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EVERY ALMOST CONTINUOUS
FUNCTION IS POLYGONALLY ALMOST
CONTINUOUS

Abstract

We show that every almost continuous function f: I — R is also
polygonally almost continuous. This solves a problem posed by Agron-
ski, Ceder and Pearson (see [ACP]).

1 Preliminaries

By R we denote the set of all reals, by I we denote the interval [0, 1]. For every
set A, by cl(A) we will denote closure of A.
We will consider following classes of functions from the interval I to R:

AC A function f: I — R is almost continuous (AC) if whenever U C I x R is
an open set containing the graph of f, then U contains the graph of a
continuous function g: I — R.

PAC A function f: T — R is polygonally almost continuous (PAC) if when-
ever U C I xR is an open set containing the graph of f, then U contains
the graph of a polygonal (piecewise linear continuous) function h: I — R
with all its vertices on f.

D A function f: I — R is Darboux (D) if the image of C' C I is connected in
R whenever C' is connected in I.

For properties of these and other Darboux-like classes see e. g. the survey
[GN]. In particular, it is known that AC C D. Clearly every PAC function is
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AC. Recently Agronsky, Ceder and Pearson asked whether the opposite im-
plication holds ([ACP]). In this note we give a positive answer this question.
(We would like to thank Professor Kenneth Kellum for drawing the author’s
attention to this problem. In particular, Kellum proved that every extend-
able function as well as every AC function with dense graph is PAC (private
communication)).

2 The Result

Theorem 1. FEvery AC function f: 1 — R is PAC.
PROOF. Let f: 1 — R be AC. Suppose, f is not PAC. For every x € I, let

H, ={h: [0,z] — R | h is polygonally continuous with all its vertices on f}.

Let G C I x R be an open set such that f C G and there does not exist a
polygonal function hy € Hy, hy C G. Define:

o E={(z,y) € f | Gha € Hy) ha C G}
o N={(x,y) € f| (-3h, € Hy) h, C G}.

Clearly FEUN = f, ENN =0, (0, f£(0)) € E, and by the supposition (1, f(1)) €
N.

For S(,.,) being an open square with center (z,y) let 3 -5, ) denote the
open square with the center (z,y) and with the diagonal 3 times that of S(, ).
For every (x,y) € f let S, ,) be an open square with the center (z,y) such
that:

(Sl) 3- S(w,y) cGn ((O7 1) X R) for x € (O, 1)’
3-S0,£(0)) N[0, +00) xR C G,
351,51y N (=00, 1] xR C G;

(82) either Si; ) N ([0,2) x R)N f C E or S,y N([0,2) xR)N f C N, for
x> 0;

(83) either Si, N ((x, 1] x R)N f C E or S,y N ((z,1] xR)N f C N, for
T <1

Such a S(, ) exists for every (z,y) € f. Indeed, suppose for example, there
exists (z,y) € f such that for every S(, ,) C G there exist 21 € [0,2) and 25 €
[0,2)) such that (z1, f(21)) € ENS (4, and (z2, f(22)) € NNS(,,,). Now we
can find (p, f(p)) € ENS(5,,)N([0,2) xR) and (q, f(q)) € NNS(5 N ((p, ) xR).
Then p < g, but (p, f(p)) — (¢, f(q)) C S(z,y) C G, with a — 3 denoting the
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line segment linking o and 3 for every a €e I X R, 8 € I xR, a < 3. So, we
can extend the polygonal function h, € H,, h, C G to a polygonal function
hg € Hy, hy C G, contrary to g € V.

For every (z,y) € f let R,y C Siz,y) be an open rectangular neighbor-
hood of (z, y) fulfilling the following conditions (with x; denoting inf{a | (a,b) €
Rz}, 7, denoting sup{a | (a,b) € R, )}, yi denoting inf{b | (a,b) € Rz )},
Yyu denoting sup{b | (a,b) € R, 4 }):

(1) If z > 0 and Si, ) N ([0,2) x R)N f C E, then f(x) € (1, Yu)-
(2) If x <1 and S, N ((z,1] xR)N f C N, then f(x,) € (Y1, Yu)-

Such a R, ,) always exists, because (x,y) is a left side limit point of f for
every x € (0,1] and (x,y) is a right side limit point of f for every z € [0,1) (f
is Darboux; so it satisfies Young’s condition, see e. g. [GN]).

