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σ-LOWER POROUS

Abstract

Let X be a nonempty, topologically complete metric space with no
isolated points. We show that there exists a closed upper porous set
(in a strong sense) F ⊂ X which is not σ-lower porous (in a weak sense).
More precisely, we show that there exists a closed (g1)-shell porous set
F ⊂ X which is not σ-(g2)-lower porous, where g1 and g2 are arbitrary
admissible functions.

1 Introduction.

The notions of porosity and σ-porosity have been studied in many papers from
different points of view. We refer the reader to [5] and [4] for motivations
and applications of these notions.

In this paper, our aim is to strengthen the following well-known result:

Proposition 1.1. [4, Proposition 2.7] Let (X, %) be a nonempty, topologically
complete metric space with no isolated points. There exists a closed nowhere
dense set F ⊂ X which is not σ-lower porous.

As it was already mentioned in [4, Remark 2.8], it is not difficult to modify
the construction used in the proof of this proposition to obtain a closed set
F ⊂ X which is upper porous and is not σ-lower porous.

Using a similar method as in the proof of Proposition 1.1 we even show
a stronger result. Namely we prove that there exists a closed (g1)-shell porous
set F ⊂ X which is not σ-(g2)-lower porous, where g1 and g2 are arbitrary
admissible functions.
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2 Basic Definitions and Main Result.

In this section, we present some basic definitions and formulate our main
result.

In the following we suppose that (X, %) is a fixed nonempty metric space.
The open ball with center x ∈ X and radius r > 0 will be denoted by B(x, r).
Further, we put B(x, 0) := ∅.

By an admissible shell we mean any set of the form S(x, y, s) := {z ∈ X :
%(x, y)− s < %(x, z) < %(x, y) + s} where x, y ∈ X, x 6= y and 0 < s < %(x, y).
Further, we put S(x, y, 0) := ∅.

We shall denote by G the system of all increasing continuous functions g
on [0,∞) such that g(0) = 0 and g(x) > x for 0 < x < δ for some δ > 0.

Definition 2.1. Let A ⊂ X, x ∈ X and r > 0.
Let γ(A, x, r) := sup{s ≥ 0 : ∃ y ∈ B(x, r) : B(y, s) ∩A = ∅}.
Let Γ(A, x, r) := sup{s ≥ 0 : ∃ y ∈ B(x, r) : S(x, y, s) ∩A = ∅}.

(i) We say that A is upper porous at x if lim sup
r→0+

γ(A,x,r)
r > 0.

(ii) We say that A is lower porous at x if lim inf
r→0+

γ(A,x,r)
r > 0.

(iii) We say that A is strongly porous at x if x /∈ A or there exists a sequence
of balls (B(yn, sn))∞1 such that yn → x, B(yn, sn) ∩ A = ∅ for every
n ∈ N and sn

%(x,yn) → 1.

(iv) We say that A is shell porous at x if x /∈ A or lim sup
r→0+

Γ(A,x,r)
r > 0.

Moreover, let g ∈ G.

(v) We say that A is (g)-upper porous at x if there exists a sequence of balls
(B(yn, sn))∞1 such that yn → x, B(yn, sn) ∩A = ∅ and g(sn) > %(x, yn)
for every n ∈ N.

(vi) We say that A is (g)-lower porous at x if there exists R > 0 such that
for every 0 < r ≤ R there exists a ball B(yr, sr) such that yr ∈ B(x, r),
B(yr, sr) ∩A = ∅ and g(sr) > r.

(vii) We say that A is (g)-shell porous at x if x /∈ A or there exists a sequence
of admissible shells (S(x, yn, sn))∞1 such that yn → x, S(x, yn, sn)∩A = ∅
and g(sn) > %(x, yn) for every n ∈ N.
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(viii) We say that A is upper porous (lower porous, strongly porous, shell
porous, (g)-upper porous, (g)-lower porous, (g)-shell porous) if it is upper
porous (lower porous, strongly porous, shell porous, (g)-upper porous,
(g)-lower porous, (g)-shell porous) at each point in A.

(ix) We say that A is σ-upper porous (σ-lower porous, σ-strongly porous, σ-
shell porous, σ-(g)-upper porous, σ-(g)-lower porous, σ-(g)-shell porous)
if it is a countable union of upper porous (lower porous, strongly porous,
shell porous, (g)-upper porous, (g)-lower porous, (g)-shell porous) sets.

