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QUASICONTINUOUS WITH RESPECT TO
SINGLE COORDINATES

Abstract

Quasicontinuity with respect to one coordinate and symmetrical qua-
sicontinuity strengthen the concept of classical quasicontinuity of a bi-
variate function f from a product space X×Y into a topological space Z.

For certain spaces X, Y , we show that a function f from X×Y into a
metric space Z is quasicontinuous with respect to the first coordinate if
and only if it is the uniform limit of step functions quasicontinuous with
respect to the first coordinate. This applies in particular to arbitrary
X ⊆ Rm, m ≥ 0, and every Y ⊆ Rn, n ≥ 1, without isolated points.

A second result concerns spaces X, Y such that every continuous
f : X × Y → Z is the uniform limit of symmetrically quasicontinuous
step functions. It comprises all X, Y ⊆ R without isolated points.

1 Introduction.

A function f from a topological space X into a topological space Y is called
quasicontinuous at x ∈ X if, for every W ∈ U(f(x)) and every U ∈ U(x),
there exists a nonempty open set G ⊆ U such that f(G) ⊆ W , where U(p)
is the family of all open neighbourhoods of p in the respective space (see [2]).
In [3] it is shown that f is quasicontinuous in the global sense if and only if,
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for every open set W ⊆ Y , f−1(W ) belongs to the family SO(X) = {A ⊆ X :
A ⊆ cl(int(A))} of semi-open subsets of X.

A function ϕ : X → Y is called a semi-open step function if there exists
a partition {Pi : i ∈ I} of X into semi-open subsets such that ϕ is constant
on every Pi, i ∈ I. Semi-open step functions are quasicontinuous, because
all unions of semi-open sets are semi-open themselves. A main result of [6]
says that every quasicontinuous function f : X → R can be expressed as a
uniform limit of semi-open step functions. Since the system of quasicontinuous
functions from X into R is closed with respect to uniform limits, it can be
characterized as the closure of the family of semi-open step functions under
uniform limits.

Motivated by considerations of real-valued functions on Rn in [2], more
specific concepts of quasicontinuity of a bivariate function f from the product
space X × Y into a third space Z are defined in [4]. f is called quasicon-
tinuous with respect to the first coordinate at (x, y) ∈ X × Y if, for every
W ∈ U(f(x, y)) and every U ∈ U(x, y), there exists a nonempty open set
G ⊆ U such that f(G) ⊆ W and x ∈ π1(G), π1 denoting the projection onto
the first coordinate. Quasicontinuity with respect to the second coordinate
at (x, y) is defined analogously. f is called symmetrically quasicontinuous at
(x, y) if it is quasicontinuous with respect to both coordinates at (x, y).

In [7] corresponding subfamilies of SO(X × Y ) and concepts of step func-
tions are defined.

SO1(X,Y ) =
{
A ⊆ X × Y : ∀ (x, y) ∈ A

(
y ∈ cl((int(A))x)

)}
=
{
A ⊆ X × Y : ∀ (x, y) ∈ A ∀U ∈ U(x, y) ∃V open in X × Y(

V ⊆ U ∩A ∧ x ∈ π1(V )
)}
,

SO2(X,Y ) =
{
A ⊆ X × Y : ∀ (x, y) ∈ A

(
x ∈ cl((int(A))y)

)}
,

SOS(X,Y ) = SO1(X,Y ) ∩ SO2(X,Y ),

where Ax = {y ∈ Y : (x, y) ∈ A} and Ay = {x ∈ X : (x, y) ∈ A} are
vertical and horizontal sections of A, respectively. Then f is quasicontinu-
ous with respect to the first coordinate (symmetrically quasicontinuous) in
the global sense if f−1(W ) ∈ SO1(X,Y ) (f−1(W ) ∈ SOS(X,Y )) for every
open set W ⊆ Z. A map ϕ : X × Y → Z is called an SO1-step function
(an SOS-step function) if there exists a partition {Pi : i ∈ I} of X × Y into
sets from SO1(X,Y ) (from SOS(X,Y )) such that ϕ is constant on every Pi,
i ∈ I. SO1-step functions (SOS-step functions) obviously are quasicontinuous
with respect to the first coordinate (symmetrically quasicontinuous), because
SO1(X,Y ) (SOS(X,Y )) is closed under arbitrary unions. It is easily seen that
the family of all functions from X×Y into a metric space Z that are quasicon-
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tinuous with respect to the first coordinate (symmetrically quasicontinuous)
is closed under uniform limits (see also [5, Proposition 2]).

The present paper is motivated by Strońska’s questions from [7]: Given a
function f : X × Y → R quasicontinuous with respect to the first coordinate
(symmetrically quasicontinuous), is f the uniform limit of a sequence of SO1-
step functions (SOS-step functions)?

