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Abstract

In the present paper we give the Fundamental Theorem of Calculus
for the variational or Henstock vector integrals KfR adf and KfR da f of
multidimensional Banach space-valued functions.

Introduction

In [1, Proposition 3.2], Bongiorno and Di Piazza gave a characterization of the
functions which are Kurzweil-Henstock vector integrals of the form

h(t) =* [ ]f dg
a,t

(% for the Kurzweil integral) considering the one-dimensional real-valued case.
They state that:

a) if g and F belong to ACG*([a,b]) and f : [a,b] — R is such that F'(t) =
f()g'(t) for m-almost every t € [a,b] (m for the Lebesgue measure), then f
is Kurzweil-Henstock integrable with respect to g (we write f € Hgy([a,b])
and for every t € [a, b], F(t) sz[a’t] fdg.

And reciprocally,

b) if g € ACG*([a,b]) and f € Hgy([a,b]), then fy € ACG*(la,b]), where
f4() :Kf[a,t] fdg for each t € [a,b], and there exists (f,)'(t) = f(t)g'(t)
for m-almost every ¢ € [a, b].
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In order to prove b), Bongiorno and Di Piazza use the result

Kl rd =% fdg (%)
[a,b] [a,b]

referring mainly to [5, p. 186]. However, in this reference, or else in [5, p.
186], McLeod affirms that in general

Kl p.op=K fdh, ()
[a,b] la,b]

where h(t) :Kf[a,ﬂ h. But (*%) does not always hold. In [2, p. 37], a counter-
example for Banach space-valued functions is given and we present it in Ex-
ample 1 below. In the real case it is even possible that f[a’ qh + f[a’ j dh for
m-almost every t € [a, b]. Tt suffices to take, for instance, h : [0, 1] — R defined
by h(t) =1/qif t = p/q and p € N such that ¢ # 0, ¢/p and p/q, and h(t) =0
otherwise. For conditions in which (#x) holds, the reader may want to consult
[2] or [3].

In the present paper we give the Fundamental Theorem of Calculus for the
variational or Henstock vector integrals KfR adf and KfR da f of multidimen-
sional Banach space-valued functions.

1 Basic Terminology

For simplicity of proofs and notation, we consider only the two-dimensional
case.

Let X and Y be Banach spaces and f : R — X be a function defined in a
compact interval R C R? (with sides parallel to the coordinate axes). Given
t,s € R? witht < s (i.e., t; < 54,7 = 1,2), we denote by [t, s] the corresponding
closed interval and we write |[t, s]| = m([t, s]), where m denotes the Lebesgue
measure.

Any finite set of closed nonoverlapping intervals J; of R such that UJ; = R
is called a division of R and denoted by (J;). A tagged division of R is a pair
d = (&, J;), where (J;) is a division of R and §; € J; for every i. Each &; is
called the tag of J;. We denote by T Dg the set of all tagged divisions of R.
A tagged partial division d of R is any subset of a tagged division of R and
we write d € TPDpg. A gauge of a set E C R is a function § : E —]0, oo[ and
d = (&, J;) € TPDp is é-fine if for each ¢,

Ji C Bsepy (&) ={te R; [t —&| < d0(&%)}-
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Let J be a closed interval with sides h and k, h < k. Given 0 < ¢ < 1, J is
said to be c-regular if h/k > ¢ and d = (&;, J;) € TPDp, is c-regular if each J;
is c-regular.

Let g be the set of all closed intervals contained in R. A function F' :
Sr — X is called additive on intervals (we write F' € A(Sg, X)) if we have
that F\(J) = F(J1) + F(J2) for any intervals J, J; and Jz, with J; and J,
nonoverlapping and J = J; U Js.

A function F € A(Sg, X) satisfies the regular Strong Lusin Condition on
R (we write F € "SL(Sg, X)), if for every € > 0, every 0 < ¢ < 1 and every
E C R with m(E) = 0 there is a gauge § of E such that for every c-regular
0-fine d = (&, J;) € TDPg with §; € E for each i, we have that Y || F(J;)|| < e.

