S. Graf, Fakultät für Matematik und Informatik, Universität Passau, 94030 Passau, Germany. e-mail: graf@fmi.uni-passau.de

H. Luschgy, Fachbereich Mathematik IV, Universität Trier, 54286 Trier, Germany. e-mail: luschgy@uni-trier.de

ASYMPTOTICS OF THE QUANTIZATION ERRORS FOR SELF-SIMILAR PROBABILITIES

Abstract

The formulae for determining the quantization dimensions of self–similar probabilities satisfying the open set condition are proved by a new method. In addition, this method gives the exact order of convergence for the quantization errors.

1 Introduction

Given a Borel probability P on \mathbb{R}^d , a number $r \in [0, +\infty]$ and a natural number $n \in \mathbb{N}$ the n-th quantization error of order r for P is defined by

$$e_{n,r} = \begin{cases} \inf\{\exp\int \log d(x,\alpha)dP(x) | \alpha \subset \mathbb{R}^d, \operatorname{card}(\alpha) \leq n\} & \text{if } r = 0 \\ \inf\{\left(\int d(x,\alpha)^r dP(x)\right)^{1/r} | \alpha \subset \mathbb{R}^d, \operatorname{card}(\alpha) \leq n\} & \text{if } 0 < r < \infty \\ \inf\{\sup_{x \in \operatorname{supp}(P)} d(x,\alpha) | \alpha \subset \mathbb{R}^d, \operatorname{card}(\alpha) \leq n\} & \text{if } r = \infty \end{cases}$$

where $d(x, \alpha)$ denotes the distance of the point x to the set α with respect to a given norm $\| \|$ on \mathbb{R}^d . (One has to impose certain conditions on P to guarantee that the integrals and the supremum in the above expressions exist in \mathbb{R} .) The quantization dimension of order r for P is

$$D_r(P) = \lim_{n \to \infty} \frac{\log n}{-\log e_{n,r}}$$

if this limit exists. For self–similar probabilities P satisfying the open set condition and $0 < r < \infty$ it was shown in [6] that the quantization dimension

Key Words: self-similar probability, quantization Mathematical Reviews subject classification: 28A80 (primary) and 60E99 (secondary) Received by the editors October $27,\,2000$

 $D_r(P)$ exists in $(0, +\infty)$ and a formula for its computation was derived. In the present note we give a new proof of these results and extend them to the cases r=0 and $r=+\infty$. Moreover we will show that, for all $r\in [0, +\infty]$, $0<\liminf_{n\to\infty}ne^{D_r}_{n,r}\leq \limsup_{n\to\infty}ne^{D_r}_n<+\infty$.

2 Basic Notation and Definitions

In what follows N is always a natural number ≥ 2 and S_1, \ldots, S_N are contractive similitudes from \mathbb{R}^d into itself. Let s_i be the contraction number of S_i ; i.e., $s_i \in (0,1)$ and $||S_i x - S_i y|| = s_i ||x - y||$ for all $x, y \in \mathbb{R}^d$. Sometimes the N-tuple (S_1, \ldots, S_N) is called an *iterated function system* (IFS). Its attractor is the unique non-empty compact set A in \mathbb{R}^d with

$$A = S_1(A) \cup \ldots \cup S_N(A).$$

For every probability vector $p = (p_1, \ldots, p_N)$ there exists a unique Borel probability P on \mathbb{R}^d which satisfies the equation $P = \sum_{i=1}^N p_i P \circ S_i^{-1}$. P is called the self-similar probability corresponding to $(S_1, \ldots, S_N; p)$. If each component p_i of p is strictly positive, then the support of P equals A.

The IFS (S_1, \ldots, S_N) is said to satisfy the open set condition (OSC) iff there is a non-empty open set U in \mathbb{R}^d with $S_i(U) \subset U$ and $S_i(U) \cap S_j(U) = \emptyset$ for all i, j with $i \neq j$. According to a result of Schief [7] U can be chosen to be bounded and such that $U \cap A \neq \emptyset$.

Let $\{1,\ldots,N\}^*$ be the set of finite words over the alphabet $\{1,\ldots,N\}$ including the empty word \emptyset . For $\sigma \in \{1,\ldots,N\}^*$ the length of σ is denoted by $|\sigma|$. For $n \in \mathbb{N}$, $\{1,\ldots,N\}^n$ is the set of all words of length n. A word $\sigma = \sigma_1 \ldots \sigma_n$ is said to be a predecessor of a word $\tau = \tau_1 \ldots \tau_m$, in symbols $\sigma \prec \tau$, iff $n \leq m$ an $\sigma_i = \tau_i$ for $i = 1,\ldots,n$. The empty word is the predecessor of every word. Words σ and τ are called incomparable if neither $\sigma \prec \tau$ nor $\tau \prec \sigma$. For $\sigma \in \{1,\ldots N\}^*$ set

$$S_{\sigma} = \begin{cases} id_{\mathbb{R}^d} & \text{if } \sigma = \emptyset \\ S_{\sigma_1} \circ \ldots \circ S_{\sigma_n} & \text{if } \sigma = \sigma_1 \ldots \sigma_n, \end{cases}$$

$$A_{\sigma} = S_{\sigma}(A),$$

$$s_{\sigma} = \begin{cases} 1 & \text{if } \sigma = \emptyset \\ s_{\sigma_1} \cdot \ldots \cdot s_{\sigma_n} & \text{if } \sigma = \sigma_1 \ldots \sigma_n, \end{cases}$$

and

$$p_{\sigma} = \begin{cases} 1 & \text{if } \sigma = \emptyset \\ p_{\sigma_1} \cdot \dots \cdot p_{\sigma_n} & \text{if } \sigma = \sigma_1 \dots \sigma_n. \end{cases}$$

If (S_1, \ldots, S_N) satisfies the OSC, then $P(A_{\sigma} \cap A_{\tau}) = 0$ if σ and τ are incomparable and, moreover, $P(A_{\sigma}) = p_{\sigma}$ (see [2], Lemma 3.3).