Remark 2.2. (i) For other definitions of generalized porosities similar to
the notion of (g)-upper porosity we refer the reader to [5] and [6].

(ii) The notion of (g)-lower porosity has been used in several unpublished
(to my knowledge) manuscripts by D. L. Renfro, dating from around
1995-96, and it is also used at the end of his short conference note [2,
Note 6].

(iii) The notion of shell porosity was introduced by R. W. Vallin in [3]. His
original definition is not very suitable in general metric spaces because it
does not imply upper porosity. Moreover, he admits empty shells which
makes his definition not natural. Therefore we changed Vallin’s defini-
tion to fix these inconveniences by considering the admissible shells only.
In normed linear spaces our notion is (after some rescaling) equivalent
to Vallin’s original notion.

(iv) Let g ∈ G and A ⊂ X be (g)-shell porous. Then A is (g)-upper porous.

(v) Let g ∈ G and A ⊂ X be (g)-lower porous. Then A is (g)-upper porous.

(vi) Let g ∈ G and A ⊂ X be (g)-upper porous. Then A is nowhere dense.

(vii) Let g ∈ G, lim sup
t→0+

g(t)
t < ∞ and A ⊂ X be (g)-upper porous ((g)-lower

porous). Then A is upper porous (lower porous).

(viii) Let g ∈ G, lim inf
t→0+

g(t)
t =∞ and A ⊂ X be upper porous (lower porous).

Then A is (g)-upper porous ((g)-lower porous).

(ix) Let g ∈ G, lim
t→0+

g(t)
t = 1 and A ⊂ X be (g)-upper porous. Then A is

strongly porous.
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(x) Let g ∈ G, lim
t→0+

g(t)
t = 1 and A ⊂ X be (g)-lower porous. Then A is

very strongly porous (this notion was used, e.g., by P. Mattila in [1]; its
definition can also be found in [5]).

Now we can formulate our main result that is an improvement of Proposi-
tion 1.1:

Theorem 2.3. Let (X, %) be a nonempty, topologically complete metric space
with no isolated points. Let g1, g2 ∈ G. There exists a closed (g1)-shell porous
set F ⊂ X which is not σ-(g2)-lower porous.

The proof of this theorem will be given later in Section 4 together with its
corollaries.

3 Several Lemmas.

In the proof of Theorem 2.3 we will use several lemmas. The following two
lemmas give us a useful tool to show that some sets are not σ-(g)-lower porous.

Lemma 3.1. Let g ∈ G and let A be a σ-(g)-lower porous subset of a metric
space (X, %). Then A can be covered by countably many closed (2g)-lower
porous sets.

Proof. Since A is σ-(g)-lower porous, we can write A =
⋃
n∈N An, where An

is (g)-lower porous for every n ∈ N. Fix n ∈ N. For every k ∈ N put An,k :=
{x ∈ An : ∀ 0 < r ≤ 1

k ∃B(z, s) : z ∈ B(x, r), B(z, s) ∩ An = ∅, g(s) > r}.
Clearly, An ⊂

⋃
k∈N An,k and it suffices to show that An,k is (2g)-lower porous

for every k ∈ N. Fix k ∈ N, x ∈ An,k and 0 < r ≤ 1
k . Since x ∈ An,k, we

can find y ∈ An,k such that %(x, y) < r
2 . Since y ∈ An,k, there exists an open

ball B(z, s) such that z ∈ B(y, r2 ), B(z, s) ∩ An,k = ∅ and g(s) > r
2 . Clearly,

z ∈ B(x, r) and B(z, s) ∩ An,k = ∅, because any open ball disjoint with An,k
is also disjoint with An,k. Moreover, g(s) > r

2 and thus (2g)(s) > r. Thus we
have proved that An,k is (2g)-lower porous.

Lemma 3.2. Let (X, %) be a metric space and let F be a nonempty, topologi-
cally complete subspace of X. Let g ∈ G and let there exist a set A ⊂ F dense
in F such that F is (2g)-lower porous (in X) at no point x ∈ A. Then F is
not a σ-(g)-lower porous subset of X.
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Proof. Suppose on the contrary that F is σ-(g)-lower porous. Lemma 3.1
implies that F ⊂

⋃
n∈N Fn, where each set Fn is closed and (2g)-lower porous.