Let 0 < ¢ < 1. We say that F' € A(Sg, X) is c-differentiable at £ € R
and that f(&) is its c-derivative (we write D°F(&) = f(£)), if for every € > 0,
there is a neighborhood V of £ such that for each c-regular J € S with
§ € JCV,wehave |[F(J)— fOIJ||| < elJ]. If DF(E) = f(&) for every
0 < ¢ < 1, then F is regularly differentiable at £ € R with f(£) being its
regular derivative (we write "DF(§) = f(€)). We say that F is c-differentiable
at R when F is c-differentiable at £ € R for every £ € R, and that F is
regularly differentiable at R when F' is regularly differentiable at £ € R for
every £ € R. Let L(X,Y) denote the space of all continuous functions from
X toY. A function a € A(%R, L(X, Y)) is weakly c-differentiable at R if, for
every x € X, the function

a-z:JeESgp—alf) x€Y

is c-differentiable at R and we write a € (D)7 (Sg, L(X,Y)). If there exists
(D) (o - x)(§) for every ¢ and every x, we say that « is weakly regularly
differentiable at £ € R. We write a € "D? (%R,L(X, Y)), if « is weakly
regularly differentiable at £ € R, for each € € R.

A function f : R — X is regularly Henstock integrable with respect to
o € A(Sg,L(X,Y)) (we write f € "H*(R, X)), if there exists a function
F* € A(Sg,Y) such that for every € > 0 and every 0 < ¢ < 1, there is a gauge
0 of R such that for every c-regular d-fine d = (&;, J;) € T Dgr we have that

ZHFa(Ji) —a(L)f(&)]| <e.

If a(t) = t, then we write simply "H (R, X) and F instead of "H*(R, X)) and
F< respectively.

In an analogous way, a function  : R — L(X,Y) is regularly Henstock
integrable with respect to f € A(Sg, X) (We write « € "Hy (R, L(X, Y))), if
there exists a function Ay € A(Sg,Y) such that for every ¢ > 0 and every
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< ¢ < 1, there is a gauge J of R such that for every c-regular and d-fine

0
d = (&, J;) € TDg, we have that

Soll4s(7) = (€ f()] <.

More generally we have: a function « : R — L(X,Y) is regularly Kurzweil
integrable with respect to f € A(Sg, X) (we write v € "Ky (R, L(X, Y))) if
there exists I € Y (we write [ = TKf[a,t] acdf) such that for every € > 0 and
every 0 < ¢ < 1, there is a gauge § of R such that for every c-regular and
o-fine d = (&, J;) € TDg, we have that

<E€.

HI - Za(fi)f(Ji)

Analogously, a function f : R — X is regularly Kurzweil integrable with
respect to o € A(Sg, L(X,Y)) (we write f € "K*(R, X)), if there exists I € Y
(we write I ZT'Kf[aﬂ da f) such that for every € > 0 and every 0 < ¢ < 1, there
is a gauge 0 of R such that for every c-regular and d-fine d = (&;, J;) € T Dp,

we have that
|- et

< €.

Let R = [a,b]. Ifa € "K (R, L(X, Y)), then we define a(t) = "Kf[a . adf
for each ¢ € R. And, analogously, given f € "K*(R, X), we define fo(t) =

’"Kf[a g docf for each t € R. If a(t) = t, then we simply write "K (R, X) and
f(t) = TKf[mt] f

We may associate F' € A(Sg,Y) with a function from R to Y which we
still denote by F: for R = [a,b] = [a1, b1] X [az, ba] we write

F(t) = F([a, t]) — F([a, (al,tg)]) - F([a, (tl,ag)]) + F([a,a]) .

Reciprocally, we may associate a function f : R — Y with a function of
intervals of R which we also denote by f : Sz — X. In this case we write

F([t,s]) = f(s) = f(t1,s2) — f(ta, s1) + f(t).

