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ON CLOSED SUBGROUPS ASSOCIATED
WITH INVOLUTIONS

Abstract

Given an involution f on (0,∞), we prove that the set C(f) := {λ >
0 : λf is an involution} is a closed multiplicative subgroup of (0,∞) and
therefore C(f) is {1}, (0,∞) or λZ = {λn : n ∈ Z} for some λ > 0, λ 6= 1.
Moreover, we provide examples of involutions possessing each one of the
above types as the set C(f) and prove that the unique involutions f such
that C(f) = (0,∞) are f(x) = c

x
, c > 0.

1 Introduction.

Given a metric space X, by an involution we mean a continuous self–map
f : X → X such that (f ◦ f)(x) = x for any x ∈ X and f is not the identity
on X. Involutions on X = R, the set of real numbers, are usually called strong
involutions and have been studied for a variety of reasons [11]. Among them,
we can mention that the identity f(f(x)) = x is one of the oldest functional
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equations called the Babbage equation in honor of Charles Babbage ([1]) . It is
also worth emphasizing that involutions have some applications, for instance
to perimeter equals area problems [10], differential equations [8, 9], biomedical
models [2], stability motions [3] and to the so called pantograph equation [4].

In this paper we focus our attention on the cases X = (0,∞) and X =
R. These involutions appear in the study of global periodicity of first order
difference equations of the type xn+1 = f(xn), where f is a continuous self–
map on (0,∞) (see [5] for more details). From the dynamical point of view
involutions on (0,∞) and R are very simple: all the orbits of the system are
periodic of period two or fixed points. The classification of these involutions
is as follows: if f : (0,∞) → (0,∞) is an involution, then f is topologically
conjugate to ϕ(x) = 1

x , that is, there is an homeomorphism h : (0,∞)→ (0,∞)
so that f ◦h = h◦ϕ (see the last section of this paper). Then, up to conjugacy,
there is only one involution on (0,∞). A similar result holds for involutions
on R replacing 1/x by the map f(x) = −x.

Notice that for the map 1/x and for any c > 0, the map c/x is also an
involution. This also happens with −x and c− x in the case of involutions on
R. Therefore, it makes some sense to wonder if something similar happens for
any involution on (0,∞) or R. To be precise, let f be an involution on (0,∞)
and define C(f) to be the set of all the positive real numbers λ such that λf is
also an involution. Similarly, for any involution on R define A(f) to be the set
of all real numbers c such that c+ f is also an involution on the reals. Clearly
1 ∈ C(f) and 0 ∈ A(f) and therefore C(f) and A(f) are non–empty. Denote
by Z the set of integers and for any λ ∈ (0,∞), let λZ = {λm : m ∈ Z} and
λZ = {λn : n ∈ Z}. Using this notation, we can state our main results.

Theorem 1.1. Let f : (0,∞) → (0,∞) be an involution. Then the set C(f)
is a closed multiplicative subgroup of (0,∞) and one of the following cases
happens:

1. C(f) = {1}.

2. C(f) = λZ for some λ > 0, λ 6= 1.

3. C(f) = (0,∞).

In addition, for any set described above there is an involution f having this
set as C(f).

As a consequence, we easily prove our second main result.

Theorem 1.2. Let f : R→ R be an involution. Then the set A(f) is a closed
additive subgroup of R and one of the following cases happens:
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1. A(f) = {0}.

2. A(f) = λZ for some λ > 0, λ 6= 0.

3. A(f) = R.

In addition, for any set described above there is an involution f having this
set as A(f).

The next section will be devoted to proving our main results and their
consequences. To this end, we need three technical lemmas stated below. We
use I to denote the set of involutions on (0,∞).

Lemma 1.3. Let f : (0,∞) → (0,∞) be an involution and let λ ∈ (0,∞).
Then the following conditions are equivalent:

1. λf ∈ I.

2. λf(u) = f
(
u
λ

)
, for all u > 0.