Quasicontinuity with respect to the first coordinate includes quasiconti-
nuity on the one hand and continuity on the other hand as extremal cases.
Indeed, if X = {x} is a singleton, then we are in the case of quasicontinuity.
Hence, by the above mentioned result from [6], every f : {x} × Y → R qua-
sicontinuous with respect to the first coordinate appears as the uniform limit
of SO1-step functions. If Y = {y} is a singleton, then every f : X × {y} → R
quasicontinuous with respect to the first coordinate is continuous. Uniform
approximation by SO1-step functions then amounts to approximation by step
functions on partitions into open sets. If X is paracompact, such an approxi-
mation of every continuous function f : X × {y} → R is possible if and only
if X is strongly zero-dimensional (see [5]), that is, if A,B ⊆ X can be sep-
arated by a continuous function h : X → [0, 1] in so far as h(A) ≡ 0 and
h(B) ≡ 1, then there exists a set U ⊆ X which is both open and closed such
that A ⊆ U ⊆ X \B (see [1, p. 361]). Consequently, if X is paracompact and
not strongly zero-dimensional and if Y contains an isolated point, then there
even exists a continuous function f : X × Y → R that cannot be expressed as
a uniform limit of a sequence of SO1-step functions. A fortiori, it is impossible
to approximate f by SOS-step functions.

In the following section we shall present a class of pairs of spaces (X,Y )
such that, given any metric space Z, every f : X × Y → Z quasicontinuous
with respect to the first coordinate is the uniform limit of some sequence of
SO1-step functions (Theorem 1). We shall see that that this class includes
all pairs (X,Y ) formed by any subspace X ⊆ Rm and any subspace Y ⊆ Rn

without isolated points, in particular the pair (Rm,Rn) itself (Section 3).
Our knowledge on the approximation by SOS-step functions is much more

restricted. We do not even know if every symmetrically quasicontinuous func-
tion f : R × R → R is a uniform limit of SOS-step functions. Section 4
concerns the approximation of continuous functions f from X×Y into a met-
ric space Z by SOS-step functions. The affirmative result given there applies
to all spaces X,Y ⊆ R without isolated points (Section 5).

Throughout this paper Rk, k ≥ 0, is considered with its natural topology
and with the Euclidean norm ‖ · ‖.

The diameter of a subset A of some metric space (X, d) is defined as
diam(A) = supx1,x2∈A d(x1, x2) if A 6= ∅ and by diam(∅) = 0. The closed
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ball of radius r > 0 centred at x ∈ X is denoted by B(x, r).
A family F of subsets of a given set X is called a packing if its members

are disjoint. F is a cover of X if X ⊆
⋃
F . F is a partition of X if it is both

a packing and a cover of X. We call F open if it consists of open sets.
We say that a set A ⊆ X is finer than a family F ⊆ 2X if A ⊆ F for some

F ∈ F . F2 ⊆ 2X is a refinement of F1 ⊆ 2X if every set from F2 is finer than
F1. A sequence (Fn)∞n=1 of families Fn ⊆ 2X is called a chain if Fn+1 is a
refinement of Fn, n ≥ 1.

2 Uniform Limits of SO1-Step Functions.

Theorem 1. Let X and Y be topological spaces satisfying the packing property

(P)


There exists a chain (Gj)∞j=1 of open packings in X × Y such that, for
every open set U ⊆ X × Y and every x ∈ π1(U), there is G ∈

⋃∞
j=1 Gj

such that G ⊆ U and x ∈ π1(G).

and let a function f from X×Y into a metric space (Z, d) be quasicontinuous
with respect to the first coordinate. Then there exist a chain K = K(f) =
(Pn)∞n=1 of partitions of X × Y into sets from SO1(X,Y ) and a sequence of
SO1-step functions ϕn defined on the partitions Pn, n ≥ 1, which uniformly
converge to f .

This is possible with finite partitions Pn if (Z, d) is totally bounded.
If, in addition, X and Y are compact and metrizable, then one can choose

K such that, given any continuous function g : X×Y → Z, there is a sequence
of SO1-step functions ψn defined on the partitions Pn, n ≥ 1, which uniformly
converge to g.

Theorem 1 is stronger than a characterization of bivariate functions quasi-
continuous with respect to the first coordinate as uniform limits of SO1-step
functions. It is similar to the main theorems of [6] and [5], where other con-
cepts of generalized continuity are considered.

Approximation of f by step functions ϕn, n ≥ 1, defined on the partitions
of the chain (Pn)∞n=1 is a successive procedure where ϕn+1 uses information of
ϕn in so far as the steps P (n+1) ∈ Pn+1 of ϕn+1 are obtained from the steps
P (n) ∈ Pn of ϕn by subdivision. In other words, the spaces S(Pn;Z) of all
step functions on Pn with values in Z increase with n. The function space
A(K;Z) of all uniform limits of step functions on partitions of K with values
in Z is the closure of

⋃∞
n=1 S(Pn;Z) with respect to uniform limits, the spaces

S(Pn;Z) themselves being closed.
If Z is a normed spaceK gives rise to a linear approximation scheme formed

by the linear subspaces S(Pn;Z). The set of all functions f : X × Y → Z
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quasicontinuous with respect to the first coordinate, which in general is not a
linear space, is represented as the union of closed linear spaces A(K(f);Z).

The case of finite partitions Pn is particularly interesting, because then the
functions of S(Pn;Z) depend on finitely many parameters zP ∈ Z, P ∈ Pn,
only. So S(Pn;Z) is finite-dimensional if Z is normed.

The last claim of Theorem 1 says that one can choose K = K(f) such that
A(K;Z) comprises the space of all continuous functions from X × Y into Z.

The following lemma can be seen as an analogue of Lemma 1 from [6].
Then the proof of Theorem 1 is similar to that of Theorems 1 and 2 from [6]
and of Theorem 8 from [5].