Thus, when f € "H*([a,b], X), then F*([a,t]) = fe(t) for each t € [a,b], and
analogously, for a € "Ky([a,b], L(X,Y)), we have that Af([a,t]) = é(t) for
each t € [a,b], and therefore we can talk about regular Strong Lusin Condition
and regular differentiability of an indefinite integral f % or ay.
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Remark. When X is of finite dimension, then
"H*([a,b], X) = "K*([a,b], X)

and
Hy ([0, L(X, V) = " (o, b], L(X, V)

and such spaces are called spaces of regularly Kurzweil-Henstock integrable
functions or spaces of Mawhin integrable functions.

Example 1. Let X = I5([a,b]) and Y = R. Let f : [a,b] — X be defined by
f(t) = e (ie., er(s) =11if s =t, and ex(s) = 0 if s # ¢) and let o : [a,b] —
X' = L(X,R) be given by a(t) = &, where é;(x) = (e, z), for every z € X.
Then a(t)f(t) = (et, e;) = 1 and therefore

K/ a(t)f(t)dt:/ dt=b—a,
la,b] [a,b]

where f denotes the Riemann integral. On the other hand, given ¢ > 0, there

exists § > 0, say
6t <,
(b—a)2
such that for every d = (&;,t;) € TDjqp) with max;{t; —t;_1} < J, we have
that

(NI

HZ (&)t — ti—l)” = HZ ee, (ti —ti71)H = [Z(tz —ti71)2} . (1a)

where we have used Bessel’s equality. But,

[Z(ti - tz‘fl)ﬂ <67 (ti—tim1)? = [6(b—a)]

A A

Nl
SIS

<e€. (1b)

Hence (1a) and (1b) imply that f = 0, and so
/ a(t)df(t) =0.
[a,b]
Now, if [a, D] is a non-degenerate interval, then

0<baK/[ b]oz(t)f(t)dt;é alt)df(t) =0.

[a,b]
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2 Main Results

For the Henstock vector integral "% f[a " adf we have:

Theorem 1. Let f € "SL(Sg,X) and A € "SL(Sg,Y) be both regularly
differentiable on R, and let o : [a,b] — L(X,Y) be such that "DA = a.- ("DF)
m-almost everywhere on R. Then o € "Hy(R,L(X,Y)) and A = ay.

Theorem 2. Let f € "SL(Sg,X) be regularly differentiable on R and o €

"Hy(R,L(X,Y)) be bounded. Then ay € "SL(Sg,Y) and there exists "D(day)
=« - ("Df) m-almost everywhere on R.

And, for the Henstock vector integral "% f[a 1 da f we have:

Theorem 3. Let o € ("SL(Sg, L(X,Y)) N "D (S, L(X,Y))), let F €
TSL(SR,Y) be regularly differentiable on R and let f : R — X be such that
"DF(t) = "D? (a - f(t))(t) for m-almost every t € R. Then f € "H*(R,X)
and F = fa,

And reciprocally:

Theorem 4. If o € ("SL(Sg,L(X,Y)) N "D?(Sg,L(X,Y))) and f €
"H*(R, X) then f* € "SL(Sg,Y) and there exists "D f*(t) = "D° (c- f(1))(2)
for m-almost every t € R.

3 Proofs

First we prove the results for the Henstock vector integral "™ f[a q df.

Theorem 5. Let f € "SL(Sg,X) and o : R — L(X,Y) such that o = 0
m-almost everywhere. Then oo € "Hy(R,L(X,Y)) and &y = 0.

PrROOF. Let E={t € R; a(t) #0} and E, = {t € E; n — 1 < |Ja(t)|| < n}
for each n € N. By hypothesis, m(E) = 0. Therefore m(E,,) = 0 for every
n. Since f € "SL(Sg, X), then given n € N, € > 0 and 0 < ¢ < 1, there is a
gauge 0, of E, such that for every c-regular d,-fine d,, = (§,,, Jn,) € TPDg
with &,, € B, for every i, we have that .|| f(Jn,)|| < =5+ -

Let § be a gauge of R such that if £ € E,, then 6(¢) = 6,(£), and if
¢ ¢ E, then §(§) takes any value in |0, 00[. Hence, for every c-regular d-fine

d= (fi, Jz) c TDR,

D lle@ il =32 > lla@) ] <3on 3] <e.

n &ek, n & eE,
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Corollary. If f € "SL(Sg,X), a € "Hy(R,L(X,Y)) and 3 : [a,b] — L(X,Y)
with = a m-almost everywhere, then € "Hy (R, L(X, Y)) and Bf = Gay.