Proof. We first prove (1)⇒ (2). Take u = λf(x), or equivalently x = f
(
u
λ

)
.

Applying (1), we obtain

λf(u) = f
(u
λ

)
.

Since any u ∈ (0,∞) can be written as u = λf(x) because of the bijectivity
of λf , (1) ⇒ (2) follows. Finally (2) ⇒ (1) is obtained by computing for any
u > 0,

(λf)2(u) = (λf)(λf(u)) = (λf)
(
f
(u
λ

))
= λf2

(u
λ

)
= λ

u

λ
= u.

Lemma 1.4. Let f ∈ I, λ ∈ C(f) and let y > 0, then

f(λmy) =
1
λm

f(y), for all m ∈ Z.
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Proof. From Lemma 1.3 f(y) = 1
λf( 1

λy), so

f(λ−1y) = λf(y).

We apply the previous equality and also Lemma 1.3, with u = λ−1y, to deduce

f(λ−2y) = λf(λ−1y) = λ2f(y).

Then, by recurrence, it is easily seen that f(λ−my) = λmf(y), for all m =
0, 1, 2, ... For negative integers m it is enough to take u = λ−my > 0 and then
applying the above result we obtain f(λmu) = λ−mf(u), f(y) = λ−mf(λ−my),
and finally f(λ−my) = λmf(y).

Lemma 1.5. Let G be a closed multiplicative subgroup of (0,∞), then either
G = {1} or G = λZ for some λ ∈ (0,∞) \ {1} or G = (0,∞).

Proof. It is well–known (see [6, page 233]) that any closed additive subgroup
H of R is either H = {0} or H = {ma : m ∈ Z} for some a ∈ R\{0} or H = R.
We apply this result to the closed additive subgroup H = logG := {log g :
g ∈ G} to obtain that either H = {0} or H = {na : n ∈ Z} for some a ∈ R
or H = R. Since G = {eh : h ∈ H}, we finally have one of the following
alternatives: (1) G = {1}, (2) G = λZ for λ = ea or (3) G = (0,∞).

2 Main Theorems.

Proof of Theorem 1.1. First, we fix an involution f and prove that C(f) is
a closed multiplicative subgroup of (0,∞). Note that 1 ∈ C(f). Let λ ∈ C(f)
and prove that λ−1 ∈ C(f). To this end, use Lemma 1.4 to obtain

1
λ
f

(
1
λ
f(x)

)
=

1
λ
f(f(λx)) =

1
λ
λx = x,

and so 1
λf is an involution by Lemma 1.3. Finally, given λ, µ ∈ C(f), we prove

that λµ ∈ C(f). Since f is a bijective map, given an arbitrary x > 0 there
exists a unique δx such that µf(x) = f(δx). Then, using Lemma 1.3,

λµf(λµf(x)) = λµf(λf(δx)) = µ[λf(λf(δx))]

= µδx = µf−1(µf(x)) = µf−1(f(
x

µ
))

= µ
x

µ
= x,
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and so λµf is an involution and therefore λµ ∈ C(f). So, we deduce that C(f)
is a multiplicative subgroup of (0,∞).

Now, assume that {λn}n ⊂ C(f) is a convergent sequence, and let λ be its
limit. By the continuity of f and Lemma 1.3 we obtain

f(x) = lim
n→∞

1
λn
f

(
x

λn

)
=

1
λ
f
(x
λ

)
.

By Lemma 1.3 we deduce that λf is an involution. Then C(f) is a closed set.
By Lemma 1.5, we conclude that C(f) has to have the form described in the
statement of the result.

To finish, we construct involutions with a prescribed set C(f). Firstly, note
that if f(x) = 1/x, then C(f) = (0,∞).