3 Statement of the Main Result

Let D_{∞} be the unique real number with $\sum_{i=1}^{N} s_i^{D_{\infty}} = 1$. Then D_{∞} is called the similarity dimension of (S_1, \ldots, S_N) . For $r \in (0, +\infty)$ there exists a unique $D_r \in (0, +\infty)$ satisfying $\sum_{i=1}^{N} (p_i s_i^r)^{\frac{D_r}{r+D_r}} = 1$. (see [5], Lemma 14.4). Let

$$D_0 = \frac{\sum_{i=1}^{N} p_i \log p_i}{\sum_{i=1}^{N} p_i \log s_i}$$

where $(0 \log 0 := 0)$.

Theorem 3.1. Let (S_1, \ldots, S_N) have the OSC, $p = (p_1, \ldots, p_N)$ with $p_i > 0$ for all i, and let P be the self-similar probability corresponding to $(S_1, \ldots, S_N; p)$. Let D_r be as above. Then, for every $r \in [0, +\infty]$,

$$0<\liminf_{n\to\infty}ne_{n,r}^{D_r}\leq\limsup_{n\to\infty}ne_{n,r}^{D_r}<+\infty;$$

in particular $\lim_{n\to\infty} \frac{\log n}{-\log e_{n,r}} = D_r$.

Remark 3.2.

- a) If $p = (s_1^{D_\infty}, \dots, s_N^{D_\infty})$, then $D_r = D_\infty$ for all $r \in [0, +\infty]$.
- b) If $p \neq (s_1^{D_\infty}, \dots, s_N^{D_\infty})$, then the function $[0, +\infty] \to (0, +\infty)$, $r \to D_r$ is strictly increasing and continuous.

PROOF. That $(0, +\infty] \to (0, +\infty), r \to D_r$ is strictly increasing and continuous follows from Lemma 14.16 and the proof of Theorem 14.15 in [5]. (Actually the results there are stated for $r \geq 1$ only but the proofs work unchanged for

r>0.) It remains to show that $\lim_{r\downarrow 0} D_r=D_0$. Let $F\colon \mathbb{R}\times\mathbb{R}\to\mathbb{R}$ be defined by $F(q,t)=\sum\limits_{i=1}^N p_i^q s_i^t-1$. Then for every $q\in\mathbb{R}$ there exists a unique $\beta(q)\in\mathbb{R}$ with $F(q,\beta(q))=0$. By implicit differentiation the function $\mathbb{R}\to\mathbb{R}, q\to\beta(q)$ is differentiable with derivative

$$\beta'(q) = -\frac{\sum_{i=1}^{N} p_i^q s_i^{\beta(q)} \log p_i}{\sum_{i=1}^{N} p_i^q s_i^{\beta(q)} \log s_i}.$$

Also, β is strictly decreasing with $\lim_{q\to -\infty}\beta(q)=+\infty$ and $\lim_{q\to +\infty}\beta(q)=-\infty$ (see for instance, Falconer [1], p. 193). From the definitions we deduce that for $0< r<+\infty$, $\beta(\frac{D_r}{r+D_r})=r\frac{D_r}{r+D_r}$. Since $\beta(1)=0$, we get

$$\frac{\beta(\frac{D_r}{r+D_r}) - \beta(1)}{\frac{D_r}{r+D_r} - 1} = \frac{r\frac{D_r}{r+D_r}}{-\frac{r}{r+D_r}} = -D_r.$$

Thus $\lim_{r \downarrow 0} D_r = -\beta'(1) = \frac{\sum\limits_{i=1}^{N} p_i \log p_i}{\sum\limits_{i=1}^{N} p_i \log s_i} = D_0$ if we can show that $\lim_{r \downarrow 0} \frac{D_r}{r + D_r} = 1$.

Since $0 < \frac{D_r}{r + D_r} < 1$ for all $r \in (0, +\infty)$ the claim is proved provided that, for every $r_n \downarrow 0$ for which $(\frac{D_{r_n}}{r_n + D_{r_n}})_{n \in \mathbb{N}}$ converges to some a, it follows that a = 1.

But this obviously holds because
$$1 = \lim_{n \to \infty} \sum_{i=1}^{N} (p_i s_i^{r_n})^{\frac{Dr_n}{r_n + Dr_n}} = \sum_{i=1}^{N} p_i^a$$
.

- c) It is an interesting question under what conditions the limit $\lim_{n\to\infty}ne_{n,r}^{D_r}$ exists. If $S_1\dots S_4\colon \mathbb{R}^2\to\mathbb{R}^2$ are defined by $S_ix=\frac{1}{2}x+x_i$ with $x_1=(0,0),$ $x_2=(\frac{1}{2},0),\ x_3=(0,\frac{1}{2}),\ x_4=(\frac{1}{2},\frac{1}{2}),\ \text{and}\ p=(\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}),\ \text{then the corresponding self-similar probability }P$ is the uniform distribution on the square $[0,1]^2$. In this case $D_r=2$ and $\lim_{n\to\infty}ne_{n,r}^{D_r}$ exists for all $r\in[0,+\infty]$ (see [5], Theorem 6.2 and Theorem 10.7 and [4], Theorem 3.2). If $S_1,S_2\colon\mathbb{R}\to\mathbb{R}$ are defined by $S_1x=\frac{1}{3}x$ and $S_2x=\frac{1}{3}x+\frac{2}{3}$ and $p=(\frac{1}{2},\frac{1}{2})$, then the corresponding self-similar probability P is the uniform distribution on the classical Cantor set, the quantization dimension of order 2 is $D_2=\frac{\log 2}{\log 3}$, and the sequence $(ne_{n,2}^{D_2})_{n\in\mathbb{N}}$ does not converge (see [3], Theorem 6.3).
- d) For general relationships between Hausdorff and box dimension of a probability P and the quantization dimensions of P the reader is referred to [4]

and [5]. There he will also find a definition of upper and lower quantization dimensions together with their basic properties.

