a

n−1
in−1

cns )− (c1i1 + . . .+ a1
i1 . . . a

n−1
in−1

cnt )||

>
(
(a1
i1 . . . a

n−1
in−1

ant )+(a1
i1 . . . a

n−1
in−1

ans )
)
G.

Geometrically, this implies that for all i1, . . . , in−1 and s 6= t, the ball of
radius (a1

i1
. . . an−1

in−1
ant )G about c1i1 + . . .+a1

i1
. . . an−1

in−1
cns and the ball of radius

(a1
i1
. . . an−1

in−1
ans )G about c1i1 + . . .+ a1

i1
. . . an−1

in−1
cnt are positively separated (⇒

do not intersect). We refer to this implication as (?).
Here is a pictorial demonstration of what (†) and (?) mean.

P

Q

R

bn−1G

bn−1a
n
s G

bn−1a
n
t G

P = x′i1,...in−1
, Q = x′i1,...,in−1,t

, R = x′i1,...,in−1,s
, bn =

n∏
k=1

akik

recall x′i1,...,in = c1i1 + . . .+ a1
i1
. . . an−1

in−1
cnin

(†) states that the inner circles must be contained in the outer circle. (?)
states that the inner circles must be positively separated. It is now easy to
see how the induction should work.
By Corollary 5.1,

En{{Ajt}j ,{c
j
t}j}

p
t=1

=
⋃

i1,...,in
∈{1,...p}

(
x′i1,...,im +A1

i1 . . . A
n
inF{at},{ct}pt=1

)
.
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For each n, enumerate the sets(
c1i1 +A1

i1c
2
i2 + . . .+A1

i1 . . . A
n−1
in−1

cnin
)

+A1
i1 . . . a

n
inBG(0)

as Cni1,...,in . We can now restate (†) and (?) as follows:
(†): For all n, for all i1, . . . in, for all t, Cn+1

i1,...,in,t
⊆ Cni1,...,in ,

(?): For all n, i1, . . . in−1, when s 6= t, Ci1,...,in−1,t ∩ Ci1,...,in−1,s = ∅.
When n = 1, by (?) we have all the C1

l are disjoint. Then by (†) we have
that for each i1, for each l, C2

i1,l
⊆ C1

i1
. By (?), all the C2

i1,l
are disjoint,

which gives that for all i1, i2, j1, j2, if either i1 6= j1 or i2 6= j2, we have
C2
i1,i2
∩ C2

j1,j2
= ∅. Continuing in this fashion (we leave the statement of a

formal induction for the reader) gives that if there exists some l < n such that
il 6= jl, Cni1,...in ∩ C

n
j1,...,jn

= ∅.
Inside each Cni1,...,in sits a scaled copy of F{at},{ct}pt=1

. Due to the SSC any
two points in this scaled copy have a positive distance between them. This
proves that i = j ⇐⇒ xni = xnj .

To show that i = j ⇐⇒ x′i = x′j, let i 6= j and consider Eki,j
{{Ajt}j ,{c

j
t}j}

p
t=1

.

From the above we know this is split into pki,j positively separated (scaled and
translated) copies of BG(0). Let B1 and B2 be copies of BG(0) containing
x
ki,j
i and xki,jj respectively. We note that xni → x′i as n→∞ and similarly for

j. The sequence xni is contained in B1 and similarly xnj in B2 for n > ki,j, so
x′i 6= x′j. The reverse implication is trivial and hence i = j ⇐⇒ x′i = x′j.

Therefore, (5) holds.

7 Comments.

There are a some comments I would like to make.

7.1 On Weakening Condition (5).

It is my belief that the exact formula of 5.5 will fail if one were to weaken (5).
A natural question is to ask whether the OSC on all the IFSs {S(j)

t }
p
t=1 would

be sufficient in place of (5). We discuss the OSC in the following form: There
exists a convex open set R such that ∪tS(j)

t (R) ⊆ R with the union on the left
being disjoint.

Note that if the limiting IFS satisfies the SSC then so, in the tail, does
the pIFS. Hence the question is really whether or not we can use the OSC on
{St}pt=1.
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The major use of the SSC in the proofs given was in lemma 4.4 as part of
obtaining bilipschitz bounds on φn. This is no longer possible, at least not in
same fashion if we do not have the SSC. In fact, unless our pIFS is exactly it’s
limiting IFS the functions φn are not bilipschitz (for any bilipschitz bounds).
Worse still, pairs of points at which φn fails to be bilipschitz can be shown to
be essentially dense in the En-set.

To understand what has gone wrong here we should step back from trying
to use the method of section 3. Essentially the result is about a sequence of
sets which converges pointwise - we want to know if this convergence preserves
Hausdorff measure (and dimension).

Suppose we had a way of consistently covering our sets in the sequence
(with δ-covers as δ → 0) in a more efficient manner than is possible for the
limit set. Without wishing to quantify the word ’more’, from the definition
of Hs it is unlikely that measure would be preserved. Can this happen in our
scenario?

Consider a three part Cantor set on [0, 1], with two first level images touch-
ing and one standing free. In the second stage of its construction we observe
an interval of length 3/16. If the two first level images had not touched this
would not exist! Clearly we can cover this more efficiently than if there was a
gap.

Consider a pIFS of this Cantor set where the contraction ratios are kept
the same but the central interval Sj2[0, 1] (as imaged by the IFSs in our pIFS)
is moved closer to Sj1[0, 1] as j → ∞. The limiting IFS has them touching.
If the result of Theorem 5.5 were to hold here, the IFS and pIFS would have
attractors of equal measure.

However, as we observed, it looks like we might be able to cover the se-
quence of En-sets more efficiently than we can cover the E-set they are sup-
posed to converge to. Results in [3] suggest (but I have not been able to obtain
exact enough figures) that the covering will be significantly more effective and
Theorem 5.5 will fail. The issue is that too much mass could concentrate about
the joining points. If Theorem 5.5 held in cases like these a new method of
proof would be needed.

7.2 A Stronger Result?

Theorem 1 in [2] states the following result: Let 0 < aj1 + aj2 < 1, and let
E = ∩jEj where Ej is defined by:

• E0 = [0, 1].

• Ej is obtained from Ej−1 be deleting all but the left most aj1 and the
right most aj2 portion of each of it’s constituent intervals.
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Let (aj1)s
j

+ (aj2)s
j

= 1. Then if the limit sj → s exists,

Hs(E) = lim inf
l→∞

l∏
j=1

(
(aj1)s + (aj2)s

)
.

Our result would apply to this situation when ajt → at for some a1, a2 > 0
with

∑
|ajt − at| <∞. In this case, the unperturbed attractor has measure 1

(see [5]).
In one dimension, restricted to two part IFSs, this is a more general result

than ours. Of course one might hope this more general result extended into
higher dimensions as well. I do not expect this will work. The lim inf in
the result relies on the natural covering (the sequence of prefractals) being as
efficient a cover as can be found (in terms of

∑
i |Ui|s for small δ-covers). In

one dimension considering only two part Cantor sets with the SSC something
like this is always the case. In more complex scenarios the natural covering is
often beaten by something more exotic.
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