Lemma 2. Let X,Y be topological spaces satisfying property (P), let (Z, d)
be a metric space, let f : X × Y → Z be quasicontinuous with respect to the
first coordinate, and let P be a partition of X × Y into sets P ∈ SO1(X,Y )
corresponding to f in so far as

P ∩ f−1(W ) ∈ SO1(X,Y ) for every open set W ⊆ Z. (1)

Then, given any locally finite open cover C of X ×Y and any open cover D of
Z, there exists a partition Q = {Q(P,C,D) : P ∈ P, C ∈ C, D ∈ D} of X × Y
into sets Q(P,C,D) ∈ SO1(X,Y ) satisfying

Q(P,C,D) ∩ f−1(W ) ∈ SO1(X,Y ) for every open set W ⊆ Z (2)

and
Q(P,C,D) ⊆ P ∩ cl(C) ∩ f−1(cl(D)). (3)

Proof. Step 1. Construction of Q.
1.0. Preliminaries. The sets Q(P,C,D) will be defined as disjoint unions

of sets R(P,C,D) and S(P,C,D) from partitions R and S of complementary
parts of X × Y .

We assume D to be locally finite. (Otherwise we can replace D by a locally
finite open cover D′ = {D′ : D ∈ D} such that D′ ⊆ D, since Z is paracompact
(see [1, p. 300]).)

1.1. Construction of R. Let

H =
{
P ∩ C ∩ f−1(D) : P ∈ P, C ∈ C, D ∈ D

}
.

Given G1, G2 ∈
⋃∞

j=1 Gj , G1 is called a predecessor of G2 if G1 ⊇ G2 and
G1 6= G2. We use the packings from (P) for introducing

G =
{
G ∈

⋃∞
j=1 Gj : G is finer than H, but no

predecessor of G is finer than H
}
.
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The members of G are disjoint, because two distinct sets from
⋃∞

j=1 Gj have a
nonempty intersection only if one is a predecessor of the other.

Since G is a refinement of H, there exist functions % : G → P, σ : G → C,
and τ : G → D such that

G ⊆ %(G) ∩ σ(G) ∩ f−1(τ(G)) for all G ∈ G.

We define the open partition R of
⋃
G by

R = {R(P,C,D) : P ∈ P, C ∈ C, D ∈ D} where
R(P,C,D) =

⋃
{G ∈ G : %(G) = P, σ(G) = C, τ(G) = D}.

Clearly, G is a refinement of R and R is a refinement of H, namely

R(P,C,D) ⊆ P ∩ C ∩ f−1(D) for all P ∈ P, C ∈ C, D ∈ D. (4)

Moreover, R satisfies the following.

If G ∈
⋃∞

j=1 Gj is finer than H, then there exists

R(P,C,D) ∈ R such that G ⊆ R(P,C,D).
(5)

Indeed, if G ∈ G, then G ⊆ R(%(G), σ(G), τ(G)). Otherwise, since G has only
finitely many predecessors, one of them, say G′, belongs to G and we obtain
G ⊆ G′ ⊆ R(%(G′), σ(G′), τ(G′)).

1.2. Construction of S. Let (x, y) ∈ (X × Y ) \
⋃
R = (X × Y ) \

⋃
G.

There is a unique P0 ∈ P with (x, y) ∈ P0. By the local finiteness of C and D,

{C ∈ C : (x, y) ∈ cl(C)} = {C1, . . . , Ck} and
{D ∈ D : f(x, y) ∈ cl(D)} = {D1, . . . , Dl}

are finite. Say (x, y) ∈ C1 and f(x, y) ∈ D1. We obtain open neighbourhoods

U0 = (X × Y ) \
⋃

C∈C\{C1,...,Ck} cl(C) ∈ U(x, y) and

W0 = Z \
⋃

D∈D\{D1,...,Dl} cl(D) ∈ U(f(x, y)),

respectively. Next we show that

∃C0 ∈ {C1, . . . , Ck} ∃D0 ∈ {D1, . . . , Dl}
∀W ∈ U(f(x, y)) ∀U ∈ U(x, y) ∃V open in X × Y :

V ⊆ R(P0, C0, D0) ∩ U ∩ f−1(W ) ∧ x ∈ π1(V ).

(6)

On the contrary, suppose that, for all Cr ∈ {C1, . . . , Ck} and all Ds ∈
{D1, . . . , Dl}, there exist Wr,s ∈ U(f(x, y)) and Ur,s ∈ U(x, y) such that, for
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every open V ⊆ X × Y , V 6⊆ R(P0, Cr, Ds) ∩ Ur,s ∩ f−1(Wr,s) or x /∈ π1(V ).
Then the neighbourhoods

W̃ = W0 ∩
⋂

1≤r≤k, 1≤s≤lWr,s ∈ U(f(x, y)) and

Ũ = U0 ∩
⋂

1≤r≤k, 1≤s≤l Ur,s ∈ U(x, y)

satisfy

∀V open in X × Y ∀Cr ∈ {C1, . . . , Ck} ∀Ds ∈ {D1, . . . , Dl} :

V 6⊆ R(P0, Cr, Ds) ∩ Ũ ∩ f−1
(
W̃
)
∨ x /∈ π1(V ).