Since F is a topologically complete space, by Baire’s Theorem there exist an
open set G ⊂ X and an index n0 ∈ N such that G ∩ F 6= ∅ and G ∩ F ⊂ Fn0 .
Since A is dense in F , there exists a point x ∈ G ∩A. Since Fn0 is (2g)-lower
porous, it is (2g)-lower porous at all points of G∩F , especially at the point x.
Hence F is (2g)-lower porous at x, which is a contradiction with x ∈ A.

The third lemma provides a construction of special sets that will be re-
peatedly used in the construction of set satisfying properties of Theorem 2.3.
In its proof, we will use the following notion of ε-discreteness:

Let (X, %) be a nonempty metric space and ε > 0. A set A ⊂ X is ε-discrete
if %(x, y) ≥ ε for every two points x, y ∈ A, x 6= y.

Zorn’s Lemma implies the existence of a maximal ε-discrete subset of any
nonempty set in X.

Let A,B ⊂ X. We say that A is discrete in B if A ⊂ B and A′ ∩ B = ∅
where A′ denotes the set of all points of accumulation of A in X.

Lemma 3.3. Let (X, %) be a nonempty, topologically complete metric space
with no isolated points. Let g, h ∈ G. Then for any z ∈ X there exists a set
Mz ⊂ X \ {z} and an open set Oz ⊂ X \ {z} with the following properties:

(a) (Mz)′ = {z},

(b) Mz is not (h)-lower porous at z,

(c) Mz ⊂ Oz,

(d) Oz is (g)-shell porous at z.

Proof. Choose a point z ∈ X arbitrarily. Since g ∈ G, there exists δg > 0
such that g(t) > t for all t ∈ (0, δg). Since h ∈ G, there exists δh > 0 such
that the inverse function h−1 is defined at least on [0, δh). Put α0 := δh and
N0 := ∅.

We will inductively construct sequences (αn)∞1 , (yn)∞1 , (sn)∞1 , (Nn)∞1 and
(Qn)∞1 such that the following conditions are satisfied for all n ∈ N:

(i) 0 < αn ≤ 1
2αn−1,

(ii) 0 < %(z, yn) < min( δg

n ,
1
3 dist(z,Nn−1)),

(iii) 0 < sn < %(z, yn) < g(sn),

(iv) S(z, yn, sn) ∩B(z, αn) = ∅,
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(v) Nn is discrete in X and dist(z,Nn) > 0,

(vi) ∀x ∈ B(z, αn) \ {z} : B(x, σ) ∩Nn = ∅ ⇒ h(σ) < αn,

(vii) Qn ⊂ B(z, αn) \ {z} is open,

(viii) Qn ∩B(z, 2
3 dist(z,Nn)) = ∅,

(ix) Nn ⊂ Qn.

Suppose either k = 0, or k ∈ N and we have already constructed α1, y1,
s1, N1, Q1, ..., αk, yk, sk, Nk, Qk so that conditions (i)-(ix) are satisfied for
n = k.

Since z is not isolated inX, there exists yk+1 ∈ X such that 0 < %(z, yk+1) <
min( δg

k+1 ,
1
3 dist(z,Nk)). Since g(%(z, yk+1)) > %(z, yk+1), by continuity of g

we can find 0 < sk+1 < %(z, yk+1) such that g(sk+1) > %(z, yk+1). Put
αk+1 := 1

2 min(αk, %(z, yk+1)− sk+1) > 0. Since B(z, αk+1) \ {z} is nonempty,
we can define Nk+1 as a maximal h−1(αk+1)-discrete subset of B(z, αk+1)\{z}.
Finally, put Qk+1 := B(z, αk+1) \B(z, 2

3 dist(z,Nk+1)).
It is easy to check all the conditions (i)-(iv) and (vii)-(ix) for n = k + 1.

Condition (v) follows from h−1(αk+1)-discreteness of Nk+1 and condition (vi)
follows from its maximality.