Now, for any λ > 0, λ 6= 1, we construct an involution f such that C(f) =
λZ. First, note that since (λ−1)Z = λZ, we may assume that λ > 1 (if λ was
smaller than 1, then we will work with λ−1 > 1). Let f̃ : [1, λ] → [1, λ] be a
continuous bijective (strictly decreasing) map so that (1) f̃ ◦ f̃ = Id[1,λ] and
(2) if µ is the only fixed point from f̃ then µ 6=

√
λ. Let x ∈ (0,∞) so that

λk ≤ x < λk+1 for some k ∈ Z, then f(x) := λ−kf̃(λ−kx). Now it is easy to
check that f is continuous for any x ∈ (λk, λk+1). Moreover, if x = λk, then:

lim
x→(λk)+

f(x) = lim
x→(λk)+

λ−kf̃(λ−kx)

= λ−k lim
x→1+

f̃(x) = λ−kλ = λ−k+1,

and

lim
x→(λk)−

f(x) = lim
x→(λk)−

λ−k+1f̃(λ−k+1x)

= λ−k+1 lim
x→λ−

f̃(x) = λ−k+11 = λ−k+1.

Therefore f is continuous in any point. Next we show that f is an involution.
Let x ∈ (0,∞) such that λk ≤ x < λk+1 for some k ∈ Z. Since λ−kf̃(λ−kx) ∈
(λ−k, λ−k+1) it holds

f(f(x)) = f(λ−kf̃(λ−kx)) = λkf̃(λkλ−kf̃(λ−kx))

= λkf̃(f̃(λ−kx)) = λkλ−kx = x.

Let us now prove that λf is an involution. Take x ∈ (0,∞) such that λk ≤
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x < λk+1 (k ∈ Z). Observe that λ · λ−kf̃(λ−kx) ∈ [λ−k+1, λ−k+2], then

λf(λf(x)) = λf(λ · λ−kf̃(λ−kx)) = λ · λk−1f̃(λk−1 · λ · λ−kf̃(λ−kx))

= λ · λk−1f̃(f̃(λ−kx)) = λ · λk−1λ−kx = x.

Moreover µf is not an involution because µf(µf(λ)) = µf(µ) = µµ 6= λ (use
Lemma 1.3 and recall that f(λ) = 1). So f is an involution and applying the
first part of our Main Theorem C(f) = λZ.

Finally, we construct an involution f such that C(f) = {1}. Let ϕ be the
involution defined by ϕ(x) = 1

x and let α(x) = x2

1+x for any x ∈ (0,∞). Then
the map α : (0,∞) → (0,∞) is bijective and its inverse map is α−1(x) =
x+
√
x2+4x
2 . Now it is a simple task to check that f := α−1 ◦ ϕ ◦ α is an

involution. Let k ∈ (0,∞)\{1}, then we claim that the map

kf(x) = k

 1+x
x2 +

√(
1+x
x2

)2 + 4
(

1+x
x2

)
2


is not an involution. Assume the opposite, then according to Lemma 1.3 we
have

kf(x) = f(
x

k
), for all x > 0.

Hence

k

 1+x
x2 +

√(
1+x
x2

)2 + 4
(

1+x
x2

)
2

 =

1+ x
k

( x
k )2 +

√(
1+ x

k

( x
k )2

)2

+ 4
(

1+ x
k

( x
k )2

)
2

.

Multiplying last equation by 2x2 and simplifying we have

k2 − k = k

√
(1 + x)2 + 4 (1 + x)x2 −

√
k2(k + x)2 + 4k(k + x)x2.

Since

lim
x→0

(
k

√
(1 + x)2 + 4 (1 + x)x2 −

√
k2(k + x)2 + 4k(k + x)x2

)
= k − k2,

we obtain a contradiction. Then C(f) = {1}. �
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Theorem 2.1. If f is an involution on (0,∞), and C(f) = (0,∞), then

f(x) =
c

x
,

for some positive constant c.

Proof. If λf is an involution, according to Lemma 1.4 we have

f(λ) =
1
λ
f(1).