(7)

Application of (1) to P0 ∈ P and arbitrary W ∈ U(f(x, y)) yields (x, y) ∈
P0 ∩ f−1(W ) ∈ SO1(X,Y ). Hence, for every W ∈ U(f(x, y)) and every
U ∈ U(x, y), there exists an open set V ⊆ X×Y such that V ⊆ U∩P0∩f−1(W )
and x ∈ π1(V ). For the particular neighbourhoods C1 ∩ Ũ ∈ U(x, y) and
D1 ∩ W̃ ∈ U(f(x, y)), we find an open Ṽ ⊆ X × Y such that Ṽ ⊆ P0 ∩

(
C1 ∩

Ũ
)
∩f−1

(
D1∩W̃

)
and x ∈ π1

(
Ṽ
)
. Application of (P) to Ṽ gives G ∈

⋃∞
j=1 Gj

with G ⊆ Ṽ and x ∈ π1(G). Hence

G ⊆ P0 ∩
(
C1 ∩ Ũ

)
∩ f−1

(
D1 ∩ W̃

)
and x ∈ π1(G). (8)

Thus G is finer than H, since in particular G ⊆ P0 ∩ C1 ∩ f−1(D1), and (5)
and (4) yield

∃P ∈ P ∃C ∈ C ∃D ∈ D : G ⊆ R(P,C,D) ⊆ P ∩ C ∩ f−1(D). (9)

Combining (8) with (9) we obtain ∅ 6= G ⊆ P0 ∩ P , which gives P = P0,
because P is a partition. Similarly, G ⊆ Ũ ∩ C ⊆ U0 ∩ C and G ⊆ f−1

(
W̃
)
∩

f−1(D) ⊆ f−1(W0 ∩D), which yield C = Cr0 ∈ {C1, . . . , Ck} and D = Ds0 ∈
{D1, . . . , Dl} by the definitions of U0 and W0, respectively. Hence, again by
(8) and (9),

G ⊆ R(P0, Cr0 , Ds0) ∩ Ũ ∩ f−1
(
W̃
)

and x ∈ π1(G).

This contradiction with (7) completes the verification of (6).
Putting %(x, y) = P0, choosing σ(x, y) = C0 and τ(x, y) = D0 according to

(6), and then considering (x, y) to be a variable in (X × Y ) \
⋃
R, we obtain

functions %, σ, τ from (X × Y ) \
⋃
R into P, C,D such that

∀ (x, y) ∈ (X × Y ) \
⋃
R ∀U ∈ U(x, y) ∀W ∈ U(f(x, y))

∃V open in X × Y :

V ⊆ R
(
%(x, y), σ(x, y), τ(x, y)

)
∩ U ∩ f−1(W ) ∧ x ∈ π1(V ).

(10)
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Finally, we define the partition S of (X × Y ) \
⋃
R = (X × Y ) \

⋃
G by

S = {S(P,C,D) : P ∈ P, C ∈ C, D ∈ D} where
S(P,C,D) = {(x, y) : %(x, y) = P, σ(x, y) = C, τ(x, y) = D}.

1.3. Definition of Q. We put

Q =
{
Q(P,C,D) = R(P,C,D) ∪ S(P,C,D) : P ∈ P, C ∈ C, D ∈ D

}
.

Step 2. Properties of Q. R and S being partitions of complementary
subsets of X × Y , Q is a partition of X × Y .

2.1. Proof of (2). It is to show that, for every fixed (x, y) ∈ Q(P,C,D)∩
f−1(W ) and every fixed U ∈ U(x, y), there exists an open set V ⊆ X×Y such
that V ⊆ U ∩ (Q(P,C,D) ∩ f−1(W )) and x ∈ π1(V ).

Case 1. (x, y) ∈ R(P,C,D). R(P,C,D)∩f−1(W ) ∈ SO1(X,Y ), because
R(P,C,D) is open and f−1(W ) ∈ SO1(X,Y ). Thus there is an open set V ⊆
X×Y such that V ⊆ U ∩(R(P,C,D)∩f−1(W )) ⊆ U ∩(Q(P,C,D)∩f−1(W ))
and x ∈ π1(V ).

Case 2. (x, y) ∈ S(P,C,D). Then %(x, y) = P , σ(x, y) = C, τ(x, y) = D.
By (10), there exists an open set V ⊆ X × Y such that V ⊆ R(P,C,D)∩U ∩
f−1(W ) ⊆ U ∩ (Q(P,C,D) ∩ f−1(W )) and x ∈ π1(V ). This completes the
proof of (2).

The particular choice W = Z in (2) yields Q(P,C,D) ∈ SO1(X,Y ).
2.2. Proof of (3). By (4), it suffices to show that S(P,C,D) ⊆ P ∩

cl(C) ∩ f−1(cl(D)). We fix (x, y) ∈ S(P,C,D), which gives %(x, y) = P ,
σ(x, y) = C, τ(x, y) = D. The proof will be complete once we have shown
that

(x, y) ∈ P, (x, y) ∈ cl(C), f(x, y) ∈ cl(D). (11)

The first inclusion follows from %(x, y) = P . (S is a refinement of P.) Prop-
erties (10) and (4) yield

∀U ∈ U(x, y) ∀W ∈ U(f(x, y)) ∃V open in X × Y :

∅ 6= V ⊆ R(P,C,D) ∩ U ∩ f−1(W ) ⊆ (C ∩ U) ∩ f−1(D ∩W ).
(12)

Hence (x, y) ∈ cl(C), because every U ∈ U(x, y) has a nonempty intersec-
tion with C, and f(x, y) ∈ cl(D), since all W ∈ U(f(x, y)) have nonempty
intersections with D. This completes the proof.