Finally, we put Mz :=
⋃
n∈N Nn and Oz :=

⋃
n∈N Qn. It suffices to check

properties (a)-(d).
By condition (i) we get that αn → 0. Conditions (vii) and (ix) imply that

Nn ⊂ B(z, αn) \ {z} for every n ∈ N. Condition (vi) and the fact that h ∈ G
further assure that Nn 6= ∅ for every n ∈ N. Hence {z} ⊂ (Mz)′. The second
inclusion follows by condition (v), namely by discreteness of sets Nn in X for
every n ∈ N. Thus property (a) is satisfied.

Since αn → 0 and by condition (vi) any open ball B(x, σ) disjoint with
Mz such that x ∈ B(z, αn) satisfies h(σ) < αn for every n ∈ N, Mz is not
(h)-lower porous at z and property (b) is satisfied.

Property (c) follows directly from condition (ix) and definitions of sets Mz

and Oz.
By conditions (iv), (vii) and since (αn)∞1 is decreasing by condition (i), we

conclude that S(z, yn, sn)∩Qk = ∅ for every n ∈ N and k ∈ N such that k ≥ n.
Moreover, if n > 1, by conditions (ii), (iii) and (viii) we get S(z, yn, sn) ⊂
B(z, 2%(z, yn)) ⊂ B(z, 2

3 dist(z,Nn−1)) and Qn−1 ∩ B(z, 2
3 dist(z,Nn−1)) = ∅,

so S(z, yn, sn)∩Qn−1 = ∅ and similarly S(z, yn, sn)∩Qk = ∅ for every k ∈ N,
k < n. Hence S(z, yn, sn) ∩ Oz = ∅ for every n ∈ N. Using conditions (ii)
and (iii) we easily check that (S(z, yn, sn))∞1 is a sequence of admissible shells
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as in Definition 2.1 (vii) (where we put z instead of x and Oz instead of A).
Hence Oz is (g)-shell porous at z and property (d) is also satisfied.

4 Proof of the Main Result and its Corollaries.

Now we can finally give the proof of our main result.

Proof of Theorem 2.3. Put g := g1 and h := 2g2. Since g ∈ G, there exists
δg > 0 such that g(t) > t for all t ∈ (0, δg). Further, put F0 := ∅. We will
inductively construct closed sets F1 ⊂ F2 ⊂ ... and open sets G1 ⊃ G2 ⊃ ...
such that the following properties (where we put Dn := Fn \ Fn−1) hold for
each n ∈ N:

(i) (Dn)′ = Fn−1,

(ii) Dn ⊂ Gn,

(iii) Dn is not (h)-lower porous at x for every point x ∈ Dn−1 if n > 1,

(iv) Gn is (g)-shell porous at x for every point x ∈ Dn−1 if n > 1,

(v) for every point x ∈ Gn there exists an admissible shell S(x, yx, sx) such
that 0 < %(x, yx) < 1

5n , S(x, yx, sx) ∩Gn = ∅ and g(sx) > %(x, yx).

Choose z ∈ X and put F1 := {z}. Since z is not isolated in X, we can find
w1
z ∈ X such that 0 < %(z, w1

z) <
1
5 min(1, δg). Thus g(%(z, w1

z)) > %(z, w1
z).

We can find δ1
z > 0 such that %(z, w1

z) + δ1
z <

1
5 min(1, δg) and g(%(z, w1

z)) >
%(z, w1

z) + δ1
z . By continuity of g we can further find 0 < s1

z < %(z, w1
z) such

that g(s1
z) > %(z, w1

z) + δ1
z . Put ∆1

z := 1
3 min(δ1

z , %(z, w1
z) − s1

z) > 0 and
G1 := B(z,∆1

z). Then conditions (i), (ii) and (v) hold for n = 1. Indeed:

• (D1)′ = (F1 \ F0)′ = {z}′ = ∅ = F0.

• D1 = {z} ⊂ B(z,∆1
z) = G1.

• Choose x ∈ G1. Put yx := w1
z and sx := s1

z. Then 0 < %(x, yx) ≤
%(x, z)+%(z, yx) < δ1

z+%(z, yx) < 1
5 and g(sx) > %(z, yx)+δ1

z > %(x, yx).
Moreover, if t ∈ S(x, yx, sx), then %(z, t) ≥ %(x, t)−%(x, z) > (%(x, yx)−
sx) − ∆1

z ≥ (%(z, yx) − sx − %(x, z)) − ∆1
z ≥ (%(z, yx) − sx) − 2∆1

z ≥
3∆1

z − 2∆1
z = ∆1

z. Hence S(x, yx, sx) ∩G1 = ∅.
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Further suppose that k ≥ 2, sets F1, G1, ..., Fk−1, Gk−1 have already been
constructed and conditions (i)-(v) hold for every n ≤ k − 1.