4 Proof of the Main Result

In this section we always assume that the assumptions of Theorem 3.1 are satisfied. Moreover, let U be a bounded open subset of \mathbb{R}^d with $A\cap U\neq\emptyset$, $S_i(U)\subset U$, and $S_i(U)\cap S_j(U)=\emptyset$ for $i\neq j$. That $\limsup_{n\to\infty}ne^{D_r}_{n,r}<+\infty$ is shown in [5], Proposition 14.5 and 14.6 for $r\in(0,+\infty]$ and in [4], Theorem 5.3 for r=0. (Strictly speaking [5] only deals with $r\in[1,+\infty]$ but the results extend to $r\in(0,1)$ without change of proof). Here the OSC need not be assumed. Proposition 14.13 in [5] shows that $0<\liminf_{n\to\infty}ne^{D_r}_{n,\infty}$ and relies on the open set condition. That $0<\liminf_{n\to\infty}ne^{D_r}_{n,r}\leq \limsup_{n\to\infty}ne^{D_r}_{n,r}<\infty$ implies $\lim_{n\to\infty}\frac{\log n}{-\log e_{n,r}}=D_r$ is shown in [5], Corollary 11.4 (b). To prove Theorem 3.1 it, therefore, remains to verify that $0<\liminf_{n\to\infty}ne^{D_r}_{n,r}$ for all $r\in[0,+\infty)$. To establish this inequality we will need a series of lemmas.

Lemma 4.1. For every finite set $\alpha \subset \mathbb{R}^d$ the function $\mathbb{R}^d \to [-\infty, +\infty]$, $x \to \log d(x, \alpha \cup U^c)$ is P-integrable. $(U^c := \mathbb{R}^d \setminus U, \log 0 := -\infty)$.

PROOF. For every $x \in \mathbb{R}^d$ we have

$$\log d(x, \alpha \cup U^c) = \min(\log d(x, \alpha), \log d(x, U^c)).$$

According to [2], Prop. 3.4 the map $x \mapsto \log d(x, U^c)$ is P-integrable. It follows from Proposition 5.1 b) and the proof of Lemma 2.6 in [4] that $x \mapsto \log d(x, \alpha)$ is P-integrable and the lemma is proved.

Definition 4.2. For every natural number $n \geq 1$ define

$$u_{n,0} = \inf\{\exp\int \log d(x,\alpha \cup U^c) dP(x) | \alpha \subset \mathbb{R}, \operatorname{card}(\alpha) \le n\}, \hat{u}_{n,0} = \log u_{n,0},$$

and, for $0 < r < +\infty$,

$$u_{n,r} = \inf \Big\{ \int d(x, \alpha \cup U^c)^r dP(x) | \alpha \subset \mathbb{R}^d, \operatorname{card}(\alpha) \le n \Big\}.$$

Remark 4.3. Obviously we have $u_{n,0} \leq e_{n,0}$ and, for $0 < r < \infty$; also $u_{n,r} \leq e_{n,r}^r$. The main idea in the proof of $0 < \liminf_{n \to \infty} n e_{n,r}^{D_r}$ is to replace $e_{n,r}$ by $u_{n,r}^{\frac{1}{r}}$ and then to use the techniques developed in [4] and [5] for the proof of $\liminf_{n \to \infty} n e_{n,r}^{D_r} > 0$ in the case of strongly separated self–similar probabilities.

Lemma 4.4. For every $r \in [0, +\infty)$ and every $n \in \mathbb{N}$ there exists a set $\alpha_n \subset \mathbb{R}^d$ with $\operatorname{card}(\alpha_n) \leq n$ and

$$u_{n,r} = \begin{cases} \exp \int \log d(x, \alpha_n \cup U^c) dP(x) & \text{if } r = 0\\ \int d(x, \alpha_n \cup U^c)^r dP(x) & \text{if } r > 0. \end{cases}$$

PROOF. r = 0: Let \bar{U} be the closure of U and define $f: \bar{U}^n \to \mathbb{R}$ by

$$f(x_1,...,x_n) = \int \log d(x, \{x_1,...,x_n\} \cup U^c) dP(x).$$

We will show that f is continuous. Let $(x_1, \ldots, x_n) \in \bar{U}^n$ be arbitrary and let $((x_{1,k}, \ldots, x_{n,k}))_{k \in \mathbb{N}}$ be an arbitrary sequence in \bar{U}^n with

$$\lim_{k\to\infty}(x_{1,k},\ldots,x_{n,k})=(x_1,\ldots,x_n).$$

Since, for every $x \in A$ and every $(y_1, \dots, y_n) \in \bar{U}^n$,

$$\log d(x, \{y_1, \dots, y_n\} \cup U^c) = \min(\{\log ||x - y_i|| |i = 1, \dots, n\} \cup \{\log d(x, U^c)\})$$

$$\leq \log d(x, U^c)$$

and since $x\mapsto \log d(x,U^c)$ is P-integrable (see [2], Prop. 3.4) we deduce from Lebesgue's dominated convergence theorem that

$$\lim_{k \to \infty} \int \log_+ d(x, \{x_{1,k}, \dots, x_{n,k}\} \cup U^c) dP(x)$$

$$= \int \log_+ d(x, \{x_1, \dots, x_n\} \cup U^c) dP(x).$$

Since $\int g dP = \int_0^\infty P(g \ge t) dt$ for every non–negative measurable $g \colon \mathbb{R}^d \to \mathbb{R}$, by an obvious substitution

$$\int \log_{-} d(x, \{y_{1}, \dots, y_{n}\} \cup U^{c}) dP(x)$$

$$= \int_{0}^{1} P(\{x \in A | d(x, \{y_{1}, \dots, y_{n}\} \cup U^{c}) \leq s\}) \frac{ds}{s}.$$