The next example shows us that the hypothesis of f in Theorem 5 is really
needed.

Example 2. Even in the one-dimensional case when the regularity is not
used, we may have that if f does not satisfy the Strong Lusin Condition, then
«a may not be Henstock integrable with respect to f. Take, for instance, an
interval [a, b] of the real line with a > 1, and consider the context of Example 1.
Consider arbitrary &; and [t;—1,t;] C [a,b] such that & € [t;—1,t;]. Then

|| f(t:) — f(ti—l)H2 = |les, — etHH2 = [t:|* + [tica|* > a® +a® > 1,

and hence f ¢ SL([a,b], ) We also have that o(&;)[f(t:) — f(ti—1] = 0 for
& €lti—1,ti] and a(§;) [f( i )] # 0 otherwise, and therefore a does
not belong to Hy ([a,b], L(X 7Y)) (and neither to Ky ([a,b], L(X,Y)) ).

Proor OF THEOREM 1.

1) Let E = {t € R; there exists "DA(t) = a(t) - "DF(t)}. Hence, given € > 0,
0 < ¢ < 1and ¢ € E, there is a neighborhood Vi of & such that for every
closed c-regular interval J C R, with £ € J C V7,

[A(T) = a(t) D) JI|| < elJ].

2) By hypothesis, f € "SL(Sg,X) and m(R \ E) = 0. Therefore, by the
Corollary after Theorem 5, we may suppose that «(t) = 0 for every t € R\ E.
3) Since m(R\ E) = 0 and A € "SL(SR,Y), there is a gauge ¢’ of (R\ E)
such that for every c-regular §'-fine d = (&, J;) € TPDg with §; € R\ E,
2 ANAW)] <

4) Because f is regularly differentiable on R and hence c-differentiable on R,
there is a neighborhood V5 of £ such that for every c-regular J C R, with
& € J C Va, and we have that

|a(©) - f(J) = a(t) - DF@)|J]| < elJ].
5) Finally, let § be a gauge of R such that Bj)(§) C (ViNVz) for each § € E,

and such that if { € R\ E, then 6(§) < ¢'(£) and Bs)(§) C Va. Hence for
every c-regular d-fine d = (Ez, ;) € TDg, it follows that

ZHA i _afz f( z)HS
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>4 —a&) - £+ X AU+ > llate)- £
§iEE £ ER\E & ER\E
where the first summand is smaller than > 2¢|J;| = 2¢|R| from 1) and 4). The
second summand is smaller than e from 3), and the third summand is equal
to zero because we have from 2) that f(&;) = 0 for each i. O

Remark. In Theorem 1, we can require that A € "SL(Sg,Y) is regularly
differentiable m-almost everywhere on R.

Lemma 6 (Saks-Henstock Lemma).

Given f € A(Sg,X), a € THf(R,L(X,Y)), let0<c<1,e>0, and 6 be
the gauge of R from the definition of a € "Hy (R,L(X, Y)) Then for every
c-regular 0-fine d = (&;,J;) € TPDg we have that

[t 2 - [ adr] <c.
i Ji
PROOF. The proof follows the standard steps. O

Theorem 7. If f € "SL(Sg,X) and a € "Hy(R,L(X,Y)), then a5 €
"SL(Sg,Y).
PROOF. Let E' C R be such that m(E) = 0 and let 3 = axy, ,,- Then by the

Corollary after Theorem 5, 3 € "Hy (R,L(X, Y)) and Bf = ay. Therefore,
given € > 0 and 0 < ¢ < 1, let § be the gauge of R from the definition of
B € "Hyf(R,L(X,Y)). Then, from the Saks-Henstock Lemma (Lemma 6), it
follows that for every c-regular d-fine d = (&;,J;) € TPDpg, with & € E for
each 7, we have that

D llas ()l = 3llas () = 5&) - S| < e

since 3y = a; and B(&;) = 0 for every i. O

Lemma 8. (See [4, Theorem 2.2]). Ifg € "H(R, X), then there exists "Dg = g
m-almost everywhere on R.