For every point z ∈ Dk−1 = Fk−1 \ Fk−2 we choose another point wkz /∈
Fk−1 such that %(z, wkz ) < 1

5 min( 1
k , δg,dist(z, Fk−1 \{z}),dist(z,GCk−1)) (such

a point wkz exists since z is neither an isolated point ofX nor a point of accumu-
lation of Dk−1 because according to the induction hypothesis (Dk−1)′ = Fk−2

and dist(z, Fk−2) > 0). Hence g(%(z, wkz )) > %(z, wkz ) and we can find δkz > 0
such that %(z, wkz ) + δkz <

1
5 min( 1

k , δg,dist(z, Fk−1 \ {z}),dist(z,GCk−1)) and
g(%(z, wkz )) > %(z, wkz ) + δkz . By continuity of g we can further find 0 < skz <
%(z, wkz ) such that g(skz) > %(z, wkz ) + δkz . Put ∆k

z := 1
3 min(δkz , %(z, wkz ) − skz)

and Bkz := B(z,∆k
z). Define Gk := Gk−1 ∩

⋃
z∈Dk−1

(Bkz ∩ Oz) and Fk :=
Fk−1 ∪ (

⋃
z∈Dk−1

(Mz ∩Bkz ) ∩Gk), where Mz and Oz are sets constructed for
the point z by Lemma 3.3.

Then Gk is clearly an open subset of Gk−1, Fk is a closed superset of Fk−1

and Dk = Fk \ Fk−1 =
⋃
z∈Dk−1

(Mz ∩ Bkz ) ∩ Gk. We will further check that
conditions (i)-(v) hold for n = k:

• Since (Mz ∩ Bkz ∩ Gk)′ = {z} for every z ∈ Dk−1, we conclude that
Dk−1 ⊂ (Dk)′. Therefore (Dk−1)′ ⊂ (Dk)′′ ⊂ (Dk)′ and since by the
induction hypothesis (Dk−1)′ = Fk−2, we get Fk−2 ⊂ (Dk)′. Hence
Fk−1 = Dk−1 ∪ Fk−2 ⊂ (Dk)′. Conversely, since Mz is discrete in X \
{z} for every z ∈ Dk−1 and the system {Bkz }z∈Dk−1 is disjoint, we get
(Dk)′ ⊂ Dk−1 = Dk−1 ∪ (Dk−1)′ = Fk−1. So condition (i) holds.

• Condition (ii) clearly holds because Dk =
⋃
z∈Dk−1

(Mz∩Bkz )∩Gk ⊂ Gk.

• Choose an arbitrary point x ∈ Dk−1. By Lemma 3.3 we know that Mx

is not (h)-lower porous at x. Since Bkx ∩Gk−1 is an open neighborhood
of x and porosity is a local notion, even Mx∩Bkx ∩Gk−1 is not (h)-lower
porous at x. Moreover, since Mx ⊂ Ox, we get that Dk is not (h)-lower
porous at x. Thus condition (iii) is also satisfied.

• Choose an arbitrary point x ∈ Dk−1. By Lemma 3.3 we know that Ox
is (g)-shell porous at x. Since porosity is a local notion, Bkx is an open
neighborhood of x and a direct computation shows that Bkx ∩Bkz = ∅ for
every z ∈ Dk−1 such that z 6= x, we conclude that

⋃
z∈Dk−1

(Bkz ∩ Oz)
is (g)-shell porous at x. Thus Gk is (g)-shell porous at x and condition
(iv) is satisfied.

• Choose x ∈ Gk arbitrarily. From the construction of Gk either x ∈ Fk−1

or there exists a point z ∈ Dk−1 such that x ∈ Bkz where Bkz = B(z,∆k
z).