Note also that (z;, f(x;)) is a right side limit point of f; so if R, ) N
([0,z) x R)N f C E, then (from (1)) for every a € (z;, z) N1 there exists b < a
such that (b, f(b)) € EN Ry ).

Because (x, f(z,)) is a left side limit point of f, if R, )N ((z,1]xR)Nf C
N, then (from (2)) for every a € (x;,2z,) NI there exists ¢ > a such that
(c, f(c)) € NN Ry y); 80 Rizyy N ((a,2,) x R)N f ¢ E. Now for every R, .,
we have:

(A) If Ry N ((a,2) x R)N f C E for some a € (x7,2) NI, then R, )N
([0,2)xR)Nf C E, and there exists b < a such that (b, f(b)) € ENR 4 ).

(B) If Rz N ((a,2,) x R)N f C E for some a € (21, 2,) N1, then R, )N
((z,1]xR)Nf C E, and there exists b < a such that (b, f(b)) € ENR; ).

Let H = U(x,y)ef Rz H isopen, H C G and f C H. So, there
exists a continuous function g: I — R, ¢ C H. Because the graph of g is
compact, there exists a finite family of sets R C {R(,4) | (z,y) € f} such that
g C UR R(O,f(O)) € R and R(l,f(l)) € R. Indeed, for every 0 < x < 1 we
have 3 - Si; ) € GN((0,1) x R); so only the square S ¢(py) contains points
with abscissa 0, and only the square S(; (1)) contains points with abscissa 1.
Moreover, since R is finite, sup{z € I | (z,y) € J(R\{R@1,ra1)})} < 1. Let

C={zel|(3ReR) ((z,9(x)) € Rand (Fz1 < z) (z1, f(z1)) € ENR)},

let s = sup C. From (S3) Ro,7(0)) N f C E; s0 (0,9(0)) € Ro,f(0)), C # 0 and
s is well defined. Since (from (S2)) R sayNfCN,0<s<1.

R is finite and g is continuous, so there exists R(,; € R such that
(5,9(s)) € cl(R(q,p)) and there exists x1 < s such that (21, f(71)) € EN Ry p).-
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There exists also an open set R(. 4 € R such that (s,g(s)) € R,q). Then
(s,g(s)) € Cl(R(a’b)) N R(c,d)§ SO R(a,b) N R(c,d) # (). Note that R(a,b) U R(c,d) C
3+ S(p,q), for S(p,q) being this square from S, p) and S(. 4) which has greater
diameter. Therefore we can connect every two points «, 3 of R4y U R q) by
the line segment o — 3 whole contained in 3- S, ) C G.

In R(. 4 we can find x3 > s such that (z2, f(z2)) € N. Indeed, suppose

R(c,d) N((s, 1] xR)Nf CE. (%)

Rc,qy is open and g is continuous; so there exists ¢t > s such that (t,g(t)) €
R(c,q)- We have two cases:

1. If t < ¢, then s < ¢, and from (%) we have R 4y N ((s,c) x R)N f C E.
From (A) we have R(. 4N ([0,¢c) xR)N f C Eand (3w < t) (w, f(w)) €
ENRq. But now t € C, supC >t > s, a contradiction.

2. If t > ¢, then from (x) and (B) we have R q) N ((¢,1] xR)N f C E
and (Jw < t) (w, f(w)) € ENR(q. Nowt € C, supC >t > s, a
contradiction.

Now we have 1 < 2, (21, f(71)) € EN Rap), (2, f(22)) € NN R(c q); 50 we
can extend the polygonal function h,, € H;,, hy, C G via the line segment
(w1, f(z1)) — (22, f(22)) contained in 3 - S, 4 C G to a polygonal function
hey € Hyy, hyy, C G. Thus we have (3, f(x2)) belongs to E rather than N.
This is a contradiction. O

The following corollary gives a full answer to the question from [ACP].

Corollary 1. Given any € > 0 and any open neighborhood G of an almost
continuous function f, there exists a polygonal function h with the length of
the longest line segment less than €, such that h C G and all vertices of h
belong to f.

PROOF. It is easy to modify previous proof, such that the length of every line
segment of polygonal function h C G will be less than €. O
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