Theorem 9. Let f € "SL(Sg,X) be reqularly differentiable and let o €
"Hy(R,L(X,Y)) be bounded. Then the function t € R — a(t)- "Df(t) € Y is
regqularly Henstock integrable with

TK/}za,er: TK/Radf.

Besides, there exists "Day = a- "D f m-almost everywhere on R.
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PrOOF. 1) Given ¢ > 0, let é; be the gauge of R from the definition of
o€ "Hy(R,L(X,Y)).

2) Since f is regularly differentiable, then given 0 < ¢ < 1 and £ € R, there
is a neighborhood V; of £ such that for each closed c-regular interval J C R,
with £ € J C Vg, we have that ||f(J) - CDf(f)\J||| <e€lJ|.

3) Let 6 be a gauge of R such that for each £ € R, 0(§) < 01(&) and Bs)(§) C
Ve. Hence, for every c-regular d-fine d = (&;, J;) € TDg, we have that

ZHaf —al&) - DIENT| <

>-llas () — ) f |+Z||asz |- 17T = D)l gl

where the first summand is smaller than e by 1), the second summand is smaller
than €||a||oo|R| (|| ||oo for the supremum norm) by 2) and the boundedness of
a, and the first part of the theorem holds.

The second part comes immediately from Lemma 8. O
PrROOF OF THEOREM 2. This comes immediately from Theorems 5, 7 and 9.
O

Now we treat the Henstock vector integral ™ | g da f. In general, the proofs
for "K f da f are analogous to those for "% f adf. However, the reader may
want to have a look at Theorem 13 which, unlike Theorem 9, does not need
the boundedness hypothesis of the Henstock vector integrable function. This
fact allows Theorem 4 to be precisely the reciprocal of Theorem 3 (note that
Theorems 1 and 2 are not the reciprocal one of another).

Theorem 10. Let a € "SL(Sg,L(X,Y)) and f : R — X with f = 0 m-
almost everywhere. Then f € "TH*(R,X) and fe=o0.

PrOOF. Let E={t € R; f(t) 20} and E, ={t € E; n—1 < | f(®)| < n}
for each n € N. By hypothesis, m(E) = 0. Therefore m(E,,) = 0 for every n.
Since « € TSL(SR,L(X, Y)), then for each n, given € > 0 and 0 < ¢ < 1, there
is a gauge 4,, of E,, such that for every c-regular -fine d,, = (&, Jpn,) € TPDR
with &,, € E,, for each i, we have that } ||a(Jy,,)| < en2™.

Let 6 be a gauge of R such that if £ € E, then §(¢) = §,(£), and if
§ ¢ E, then §(¢) takes any value in |0, 00[. Hence for every c-regular -fine

(gu ) € T'Dg,

Sllats) - @l =32 3 - rEl <300 3 flach)] <e.

n ek, n §i€E,
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Example 3. Even in the one-dimensional case, if v does not satisfy the Strong
Lusin Condition, then f may not be Henstock integrable with respect to a.
In the context of Examplel, we have that

Jatt) — atte)]| = 1, ~ 2 .| =

= ||Sl\|1£1{“étl(x) - éti—l(‘r)H} > Héti(eti) - éti—l(eti)H = 1a
for arbitrary & and [t;—1,t;] such that & € [t;i—1,t;] C [a,b]. Hence o ¢
SL([a,b],L(X,Y)). We also have that [a(t;) — a(ti—1)] f(&) = 0 for & €
Jti—1,t;[ and [a(t;) — a(ti—1)] f(&) # O otherwise, and so, f ¢ H*([a,b],X).

Corollary. Given o € "SL(Sg,L(X,Y)), f € "HY(R,X) and a function
g: R — X such that g = f m-almost everywhere, then g € "H*(R, X) and
pae? — fa.

PRrROOF OF THEOREM 3.