We will further distinguish these two cases:
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In the first case, when x ∈ Fk−1, there exists a natural number 1 ≤
i ≤ k − 1 such that x ∈ Di. Therefore, by induction hypothesis or by
already proved condition (iv), we know that Gi+1 is (g)-shell porous at
x. Since Gk ⊂ Gi+1, we get that Gk is also (g)-shell porous at x. Thus
there exists an admissible shell S(x, yx, sx) such that 0 < %(x, yx) < 1

5k ,
S(x, yx, sx) ∩Gk = ∅ and g(sx) > %(x, yx). Since every admissible shell
is an open set, we easily conclude that S(x, yx, sx) ∩Gk = ∅.
In the second case, put yx := wkz and sx := skz . Then 0 < %(x, yx) ≤
%(x, z)+%(z, yx) < δkz+%(z, yx) < 1

5k and g(sx) > %(z, yx)+δkz > %(x, yx).
Moreover, if t ∈ S(x, yx, sx), then %(z, t) ≥ %(x, t)−%(x, z) > (%(x, yx)−
sx)−∆k

z ≥ (%(z, yx)−sx−%(x, z))−∆k
z ≥ (%(z, yx)−sx)−2∆k

z ≥ 3∆k
z−

2∆k
z = ∆k

z . Hence S(x, yx, sx) ∩Bkz = ∅ and consequently S(x, yx, sx) ∩
Gk = ∅, because a straightforward computation yields dist(x,Bkz̃ ) >
%(x, yx) + sx for every z̃ ∈ Dk−1, z̃ 6= z. Thus condition (v) holds as
well.

Put F :=
⋃
k∈N Fk and A :=

⋃
k∈N Fk. Clearly, F is closed and A is dense

in F . Since F1 ⊂ F2 ⊂ ..., we can also write A =
⋃
k∈N Dk.

Firstly, we observe that objects constructed above satisfy the following
property:

F ⊂ Gn for every n ∈ N. (1)

Due to monotonicity of closure, it suffices to check that A =
⋃
k∈N Fk ⊂ Gn

for every n ∈ N. Fix n ∈ N. Since (Fk)∞k=1 increases, it suffices to prove that⋃∞
k=n Fk = Fn−1 ∪

⋃∞
k=nDk ⊂ Gn. Since (Gk)∞k=1 decreases, by condition (ii)

we get that
⋃∞
k=nDk ⊂

⋃∞
k=nGk = Gn. Moreover, by condition (i), we further

get that Fn−1 = (Dn)′. Since Dn ⊂ Gn by (ii), it follows that (Dn)′ ⊂ Gn.
Thus Fn−1 ∪

⋃∞
k=nDk ⊂ Gn and property (1) is verified.

By condition (iii), A is not (h)-lower porous at any of its points. Therefore
F = A is not (h)-lower porous at any point of A. Since h = 2g2 and the
assumptions of Lemma 3.2 are met, F is not σ-(g2)-lower porous.

It suffices to prove (g1)-shell porosity of F . Choose an arbitrary point
x ∈ F . Due to property (1), x ∈ Gn for every n ∈ N. By condition (v) we
get a sequence (S(x, ynx , s

n
x))∞1 such that ynx → x, S(x, ynx , s

n
x) ∩ Gn = ∅ and

g(snx) > %(x, ynx ) for every n ∈ N. Since F ⊂ Gn for every n ∈ N by property
(1), S(x, ynx , s

n
x)∩F = ∅ for every n ∈ N and hence F is (g)-shell porous at x,

which finishes the proof.

Corollary 4.1. Let (X, %) be a nonempty, topologically complete metric space
with no isolated points.
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(i) Let g1, g2 ∈ G. There exists a closed (g1)-upper porous set F ⊂ X which
is not σ-(g2)-lower porous.

(ii) There exists a closed strongly porous set F ⊂ X which is not σ-lower
porous.

Proof. (i) This proposition follows directly from Theorem 2.3 and Remark
2.2 (iv).

(ii) This proposition is an immediate consequence of Corollary 4.1 (i) and
Remarks 2.2 (viii), (ix). It suffices to take g1(t) = t+ t2 and g2(t) =

√
t

for t ∈ [0,∞).

Remark 4.2. We don’t know whether there are any reasonably natural con-
straints that one can place on a σ-upper porosity notion (perhaps a geometric
condition of some kind in the way that shell porosity is) that will force it to
imply some σ-lower porosity notion.
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Mat., 101 (1976), 350–359.