Proof of Theorem 1. Let P0 = {X × Y }. This partition satisfies assump-
tion (1) of the lemma, because f is quasicontinuous with respect to the first
coordinate. Given Pn−1, n ≥ 1, we shall construct the partition Pn subject
to the following conditions.
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(i) Pn is a refinement of Pn−1.

(ii) The members P of Pn belong to SO1(X,Y ) and satisfy property (1).

(iii) Pn is finite if (Z, d) is totally bounded.

(iv) There exists a step function ϕn on Pn such that

sup(x,y)∈X×Y d(f(x, y), ϕn(x, y)) ≤ 2−n.

(v) If X × Y is compact and metrized by some fixed metric d× (which ob-
viously is the case if X and Y both are compact and metrizable), then,
given any continuous function g : X × Y → Z, there is a step function
ψn : X × Y → Z on Pn such that

sup(x,y)∈X×Y d(g(x, y), ψn(x, y)) ≤ ω(g; 2−n),

where ω(g; 2−n) = sup d(g(x1, y1), g(x2, y2)) is the modulus of continuity,
the sup being taken over all

(x1, y1), (x2, y2) ∈ X × Y, d×((x1, y1), (x2, y2)) ≤ 2−n.

We obtain Pn by applying the lemma to P = Pn−1 and the following covers
C and D. If X × Y is compact and metrized by d× we fix a finite open cover
C = {C1, . . . , Ck} of X × Y with diam(Cr) ≤ 2−n, 1 ≤ r ≤ k. Otherwise we
use C = {X × Y }. D has to be a cover of Z by open sets of diameter at most
2−n. If Z is totally bounded we use a finite cover D with that property.

By the lemma, the resulting partition Q = Pn satisfies (i) and (ii). If (Z, d)
is totally bounded, then Pn−1, C, and D are finite and so is Pn.

By claim (3) of the lemma, every Q ∈ Pn is contained in some f−1(cl(D)),
D ∈ D. Hence diam(f(Q)) ≤ diam(cl(D)) = diam(D) ≤ 2−n. For every
Q ∈ Pn, we fix some (xQ, yQ) ∈ Q (provided that Q 6= ∅) and define ϕn :
X × Y → Z by ϕn(Q) ≡ f(xQ, yQ). This yields (iv), namely

sup(x,y)∈X×Y d(f(x, y), ϕn(x, y)) = supQ∈Pn
sup(x,y)∈Q d(f(x, y), ϕn(x, y))

= supQ∈Pn
sup(x,y)∈Q d(f(x, y), f(xQ, yQ)) ≤ supQ∈Pn

diam(f(Q)) ≤ 2−n.

Finally, if X × Y is compact and metrized by d× and if a continuous
g : X × Y → Z is given, then we consider ψn : X × Y → Z with ψn(Q) ≡
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g(xQ, yQ). Again by claim (3), every Q ∈ Pn is a subset of some cl(C), C ∈ C.
Thus diam(Q) ≤ diam(cl(C)) = diam(C) ≤ 2−n and

sup(x,y)∈X×Y d(g(x, y), ψn(x, y)) = supQ∈Pn
sup(x,y)∈Q d(g(x, y), ψn(x, y))

= supQ∈Pn
sup(x,y)∈Q d(g(x, y), g(xQ, yQ))

≤ supQ∈Pn
ω(g; diam(Q)) ≤ ω(g; 2−n),

which proves (v).
Note that (v) gives limn→∞ sup(x,y)∈X×Y d(g(x, y), ψn(x, y)) = 0, since

X×Y is compact and g is continuous. This completes the proof of Theorem 1.

3 Subspaces of Rm × Rn Satisfying Property (P).

Theorem 3. Let the subspace X ⊆ Rm, m ≥ 0, be arbitrary and let Y ⊆ Rn,
n ≥ 1, be a subspace without isolated points. Then (X,Y ) has property (P).

The proof is prepared by a lemma.

Lemma 4. Let A ⊆ Rk, k ≥ 1, be a subset without isolated points. Then there
is a basis {b1, . . . , bk} of Rk such that, for every a ∈ A and every ε > 0, there
exists aε ∈ A such that ‖aε−a‖ < ε and aε−a /∈

⋃k
i=1 span({b1, . . . , bk}\{bi}).

Proof. Let {a1, a2, . . .} ⊆ A be a countable dense subset of A. We denote
the Grassmann manifold of all (k − 1)-dimensional linear subspaces of Rk by
Gk−1(Rk). For arbitrary 1 ≤ j1 < j2 < ∞, G(j1, j2) = {H ∈ Gk−1(Rk) :
aj1 − aj2 ∈ H} is a nowhere dense subset of the compact space Gk−1(Rk).
Hence D = Gk−1(Rk) \

⋃
1≤j1<j2<∞G(j1, j2) is dense in Gk−1(Rk) by the

Baire category theorem. We pick hyperplanes H1, . . . ,Hk ∈ D that are close
to the coordinate hyperplanes of Rk. Then we obtain a basis {b1, . . . , bk} by
choosing a vector bi 6= 0 in every straight line

⋂
j∈{1,...,k}\{i}Hj , 1 ≤ i ≤ k.