Since C(f) = (0,∞), the above equality holds for all λ > 0, and consequently,
f(x) = c

x , with c = f(1). �

Corollary 2.2. The unique maps with the property that

λf(λf(x)) = x

for any x > 0 and λ > 0 are f(x) = c/x, where c > 0 is constant.

Proof of Theorem 1.2. The result follows from the fact that f : R → R
is an involution if and only if g(x) = ef(log x) is an involution on (0,∞).
Moreover, for any c ∈ R it follows that c+ f is an involution on R if and only
if ecg is an involution on (0,∞). Use this fact and the proof of Theorem 1.1
to conclude the proof.

We have the following immediate consequences which follow from the proof
of Theorem 1.2 and the corresponding results for involutions on (0,∞).

Theorem 2.3. If f is an involution on R, and A(f) = R, then

f(x) = c− x,

for some c ∈ R.

Corollary 2.4. The unique maps with the property that

λ+ f(λ+ f(x)) = x

for any x and λ are f(x) = c− x, where c ∈ R is constant.
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Remark 2.5. It is worth mentioning that the class of involutions on (0,∞)
satisfying C(f) = {λn : n ∈ Z} contains infinite pairwise linearly independent
elements. For instance, if f, g ∈ I, C(f) = λZ and C(g) = µZ, λ 6= µn, for any
n ∈ Z, then g 6= αf . Otherwise we would have that α ∈ C(f) and so α = λn

for n ∈ Z. Then µg = µλnf would be an involution and therefore µλn ∈ C(f),
which is a contradiction. Similarly, the class of involutions on R such that
A(f) = {λn : n ∈ Z} contains infinite elements f and g such that f − g is not
a constant.

Remark 2.6. In our main results, the structure of group of the domain of
the involutions is necessary to state them. It is interesting to study similar
questions for continuous involutions defined on topological groups.

3 Dynamical classification of involutions.

For the sake of completeness, we give a proof of the fact that if f is an invo-
lution on (0,∞), then it is conjugate to the map ϕ(x) = 1

x .
By [7, Lemma 15.2, page 290], we have that if f ∈ I, then

f(x) =


f0(x) if x ∈ (0, x0),

x0 if x = x0,
f−1
0 (x) if x ∈ (x0,∞),

where x0 > 0 and f0 : (0, x0) → (x0,∞) is a continuous strictly decreasing
map such that limx→x0 f0(x) = x0. We are going to define a homeomorphism
h : (0,∞)→ (0,∞) such that

h ◦ f = ϕ ◦ h. (1)

Notice that equality (1) can be rewritten for any x ∈ (0,∞) as

h(f(x)) = 1/h(x). (2)

Then (2) gives us h(x0) = 1/h(x0), and hence h(x0) = 1. Now, define h :
(0, x0]→ (0, 1] to be strictly increasing, continuous and such that limx→0 h(x) =
0. We extend this map to (x0,∞) as follows. Let x ∈ (x0,∞) and let
y = f(x) ∈ (0, x0). Define h(x) := 1/h(y) = 1/h(f(x)). Note that since
h(x) 6= 0 for all x ∈ (0, x0] and

lim
x→x0
x>x0

h(x) = lim
x→x0
x<x0

1/h(x) = 1,



On Closed Subgroups Associated with Involutions 403

the map h is continuous. Now, we prove that h : (0,∞)→ (0,∞) is a homeo-
morphism. Since

lim
x→∞

h(x) = lim
x→0

1/h(x) =∞,

we conclude that h is surjective. Now, we finish by proving that h is strictly
increasing. To this end, note that h(x) < h(y) for any x ∈ (0, x0], y ∈ (x0,∞)
by definition. If x > y > x0, then since f is strictly decreasing f(x) < f(y).
Then h(f(x)) < h(f(y)) and therefore h(x) = 1/h(f(x)) > 1/h(f(y)) = h(y),
which finishes the proof.
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