1) Let E = {t € R; there is "DF(t) = "D?(a - f(t))(t)}. Hence, given
0<c<1,e>0and € € F, there exists a neighborhood V; of £ such that for
every c-regular J € Sp with £ € J C V7,

[P = @ (- r@)@11]| < el

2) By hypothesis, a € TSL(%R, L(X, Y)) and m(R\ E) = 0, therefore we may
suppose that f(t) = 0 for every t € R\ E by the Corollary after Theorem 10.
3) Since m(R\ E) =0 and F € "SL(Sg,Y), there is a gauge ¢’ of R\ E such
that for every c-regular o-fine d = (&;,J;) € TPDg with & € R\ E for each i,
we have that EHF(L)H <e.

4) Because a € "D7(Sg, L(X,Y)), there is a neighborhood V5 of € such that
for every c-regular J € S with £ € J C V4,

o1 - 07y (- 5@ @1 < b1

5) Finally, let 0 be a gauge of R such that Bs)(§) C (ViNVz) for € € E, and
such that if { € R\ E then 6(§) < ¢'(§) and Bj)(§) C Va. Hence, for every
c-regular d-fine d = (§;, J;) € TDg, it follows that

ZHF DFE)]| <
o lFe) &N+ Y IEG+ > llatall- £Ell

Sick SiER\E §iER\E
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where the first summand is smaller than Y 2¢|J;| = 2¢|R| from 1) and 4), the
second summand is smaller than e from 3), and the third summand is equal
to zero because f(&;) = 0 from 2). O

Lemma 11 (Saks-Henstock Lemma). Given o € A(%R, L(X, Y)), fe™H*(R,X),
let 0 < c <1, e >0, and § be a gauge of R from the definition of f €
"H*(R,X). Then for every c-regular 0-fine d = (&,J;) € TPDg, we have

that
S ||t - ren - = /J daf]<e.

PROOF. The proof follows the standard steps. O

Theorem 12. If a € "SL(Sg,L(X,Y)) and f € "H*(R,X), then fo e
"SL(SR,Y).

PROOF. Let E' C R be such that m(E) = 0 and let g = fx - Then, by
the Corollary after Theorem 10, g € "H*(R, X ) and for each t € R, we have
that g¢ = f”‘. Given 0 < ¢ < 1 and € > 0, let & be the gauge of R from
the definition of g € "H*(R, X). Then, from the Saks-Henstock Lemma (see
Lemma 11), it follows that for every c-regular é-fine d = (§;, J;) € TPDp with
& € E for each i, we have that

ZHJM(JZ)H = ZHJM(Ji) —a(J;)-g(&)| <e,

since §% = f@ and ¢(&;) = 0 for every i. O]
g =f 9(&) y

Theorem 13. Ifa € TD"(%R,L(X,Y)) and f € "H*(R, X), then the func-
tion g : R — 'Y defined by

g(t) = "D7(a- f(1))(1)

is reqularly Henstock integrable with ’"Kng = ”KfR do f. Besides, there exists
’"Df"‘ m-almost everywhere on R and, in this case,

Df*(t) = "D (a- f(1)(1).

PROOF. 1) Given € > 0 and 0 < ¢ < 1, let &; be the gauge of R from the
definition of f € "H*(R, X).

2) Since a € "D (Sg, L(X,Y)), then for each £ € R there is a neighborhood
Ve of € such that for each c-regular J € Qg with £ € J C Vg,

Ja(T) - = (D)7 (o 2)(E)I][| < el
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3) Let 6 be the gauge of R such that for each & € R, 6(§) < 61(€) and
By(¢)(§) C Ve. Hence, for every c-regular d-fine d = (&;,J;) € T'Dg,

>

i

FoI) = D7 (a- f€))(©)i]

<

)

SUF ) = o) - @] + Dol - £(&) — D7 (e £(6) (€1

where the first summand is smaller than e from 1), and the second summand
is smaller than €| R| from 2), and the first part of the theorem follows.

The second part comes immediately from Lemma 8. O
PrOOF OF THEOREM 4. The proof follows directly from Theorems 10, 12
and 13. O
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