For showing the claim, we assume a ∈ A and ε > 0 to be fixed. We pick
a∗ ∈ {a1, a2, . . .} with ‖a∗ − a‖ < ε

2 . Let I = {i ∈ {1, . . . , k} : a∗ − a /∈ Hi}.
We choose δ ∈

(
0, ε

2

]
such that B(a∗ − a, δ) ∩

⋃
i∈I Hi = ∅. Now we pick

aε ∈ ({a1, a2, . . .} \ {a∗}) ∩B
(
a∗, δ). Clearly,

‖aε − a‖ ≤ ‖aε − a∗‖+ ‖a∗ − a‖ < δ + ε
2 ≤ ε.

It remains to show that

aε − a /∈
⋃k

i=1 span({b1, . . . , bk} \ {bi}) =
⋃k

i=1Hi.
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On the contrary, suppose that aε − a ∈ Hi0 for some i0 ∈ {1, . . . , k}.
If i0 ∈ I we obtain aε − a ∈ B(a∗ − a, δ) ∩

⋃
i∈I Hi, because

aε − a = (a∗ − a) + (aε − a∗) ∈ B(a∗ − a, ‖aε − a∗‖) ⊆ B(a∗ − a, δ).

This contradicts B(a∗ − a, δ) ∩
⋃

i∈I Hi = ∅.
In the opposite case, that is i0 /∈ I, we have aε − a, a∗ − a ∈ Hi0 , which

gives aε−a∗ ∈ Hi0 . However, {aε, a
∗} = {aj1 , aj2} ⊆ {a1, a2, . . .} with j1 < j2.

Hence Hi0 ∈ G(j1, j2), a contradiction with the choice of Hi0 ∈ D.

Proof of Theorem 3. Application of the lemma to A = {0} × Y ⊆ Rm+n

gives a basis {b1, . . . , bm+n} of Rm+n. The open parallelepipeds

G(k1, . . . , km+n) =
{∑m+n

i=1 λibi : ki < λi < ki + 1 for 1 ≤ i ≤ m+ n
}

with ki ∈ Z cover a dense subset of Rm+n. We define

Gj =
{(

2−jG(k1, . . . , km+n)
)
∩ (X × Y ) : (k1, . . . , km+n) ∈ Zm+n

}
.

This gives a chain (Gj)∞j=1 of open packings in X × Y .
For showing the remainder of (P), we fix an open set U ⊆ X×Y and a point

x ∈ π1(U). We pick y0 ∈ Y with (x, y0) ∈ U . Let (x, y0) =
∑m+n

i=1 λ
(0)
i bi be the

representation with respect to the fixed basis. Since U is open, there is j ≥ 1
such that the set H = cl(

⋃
{G ∈ Gj : (x, y0) ∈ cl(G)}) is contained in U . In

the metric space X×Y we fix a ball B((x, y0), δ) ⊆ H, δ > 0. By the definition
of A and by the claim of the lemma, there exists a sequence (yk)∞k=1 ⊆ Y such
that limk→∞ yk = y0 and (0, yk − y0) /∈

⋃m+n
i=1 span({b1, . . . , bm+n} \ {bi}). If

(0, yk−y0) =
∑m+n

i=1 µ
(k)
i bi this means that limk→∞ µ

(k)
i = 0 for 1 ≤ i ≤ m+n

and µ
(k)
i 6= 0 for 1 ≤ i ≤ m+ n, k ≥ 1.

Clearly, ‖(0, yk− y0)‖ ≤ δ for k ≥ k0. For every i ∈ {1, . . . ,m+n}, we can
choose ki such that λ(0)

i + µ
(k)
i /∈ 2−jZ for k ≥ ki. (If λ(0)

i ∈ 2−jZ we use that
µ

(k)
i is small, but not zero. If λ(0)

i /∈ 2−jZ we use that µ(k)
i is small.)

We fix k = max{k0, . . . , km+n}. By ‖(0, yk − y0)‖ ≤ δ,

(x, yk) = (x, y0) + (0, yk − y0) ∈ B((x, y0), δ) ⊆ H ⊆ U.

Moreover, the properties λ(0)
i + µ

(k)
i /∈ 2−jZ, 1 ≤ i ≤ m+ n, yield

(x, yk) = (x, y0) + (0, yk − y0) =
∑m+n

i=1

(
λ

(0)
i + µ

(k)
i

)
bi ∈

⋃
Gj .

The definition of H finally shows that there exists G ∈ Gj such (x, yk) ∈ G ⊆
H ⊆ U , in particular x ∈ π1(G). This completes the proof.
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4 Approximation of Continuous Functions by SOS-Step
Functions.

Theorem 5. Let X and Y be topological spaces such that X × Y possesses
a chain (Rj)∞j=1 of partitions into sets from SOS(X,Y ) such that, for every
(x, y) ∈ X × Y and every U ∈ U(x, y), there exists R ∈

⋃∞
j=1Rj such that

(x, y) ∈ R ⊆ U . Let (Z, d) be a metric space.

(a) Given a continuous function f : X × Y → Z, there exists a chain K =
K(f) = (Pn)∞n=1 of partitions of X×Y into sets from SOS(X,Y ) and a
sequence of SOS-step functions ϕn defined on the partitions Pn, n ≥ 1,
which uniformly converge to f .

This is possible with finite partitions Pn if (Z, d) is totally bounded.