Now we have

$$P(\{x \in A | d(x, \{y_1, \dots, y_n\} \cup U^c) \le s\})$$

$$= P(\{x \in A | \exists \in 1, \dots, n : ||x - y_i|| \le s\} \cup \{x \in A | d(x, U^c) \le s\})$$

$$\leq \sum_{i=1}^{n} P(B(y_i, s)) + P(\{x \in A | d(x, U^c) \le s\})$$

where $B(y_i, s)$ is the closed ball with radius s and center y_i . Since

$$\int_{0}^{1} P(\{x \in A | d(x, U^{c}) \le s\}) \frac{ds}{s} = \int \log_{-} d(x, U^{c}) dP(x) < +\infty,$$

 $\int (\sup_{y \in \mathbb{R}^d} P(B(y,s)) \frac{1}{s}) ds < +\infty \text{ (see [4], Prop. 5.1a) and for } \lambda - a.a. \ s \in [0,+\infty),$

$$\lim_{k \to \infty} P(\{x \in A | d(x, \{x_{1,k}, \dots, x_{n,k}\} \cup U^c) \le s\})$$

$$= P(\{x \in A | d(x, \{x_1, \dots, x_n\} \cup U^c) \le s\}).$$

Lebesgue's dominated convergence theorem implies

$$\lim_{k \to \infty} \int_{0}^{1} P(\{x \in A | d(x, \{x_{1,k}, \dots, x_{n,k}\} \cup U^{c}) \le s\}) \frac{ds}{s}$$

$$= \int_{0}^{1} P(\{x \in A | d(x, \{x_{1,k}, \dots, x_{n}\} \cup U^{c}) \le s\}) \frac{ds}{s}.$$

Hence

$$\lim_{k \to \infty} \int \log_{-} d(x, \{x_{1,k}, \dots, x_{n,k}\}) \cup U^{c} dP(x)$$

$$= \int \log_{-} d(x, \{x_{1}, \dots, x_{n}\}) dP(x).$$

Combining the preceding results yields the continuity of f. Since \bar{U}^n is compact, f attains its minimum at some $(a_1, \ldots, a_n) \in \bar{U}^n$ and $\alpha_n = \{a_1, \ldots, a_n\}$ satisfies the conclusion of the lemma for r = 0.

$$r > 0$$
: Define $f : \bar{U}^n \to \mathbb{R}$ by

$$f(x_1,...,x_n) = \int d(x, \{x_1,...,x_n\} \cup U^c)^r dP(x).$$

Using similar techniques as above one can see that f is continuous. Hence it attains its minimum at some point $(a_1, \ldots, a_n) \in \bar{U}^n$. Obviously this minimum equals $u_{n,r}$ and $\alpha_n = \{a_1, \ldots, a_n\}$ has the desired property.

4.1 Definition and Remark

For a finite set $\alpha \subset \mathbb{R}^d$ and $a \in \alpha$ the set

$$W(a|\alpha) = \{x \in \mathbb{R}^d | \|x - a\| = d(x, \alpha)\}$$

is called the Voronoi cell of a with respect to α . A partition $(B_a)_{a \in \alpha}$ of \mathbb{R}^d into Borel sets is said to be a Voronoi partition w.r.t. α iff $B_a \subset W(a|\alpha)$ for all $a \in \alpha$. It is obvious that, for every finite set $\alpha \subset \mathbb{R}^d$, there exists a Voronoi partition w.r.t. α .

Although an analogous result holds for $r \in (0, +\infty)$ we will need (and formulate) the following lemma only for r = 0.

Lemma 4.5. For $n \in \mathbb{N}$ let $\alpha_n \subset \mathbb{R}^d$ satisfy $\operatorname{card}(\alpha_n) \leq n$ and

$$u_{n,0} = \exp \int \log d(x, \alpha_n \cup U^c) dP(x)$$
 (cf. Lemma 4.4).

Moreover, let $C_n = \{x \in \mathbb{R}^d | d(x, \alpha_n) \ge d(x, U^c)\}$ and let $(B_a)_{a \in \alpha}$ be a Voronoi partition with respect to α_n . Let $\gamma_n = \{a \in \alpha_n | P(B_a \setminus C_n) > 0\}$. Then $\operatorname{card}(\gamma_n) = n$, in particular $\alpha_n \subset U$ and $\operatorname{card}(\alpha_n) = n$.

PROOF. First we will show that $\hat{u}_{n,0} = \int \log d(x, \gamma_n \cup U^c) dP(x)$. The inequality $\hat{u}_{n,0} \leq \int \log d(x, \gamma_n \cup U^c) dP(x)$ holds by the definition of $u_{n,0}$ and $\hat{u}_{n,0}$. To show the converse inequality note that, for every $a \in \gamma_n$ and every $x \in B_a \setminus C_n$,

$$d(x, \alpha_n) = ||x - a|| \ge d(x, \gamma_n) \ge d(x, \alpha_n).$$

Hence $d(x, \alpha_n) = d(x, \gamma_n)$. Using this fact we obtain

$$\begin{split} \hat{u}_{n,0} &= \int \log d(x,\alpha_n \cup U^c) \, dP(x) \\ &= \sum_{a \in \gamma_n} \int_{B_a \backslash C_n} \log d(x,\alpha_n) \, dP(x) + \int_{C_n} \log d(x,U^c) \, dP(x) \\ &= \sum_{a \in \gamma_n} \int_{B_a \backslash C_n} \log d(x,\gamma_n) \, dP(x) + \int_{C_n} \log d(x,U^c) \, dP(x) \\ &= \int_{C_n^c} \log d(x,\gamma_n) \, dP(x) + \int_{C_n} \log d(x,U^c) \, dP(x) \\ &\geq \int \log d(x,\gamma_n \cup U^c) \, dP(x). \end{split}$$

Next, we claim that for every $a \in \gamma_n$ there exists a $b \in B_a$ such that $P(\{x \in A | \|x - a\| > \|x - b\|\} \cap (B_a \backslash C_n)) > 0$. Let $a \in \gamma_n$ be arbitrary. Since $P(B_a \backslash C_n) > 0$ and P is continuous we have $P(B_a \backslash (\{a\} \cup C_n)) > 0$. Hence, there is a compact set $K \subset B_a \backslash (\{a\} \cup C_n)$ with P(K) > 0. The open sets $U_b = \{x \in \mathbb{R}^d | \|x - a\| > \|x - b\|\}$, $b \in K$ form a covering of K since, for every $b \in K$, we have $b \in U_b$. Thus, there exists a finite set $\beta \subset K$ with $K \subset \bigcup_{b \in S} U_b$

which implies $P(K \cap U_b) > 0$ for some $b \in \beta \subset K$ and proves our claim.

Finally we prove $\operatorname{card}(\gamma_n) = n$. Assume to the contrary that $\operatorname{card}(\gamma_n) < n$. Choose $a_0 \in \gamma_n$ and $b \in B_{a_0}$ with $P(U_b \cap (B_{a_0} \setminus C_n)) > 0$. Then we get

$$\begin{split} \hat{u}_{n,0} & \leq \int \log d(x, \gamma_n \cup \{b\} \cup U^c) \, dP(x) \\ & = \sum_{a \in \gamma_n \setminus \{a_0\}} \int_{B_a \setminus C_n} \log d(x, \gamma_n \cup \{b\} \cup U^c) \, dP(x) \\ & + \int_{B_{a_o} \setminus C_n} \log d(x, \gamma_n \cup \{b\} \cup U^c) \, dP(x) + \int_{C_n} \log d(x, \gamma_n \cup \{b\} \cup U^c) \, dP(x) \\ & \leq \sum_{a \in \gamma \setminus \{a_0\}} \int_{B_a \setminus C_n} \log d(x, \gamma_n \cup U^c) \, dP(x) + \int_{(B_{a_0} \setminus C_n) \cap U_b} \log \|x - b\| \, dP(x) \\ & + \int_{(B_{a_0} \setminus C_n) \setminus U_b} \log \|x - a_0\| \, dP(x) + \int_{C_n} \log d(x, \gamma_n \cup U^c) \, dP(x). \end{split}$$

Since

$$\int_{(B_{a_0} \setminus C_n) \cap U_b} \log \|x - b\| \, dP(x) < \int_{(B_{a_0} \setminus C_n) \cap U_b} \log \|x - a_0\| \, dP(x)$$

and since

$$\int_{B_{a_0}\backslash C_n} \log \|x - a_0\| dP(x) = \int_{B_{a_0}\backslash C_n} \log d(x, \gamma_n) dP(x),$$

we deduce

$$\hat{u}_{n,0} < \sum_{a \in \gamma_n} \int_{B_a \setminus C_n} \log d(x, \gamma_n) dP(x) + \int_{C_n} \log d(x, \gamma_n) dP(x),$$

$$\leq \hat{u}_{n,0},$$

a contradiction. Thus, the lemma is proved.

Lemma 4.6. $\lim_{n\to\infty} (\hat{u}_{n,0} - \hat{u}_{n+1,0}) = 0.$

PROOF. Let $\alpha_{n+1} \subset \mathbb{R}^d$ satisfy $\operatorname{card}(\alpha_{n+1}) \leq n+1$ and

$$\hat{u}_{n+1,0} = \int \log d(x, \alpha_{n+1} \cup U^c) dP(x).$$

According to Lemma 4.6 we have $\operatorname{card}(\alpha_{n+1} \cap U) = n+1$. Let $(B_a)_{a \in \alpha_{n+1}}$ and C_{n+1} be as in Lemma 4.6. Then there exists an $a_0 \in \alpha_{n+1}$ with $P(B_{a_0}) \leq \frac{1}{n+1}$, and we get

$$\begin{split} \hat{u}_{n,0} & \leq \int \log d(x, (\alpha_{n+1} \setminus \{a_0\}) \cup U^c) \, dP(x) \\ & \leq \sum_{a \in \alpha_{n+1} \setminus \{a_0\}} \int_{B_a \setminus C_{n+1}} \log d(x, (\alpha_{n+1} \setminus \{a_0\}) \cup U^c) \, dP(x) \\ & + \int_{B_{a_0} \setminus C_{n+1}} \log d(x, U^c) \, dP(x) + \int_{C_{n+1}} \log d(x, U^c) \, dP(x) \\ & = \sum_{a \in \alpha_{n+1}} \int_{B_a \setminus C_{n+1}} \log \|x - a\| \, dP(x) - \int_{B_{a_0} \setminus C_{n+1}} \log \|x - a_0\| \, dP(x) \\ & + \int_{B_{a_0} \setminus C_{n+1}} \log d(x, U^c) \, dP(x) + \int_{C_{n+1}} \log d(x, U^c) \, dP(x). \end{split}$$

Since A is bounded, there exists $a \ c \in (1, +\infty)$ with $\log d(x, U^c) \le c$ for all $x \in A$. For every $x \in C_{n+1}$ we have $d(x, U^c) = d(x, \alpha_{n+1} \cup U^c)$ and

$$\sum_{a \in \alpha_{n+1}} \int_{B_a \setminus C_{n+1}} \log \|x - a\| dP(x) = \int_{C_{n+1}^c} \log d(x, \alpha_{n+1} \cup U^c) dP(x).$$