(b) If X and Y are compact and metrizable, then there exists a chain K =
(Pn)∞n=1 of finite partitions of X × Y into sets from SOS(X,Y ) such
that, given any continuous function g : X × Y → Z, there is a sequence
of SOS-step functions ψn defined on the partitions Pn, n ≥ 1, which
uniformly converge to g.

Proof. As in the proof of Lemma 2, we call R1 ∈
⋃∞

j=1Rj a predecessor of
R2 ∈

⋃∞
j=1Rj if R1 ⊇ R2 and R1 6= R2. Let P0 = {X × Y }.

Proof of (a). We shall define K inductively such that, for all n ≥ 1,

(i) the partition Pn is a refinement of Pn−1,

(ii) every P ∈ Pn is a union of sets from
⋃∞

j=1Rj (and hence P ∈ SOS(X,Y )),

(iii) Pn is finite if (Z, d) is totally bounded, and

(iv) there exists a step function ϕn defined on Pn such that

sup(x,y)∈X×Y d(f(x, y), ϕn(x, y)) ≤ 2−n.

Suppose Pn−1 to be given. We fix an open cover D of Z such that diam(D) ≤
2−n for all D ∈ D. If (Z, d) is totally bounded D can assumed to be finite.
C = {f−1(D) : D ∈ D} is an open cover of X × Y . Let

R =
{
R ∈

⋃∞
j=1Rj : R is finer than Pn−1 and C, but no

predecessor of R is finer than Pn−1 and C
}
.
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For eachR ∈ R, we pick %(R) ∈ Pn−1 and σ(R) ∈ C such thatR ⊆ %(R)∩σ(R),
this way defining functions %, σ from R into Pn−1 and C, respectively. Now
we put

Q(P,C) =
⋃{

R ∈ R : %(R) = P, σ(R) = C
}

and
Pn = {Q(P,C) : P ∈ Pn−1, C ∈ C}.

First we show that Pn is a partition of X × Y . Any two distinct members
of
⋃∞

j=1Rj have a nonempty intersection only if one is a predecessor of the
other. Hence R is a packing and so is Pn. For showing the covering property
we fix (x, y) ∈ X × Y . We pick P ∈ Pn−1 with (x, y) ∈ P . By the induction
hypothesis (ii) on Pn−1, there is R1 ∈

⋃∞
j=1Rj such that (x, y) ∈ R1 ⊆ Pn−1.

Similarly, we choose C ∈ C such that (x, y) ∈ C. By the supposition on
(Rj)∞j=1, there exists R2 ∈

⋃∞
j=1Rj with (x, y) ∈ R2 ⊆ C. Then R0 =

R1 ∩ R2 ∈ {R1, R2} is finer than Pn−1 and C. Thus R0 itself or one of
its predecessors belongs to R and contains (x, y), because it covers R0. So
(x, y) ∈

⋃
R =

⋃
Pn. Hence, Pn is a partition of X × Y . The other claims of

(i)-(iii) are obvious.
In every Q ∈ Pn we fix (xQ, yQ) ∈ Q (provided that Q 6= ∅) and define

ϕn by ϕn(Q) ≡ f(xQ, yQ). Since Q is covered by some C = f−1(D) ∈ C, we
obtain

diam(f(Q)) ≤ diam(f(f−1(D))) ≤ diam(D) ≤ 2−n.

As in the verification of claim (iv) of the proof of Theorem 1, this yields (iv)
and completes the proof of part (a).

Proof of (b). We assume a metric d× on X × Y to be fixed. Now we
construct K such that, for every n ≥ 1,

(i) the partition Pn is a refinement of Pn−1,

(ii) every P ∈ Pn is a union of sets from
⋃∞

j=1Rj (and hence P ∈ SOS(X,Y )),

(iii) Pn is finite, and,

(iv) for every continuous g : X × Y → Z, there is a step function ψn on Pn

such that

sup(x,y)∈X×Y d(g(x, y), ψn(x, y)) ≤ ω(g; 2−n).

Given Pn−1, we fix a finite open over C of X×Y with diam(C) ≤ 2−n, C ∈ C,
and then use the same definition of Pn as in the proof of part (a). (i)-(iii) can
be verified as above. Again we choose (xQ, yQ) ∈ Q for every Q ∈ Pn. We
define ψn by ψn(Q) ≡ g(xQ, yQ). Every Q ∈ Pn is contained in some C ∈ C
and thus satisfies diam(Q) ≤ diam(C) ≤ 2−n. Now the proof of (iv) follows
the same lines as that of claim (v) in the proof of Theorem 1.
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5 Subspaces of R× R to Which Applies Theorem 5.

We present a class of spaces X,Y ⊆ R satisfying the supposition of Theorem 5.

Theorem 6. Let X,Y ⊆ R be topological subspaces without isolated points.
Then there exists a chain (Rj)∞j=1 of partitions of X × Y into sets from
SOS(X,Y ) such that limj→∞ supR∈Rj

diam(R) = 0.

Proof. Step 1. A chain (Qj)∞j=1 of open packings in R×R related to X×Y .
Every point of X is approached by other points from X. Hence it can

belong to at most one of the sets XL = {x ∈ X : (x− ε, x) ∩X = ∅ for some
ε > 0} (locally lower points of X) or XU = {x ∈ X : (x, x + ε) ∩ X = ∅ for
some ε > 0} (locally upper points of X). These sets are at most countable,
since every interval (x− ε, x) or (x, x+ ε) contains some rational number. We
define YL and Y U in the analogous way.