Thus, we deduce

$$\hat{u}_{n,0} \le \hat{u}_{n+1,0} - \int_{B_{a_0} \setminus C_{n+1}} \log ||x - a_0|| dP(x) + cP(B_{a_0} \setminus C_{n+1}).$$

Now

$$\int_{B_{a_0 \setminus C_{n+1}}} \log \|x - a_0\| dP(x) \ge \int_{(B_{a_0 \setminus C_{n+1}}) \cap \bar{B}(a_0, 1)} \log \|x - a_0\| dP(x)$$

$$= -\int_{0}^{1} P((B_{a_0 \setminus C_{n+1}}) \cap B(a_0, s)) \frac{ds}{s}.$$

Let p > 1 and q with $\frac{1}{p} + \frac{1}{q} = 1$. Then Hölder's inequality yields

$$P((B_{a_0} \setminus C_{n+1}) \cap B(a_0, s)) \le P(B_{a_0} \setminus C_{n+1})^{\frac{1}{p}} P(B(a_0, s))^{\frac{1}{q}}.$$

By [4], Prop. 5.1 a), there is a $C \in \mathbb{R}$ and t > 0 with, $P(B(x,s)) \leq Cs^t$ for all $x \in \mathbb{R}^d$ and all $s \in [0,1]$. Hence we obtain

$$\hat{u}_{n,0} \leq \hat{u}_{n+1,0} + \int_{0}^{1} P((B_{a_0} \setminus C_{n+1}))^{\frac{1}{p}} Cs^{t} \frac{ds}{s} + cP(B_{a_0} \setminus C_{n+1})$$

$$\leq \hat{u}_{n+1,0} + (\frac{1}{n+1})^{\frac{1}{p}} c\frac{1}{t} + \frac{1}{n+1} c.$$

Hence, the lemma is proved.

Lemma 4.7. Let $r \in [0, +\infty)$ and, for each $n \in \mathbb{N}$, let the set $\alpha_n \subset \mathbb{R}^d$ satisfy $\operatorname{card}(\alpha_n) \leq n$ and

$$u_{n,r} = \begin{cases} \exp \int \log d(x, \alpha_n \cup U^c) dP(x) & \text{if } r = 0\\ \int d(x, \alpha_n \cup U^c)^r dP(x) & \text{if } r > 0. \end{cases}$$

Set $\delta_n = \max_{x \in A} d(x, \alpha_n \cup U^c)$. Then $\lim_{n \to \infty} \delta_n = 0$.

PROOF. Since P is continuous and $P(A \cap U) = 1$ (follows from [2], Proposition 3.4), we have $\delta_n > 0$ for all $n \in \mathbb{N}$. For each $n \in \mathbb{N}$ there is an $x_n \in A$ and an $a_n \in \alpha_n \cup U^c$ with $||x_n - a_n|| = d(x_n, \alpha_n \cup U^c) = \delta_n$. For all $x \in A \cap B(x_n, \frac{1}{2}\delta_n)$ and all $a \in \alpha_n \cup U^c$ we have

(*)
$$||x - a|| \ge ||x_n - a|| - ||x_n - x|| \ge ||x_n - a_n|| - \frac{1}{2}\delta_n = \frac{1}{2}\delta_n.$$

r=0: Set $\beta_{n+1}=\alpha_n\cup\{x_n\}$. Then $x\in A\cap B(x_n,\frac{1}{2}\delta_n)$ implies

$$d(x, \beta_{n+1} \cup U^c) = ||x - x_n||.$$

Thus we deduce

$$\hat{u}_{n+1,0} \leq \int \log d(x, \beta_{n+1} \cup U^c) \, dP(x)$$

$$\leq \int_{B(x_n, \frac{\delta_n}{2})} \log \|x - x_n\| \, dP(x) + \int_{A \setminus B(x_n, \frac{\delta_n}{2})} \log d(x, \alpha_n \cup U^c) \, dP(x)$$

$$= \int \log d(x, \alpha_n \cup U^c) \, dP(x) - \int_{B(x_n, \frac{\delta_n}{2})} \log d(x, \alpha_n \cup U^c) \, dP(x)$$

$$+ \int_{B(x_n, \frac{\delta_n}{2})} \log \|x - x_n\| \, dP(x).$$

Since $d(x, \alpha_n \cup U^c) \ge \frac{\delta_n}{2}$ for all $x \in A \cap B(x_n, \frac{\delta_n}{2})$, we obtain

$$\int_{B(x_n, \frac{\delta_n}{2})} \log d(x, \alpha_n \cup U^c) dP(x) \ge P(B(x_n \frac{\delta_n}{2})) \log \frac{\delta_n}{2}$$

and therefore,

$$\hat{u}_{n,0} - \hat{u}_{n+1,0} \ge P(B(x_n, \frac{\delta_n}{2})) \log \frac{\delta_n}{2} - \int_{B(x_n, \frac{\delta_n}{2})} \log ||x - x_n|| dP(x).$$

If $\delta_n \leq 2$, then it follows that $\hat{u}_{n,0} - \hat{u}_{n+1,0} \geq \int_0^{\frac{\delta_n}{2}} P(B(x_n,s)) \frac{ds}{s}$. If $\delta_n > 2$, then it follows that

$$\hat{u}_{n,0} - \hat{u}_{n+1,0} \ge P(B(x_n, \frac{\delta_n}{2})) \log \frac{\delta_n}{2} - \int_{B(x_n, \frac{\delta_n}{2}) \setminus B(x_n, 1)} \log \frac{\delta_n}{2} dP(x)$$
$$- \int_{B(x_n, 1)} \log \|x - x_n\| dP(x) \ge \int_0^1 P(B(x_n, s)) \frac{ds}{s}.$$