We shall construct families Qj , j ≥ 1, such that

(i) (Qj)∞j=1 is a chain of open packings in R× R,

(ii) limj→∞ supQ∈Qj
diam(Q) = 0,

(iii) for every (x, y) ∈ R2 and every j ≥ 1, there exist δ > 0 and unique sets
Q1, Q2 ∈ Qj such that

([x, x+δ]×[y, y+δ])\{(x, y)} ⊆ Q1, ([x−δ, x]×[y−δ, y])\{(x, y)} ⊆ Q2,

(iv)
(⋃

Q∈
S∞

j=1Qj
bd(Q)

)
∩
((
XL × Y U

)
∪
(
XU × YL

))
= ∅.

First we consider the packings Pj =
{

2−jP (l,m) : l,m ∈ Z
}

, j ≥ 1, based on
the disjoint open parallelograms

P (l,m) = {λ(2,−1) + µ(−1, 2) : l < λ < l + 1, m < µ < m+ 1},

whose edges have the directions (2,−1) and (−1, 2). Clearly, (Pj)∞j=1 satisfies
(i) and (ii). Property (iii) applies, since all edges of the parallelograms are
graphs of strictly decreasing functions. However, (iv) may fail. The final chain
(Qj)∞j=1 can be obtained by translating (Pj)∞j=1 with some appropriate vector
(xt, yt), that is, Qj = {P + (xt, yt) : P ∈ Pj}. Indeed,

(⋃
P∈

S∞
j=1 Pj

bd(P )
)

is
a countable union of straight lines l. Given l, the set of all vectors (x, y) such
that l + (x, y) misses the countable set

((
XL × Y U

)
∪
(
XU × YL

))
is of the

second category. Hence there exists an appropriate translation vector (xt, yt)
such that resulting shifted packings Qj , j ≥ 1, satisfy (iv).
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Step 2. Construction of (Rj)∞j=1.

We use the packing Qj =
{
Q

(j)
i : i ∈ Ij

}
for defining the respective

partition Rj =
{
R

(j)
i : i ∈ Ij

}
of X × Y as follows. By (iii), for every

(x, y) ∈ X × Y , there exist δ > 0 and unique i1, i2 ∈ Ij such that

([x, x+δ]× [y, y+δ])\{(x, y)} ⊆ Q(j)
i1
, ([x−δ, x]× [y−δ, y])\{(x, y)} ⊆ Q(j)

i2
.

(13)
If x /∈ XU and y /∈ Y U , (x, y) is assigned to the set R(j)

i1
(upper assignment).

If x ∈ XU or y ∈ Y U we assign (x, y) to R(j)
i2

(lower assignment).
This defines a partition Rj of X × Y where obviously

R
(j)
i ⊆ cl

(
Q

(j)
i

)
and Q

(j)
i ∩ (X × Y ) ⊆ int

(
R

(j)
i

)
. (14)

Property (i) of (Qj)∞j=1 yields the chain property of (Rj)∞j=1, because the
choice of upper or lower assignment depends only on (x, y), but not on j. The
claim limj→∞ supR∈Rj

diam(R) = 0 is a consequence of (ii).

It remains to prove that R(j)
i ∈ SOS(X,Y ) for every i ∈ Ij . So assume

that (x, y) ∈ R(j)
i . By the definition of SOS(X,Y ), it suffices to show that,

given ε > 0, there exist x̂ ∈ X and ŷ ∈ Y such that |x − x̂| < ε, |y − ŷ| < ε,
and (x, ŷ), (x̂, y) ∈ int

(
R

(j)
i

)
.

Case 1. (x, y) ∈ int
(
R

(j)
i

)
. Putting x̂ = x and ŷ = y we are done.

Case 2. (x, y) /∈ int
(
R

(j)
i

)
. Then, by (14), (x, y) ∈ bd

(
Q

(j)
i

)
. By (iv),

x ∈ XU yields y /∈ YL and y ∈ Y U forces x /∈ XL. Thus only the following
three subcases are possible.

Case 2.1. x /∈ XU and y /∈ Y U . Using the notations from (13) we
obtain i = i1 according to the upper assignment. By the definitions of XU

and Y U , there exist x̂ ∈ X and ŷ ∈ Y such that x < x̂ < x + min{ε, δ} and
y < ŷ < y + min{ε, δ}. Now (13) and (14) give our claim, namely

(x, ŷ), (x̂, y) ∈ Q(j)
i1
∩ (X × Y ) = Q

(j)
i ∩ (X × Y ) ⊆ int

(
R

(j)
i

)
.

Case 2.2. x ∈ XU and y /∈ YL. Now we have lower assignment, that is
i = i2. According to x ∈ XU and y /∈ YL there are x̂ ∈ X and ŷ ∈ Y such that
x−min{ε, δ} < x̂ < x and y −min{ε, δ} < ŷ < y. Again (13) and (14) yield

(x, ŷ), (x̂, y) ∈ Q(j)
i2
∩ (X × Y ) = Q

(j)
i ∩ (X × Y ) ⊆ int

(
R

(j)
i

)
.

Case 2.3. y ∈ Y U and x /∈ XL. We argue as in Case 2.2.
This completes the proof of R(j)

i ∈ SOS(X,Y ).
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