Since, for every $w \in [0,1]$, the map $x \mapsto \int_0^w P(B(x,s)) \frac{ds}{s}$ is continuous, we have $g(w) = \min_{x \in A} \int_0^w P(B(x,s)) \frac{ds}{s} > 0$ for w > 0 and the function $g \colon [0,1] \to \mathbb{R}$ is nondecreasing. We obtain $\hat{u}_{n,0} - \hat{u}_{n+1,0} \geq g(\min(1,\frac{\delta_n}{2}))$. Now because $\lim_{n \to \infty} (\hat{u}_{n,0} - \hat{u}_{n+1,0}) = 0$ (see Lemma 4.7) this implies $\lim_{n \to \infty} \delta_n = 0$.

r > 0: From (*) we deduce

$$u_{n,r} = \int d(x, \alpha_n \cup U^c)^r dP(x)$$

$$\geq \int_{B(x_n, \frac{\delta_n}{2})} (\frac{1}{2} \delta_n)^r dP(x) = (\frac{1}{2} \delta_n)^r P(B(x_n, \frac{1}{2} \delta_n)).$$

Assume $\limsup_{n\to\infty} \delta_n > \delta > 0$. Then $\delta_n > \delta$ for infinitely many n and hence $u_{n,r} \geq P(B(x_n, \frac{1}{2}\delta))(\frac{1}{2}\delta)^r$ for infinitely many n. Since $\min_{x\in A} P(B(x, \frac{1}{2}\delta)) > 0$ this implies $\limsup_{n\to\infty} u_{n,r} > 0$. Since $e_{n,r}^r \geq u_{n,r}$ and $\lim_{n\to\infty} e_{n,r} = 0$ (see [5], Lemma 6.1). This yields a contradiction and the lemma is proved.

Lemma 4.8. Let $r \in [0, +\infty)$ be given. Then there exists an $n_0 \in \mathbb{N}$ such that, for all $n \geq n_0$, there are $n_1(n), \ldots, n_N(n) \in \mathbb{N}$ with $n_i(n) \geq 1$, $\sum_{i=1}^N n_i(n) \leq n$, and

$$u_{n,r} \ge \begin{cases} \prod_{i=1}^{N} (s_i u_{n_i(n),0})^{p_i} & \text{if } r = 0\\ \sum_{i=1}^{N} p_i s_i^r u_{n_i(n),r} & \text{if } r > 0. \end{cases}$$

PROOF. There is a $\tau \in \{1, \dots, \mathbb{N}\}^*$ with $A_{\tau} \subset U$ (see, for instance, [2], proof of Lemma 3.3). Then $\varepsilon = d(A_{\tau}, U^c) > 0$. Set $s_{\min} = \min\{s_1, \dots, s_N\}$. We deduce $d(S_i(A_{\tau}), S_i(U)^c) = s_i d(A_{\tau}, U^c) \geq s_{\min} \varepsilon$ and, hence, that $d(x, U^c) \geq d(x, S_i(U)^c) \geq s_{\min} \varepsilon$ for all $x \in S_i(A_{\tau})$. Let α_n and δ_n be as in Lemma 4.8 and choose n_0 such that $\delta_n < s_{\min} \varepsilon$ for all $n \geq n_0$. Let $n \geq n_0$ and $x \in S_i(A_{\tau})$ be fixed for the moment. Then there exists an $a \in \alpha_n \cup U^c$ with $||x - a|| = d(x, \alpha_n \cup U^c) \leq \delta_n < s_{\min} \varepsilon$. Thus we get $a \in S_i(U) \subset U$ and, therefore, $S_i(U) \cap \alpha_n \neq \emptyset$.

Now define $\alpha_{n,i} = \alpha_n \cap S_i(U)$ and $n_i = \operatorname{card}(\alpha_{n,i})$. Then $n_i \geq 1$ and, since $S_i(U) \cap S_j(U) = \emptyset$ for $i \neq j$, $\sum_{i=1}^N n_i \leq \operatorname{card}(\alpha_n) \leq n$.

Using the self–similarity of P and the fact that $S_i(U) \subset U$, we obtain for r = 0

$$\hat{u}_{n,0} = \sum_{i=1}^{N} p_i \int \log d(S_i x, \alpha_n \cup U^c) dP(x)$$

$$\geq \sum_{i=1}^{N} p_i \int \log d(S_i x, \alpha_n \cup S_i(U)^c) dP(x)$$

$$= \sum_{i=1}^{N} p_{i} \int \log d(S_{i}x, \alpha_{n,i} \cup S_{i}(U)^{c}) dP(x)$$

$$= \sum_{i=1}^{N} p_{i} \int \log(s_{i}d(x, S_{i}^{-1}(\alpha_{n,i}) \cup U^{c}) dP(x)$$

$$= \sum_{i=1}^{N} p_{i} \log s_{i} + \sum_{i=1}^{N} p_{i} \int \log d(x, S_{i}^{-1}(\alpha_{n,i}) \cup U^{c}) dP(x)$$

$$\geq \sum_{i=1}^{N} p_{i} \log s_{i} + \sum_{i=1}^{N} p_{i} \hat{u}_{n_{i}0}$$

and, for r > 0,

$$u_{n,r} = \sum_{i=1}^{N} p_i \int d(S_i x, \alpha_n \cup U^c)^r dP(x)$$

$$\geq \sum_{i=1}^{N} p_i s_i^r \int d(x, S_i^{-1}(\alpha_{n,i}) \cup U^c)^r dP(x) \geq \sum_{i=1}^{N} p_i s_i^r u_{n_i,r}.$$

Thus the lemma is proved.

Lemma 4.9.

a)
$$\inf\{n^{\frac{1}{D_0}}u_{n,0} \colon n \in \mathbb{N}\} > 0$$

b)
$$\inf\{n^{\frac{r}{Dr}}u_{n,r}\colon n\in\mathbb{N}\}>0 \text{ for } r\in(0,+\infty).$$

Proof.

a) It is enough to show $\inf\{\frac{1}{D_0}\log n + \hat{u}_{n,0} : n \in \mathbb{N}\} > -\infty$. It follows from Lemma 4.1 and Lemma 4.4 that $\hat{u}_{n,0} > -\infty$ for all $n \in \mathbb{N}$. Let $n_0 \in \mathbb{N}$ and, for $n \geq n_0, n_1(n), \ldots, n_N(n)$ be as in Lemma 4.9. Set

$$c = \min\{\frac{1}{D_0} \log n + \hat{u}_{n,0} \colon n \le n_0\}.$$

If $n \geq n_0$ and $\frac{1}{D_0} \log k + \hat{u}_{k,0} \geq c$ for all $k \leq n-1$, then

$$\begin{split} \hat{u}_{n.0} & \geq \sum_{i=1}^{N} p_{i} \log s_{i} + \sum_{i=1}^{N} p_{i} \hat{u}_{n_{i}(n),0} \\ & \geq \sum_{i=1}^{N} p_{i} \log s_{i} + \sum_{i=1}^{N} p_{i} (c - \frac{1}{D_{0}} \log n_{i}(n)) \\ & \geq c - \frac{1}{D_{0}} \log n + \sum_{i=1}^{N} p_{i} \log s_{i} - \frac{1}{D_{0}} \sum_{i=1}^{N} p_{i} \log \frac{n_{i}(n)}{n}. \end{split}$$

Since $\sum_{i=1}^{N} p_i \log \frac{n_i(n)}{n} \leq \sum_{i=1}^{N} p_i \log p_i$, we get

$$\frac{1}{D_0} \log n + \hat{u}_{n,0} \ge c + \sum_{i=1}^{N} p_i \log s_i - \frac{1}{D_0} \sum_{i=1}^{N} p_i \log p_i = c.$$

By induction we obtain $\inf\{\frac{1}{D_0}\log n + \hat{u}_{n,0}|n\in\mathbb{N}\}\geq c > -\infty$.

b) Let α_n be as in Lemma 4.8. Since $P(A \cap (\alpha_n \cup U^c)) = 0$ and $d(x, \alpha_n \cup U^c) > 0$ for all $x \in A \setminus (\alpha_n \cup U^c)$ we get $u_{n,r} > 0$ for all $n \in \mathbb{N}$. Let n_0 and, for $n \ge n_0$, $n_1(n), \ldots, n_N(n)$ be as in Lemma 4.9. Set $c = \min\{n^{\frac{r}{D_r}}u_{n,r} : n \le n_0\}$. Then we have c > 0. Let $n \ge n_0$ be such that $k^{\frac{r}{D_r}}u_{k,r} \ge c$ for all $k \le n - 1$. Using Lemma 4.9 we deduce

$$n^{\frac{r}{D_r}}u_{n,r} \ge n^{\frac{r}{D_r}} \sum_{i=1}^{N} p_i s_i^r n_i(n)^{-\frac{r}{D_r}} n_i(n)^{\frac{r}{D_r}} u_{n_i(n),r}.$$

Since $n_i(n) < n$, we obtain $n^{\frac{r}{D_r}} u_{n,r} \ge c \sum_{i=1}^N p_i s_i^r (\frac{n_i(n)}{n})^{-\frac{r}{D_r}}$. Using Hölder's inequality (exponents less than 1) yields

$$\sum_{i=1}^{N} p_i s_i^r (\frac{n_i(n)}{n})^{-\frac{r}{D_r}} \geq \sum_{i=1}^{N} (p_i s_i^r)^{(\frac{D_r}{r+D_r}})^{1+\frac{r}{d_r}} \left(\sum_{i=1}^{N} (\frac{n_i(n)}{n})^{(-\frac{r}{D_r}) \cdot (-\frac{D_r}{r})}\right)^{-\frac{r}{D_r}} = 1.$$

By induction we get $n^{\frac{r}{D_r}}u_{n,r}\geq c$ for all $n\in\mathbb{N}$ and the lemma is proved. \square

PROOF OF THEOREM 3.1. According to the considerations at the beginning of this section the theorem is proved if one can establish that for all $r \in [0, +\infty)$

 $0 < \liminf_{n \to \infty} ne_{n,r}^{D_r}$. We know that

$$u_{n,r} \le \begin{cases} e_{n,r} & \text{if } r = 0\\ e_{n,r}^r & \text{if } r > 0 \end{cases}$$

and Lemma 4.10 immediately implies $\liminf_{n\to\infty} nu_{n,0}^{D_0} > 0$ and $\liminf_{n\to\infty} nu_{n,r}^{\frac{D_r}{r}} > 0$ for $r \in (0,+\infty)$. Thus the theorem is proved.

References

- [1] K. Falconer, Techniques in fractal geometry, John Wiley&Sons, 1997.
- [2] S. Graf, On Bandt's tangential distribution for self-similar measures, Mh. Math. 120 (1995), 223–246.
- [3] S. Graf and H. Luschgy, The quantization of the Cantor distribution, Math. Nachr. 183 (1997), 113–133.
- [4] S. Graf and H. Luschgy, Quantization for probability measures with respect to the geometric mean error, Preprint 1999.
- [5] S. Graf and H. Luschgy, Foundations of quantization for probability distributions, Lect. Notes Math. 1730, Springer 2000.
- [6] S. Graf and H. Luschgy, *The quantization dimension of self-similar probabilities*, Math. Nachr., to appear.
- [7] A. Schief, Separation properties of self-similar sets, Proc. Amer. Math. Soc. 122 (1994), 111–116.