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Abstract

The formulae for determining the quantization dimensions of self-
similar probabilities satisfying the open set condition are proved by a
new method. In addition, this method gives the exact order of conver-
gence for the quantization errors.

1 Introduction

Given a Borel probability P on R? a number r € [0,+00] and a natural
number n € N the n—th quantization error of order r for P is defined by

inf{exp [logd(z,@)dP(z)|a C R card(a) < n} ifr=0
— inf{(fd(a;,a)rdP(x))l/r\a C R card(a) <n} if0<r<oo

inf{ sup d(z,a)la C R? card(a) < n} if r=o00
zEsupp(P)

€n,r

where d(z,«) denotes the distance of the point x to the set « with respect
to a given norm || || on R% (One has to impose certain conditions on P to
guarantee that the integrals and the supremum in the above expressions exist
in R.) The quantization dimension of order r for P is
logn
D.(P) = lim —2"

n—oo — log enﬂ‘
if this limit exists. For self-similar probabilities P satisfying the open set
condition and 0 < r < co it was shown in [6] that the quantization dimension
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796 S. GRAF AND H. LUSCHGY

D,.(P) exists in (0,+00) and a formula for its computation was derived. In
the present note we give a new proof of these results and extend them to the
cases 7 = 0 and r = 4+00. Moreover we will show that, for all r € [0, 4+o0],
0 < lim infnefz; < lim sup nel < +oc.

n—oo n—oo

2 Basic Notation and Definitions

In what follows N is always a natural number > 2 and S, ..., Sy are contrac-
tive similitudes from R? into itself. Let s; be the contraction number of S;;
ie, s; € (0,1) and ||S;z — S;y| = sillz — y|| for all z,y € RL. Sometimes the
N-tuple (S1,...,Sn) is called an iterated function system (IF'S). Its attractor
is the unique non-empty compact set A in R? with

A=Si(A)U...USN(A).

For every probability vector p = (p1,...,pn) there exists a unique Borel prob-
N
ability P on R? which satisfies the equation P = >_ p;Po S;l. P is called the

=1
self-similar probability corresponding to (Si,...,Sn.p). If each component p;
of p is strictly positive, then the support of P equals A.

The IFS (Si,...,Sn) is said to satisfy the open set condition (OSC) iff

there is a non-empty open set U in R? with S;(U) C U and S;(U)NS;(U) =0
for all 4,7 with ¢ # j. According to a result of Schief [7] U can be chosen to
be bounded and such that U N A # ().
Let {1,...,N}* be the set of finite words over the alphabet {1,..., N} in-
cluding the empty word . For ¢ € {1,...,N}* the length of ¢ is denoted
by |o]. Forn € N, {1,...,N}™ is the set of all words of length n. A word
o = 01...0, is sald to be a predecessor of a word 7 = Ty ... Ty, in symbols
o<r7,iffn <mano; =7 fori =1,...,n. The empty word is the predecessor
of every word. Words ¢ and 7 are called incomparable if neither ¢ < 7 nor
T <0.Foroe{l,... N}* set

5 {ide if o =10

S, 0...08,, fo=o01...00,

Aa = SU(A)a

1 ifo=0
Sg = .
Sgy v So, fo=01...00,
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and

{1 ifo=10
Po =

Doyt ev- Do, fo=01...0n.

If (S1,...,SN) satisfies the OSC, then P(A, N A,;) =0 if ¢ and 7 are incom-
parable and, moreover, P(A,) = p, (see [2], Lemma 3.3).

3 Statement of the Main Result

N

Let Do be the unique real number with > siD‘” = 1. Then Dy is called the
i=1

similarity dimension of (S,...,Sn). For r € (0,400) there exists a unique

N
D, € (0, +00) satisfying 3 (p;s?) 75 = 1. (see [5], Lemma 14.4). Let

i=1

N
> pilogp;

=1
Dozii

N
> pilogs;
i=1

where (0log0 := 0).

Theorem 3.1. Let (Sy,...,Sy) have the OSC, p = (p1,...,pn) with p; >0
for alli, and let P be the self-similar probability corresponding to (S1,...,SN; D).
Let D, be as above. Then, for every r € [0, +0o0],

- Dy 1 D .
0 < liminfne, ;. < limsupne, ;. < +o0;
n—00 n—00

logn

in particular lim =D,.

n—oo —log ey, ,
Remark 3.2.
a) If p = (sP=,...,s8>), then D, = D, for all r € [0, +-00].
b) If p # (sP=,...,s5), then the function [0, +oc] — (0,+00), r — D, is
strictly increasing and continuous.

ProOF. That (0,4+00] — (0,400),r — D, is strictly increasing and continu-
ous follows from Lemma 14.16 and the proof of Theorem 14.15 in [5]. (Actually
the results there are stated for r > 1 only but the proofs work unchanged for
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r > 0.) It remains to show that 11%1 D, = Dgy. Let F: R x R — R be defined

by F(q,t) = Z plst — 1. Then for every g € R there exists a unique 8(¢) € R

with F(q, 8(q )) =0. By implicit differentiation the function R — R, ¢ — 8(q)
is differentiable with derivative

N
> p?Sf(‘” log pi

/ _ i=1
B(a) = W
2 pis; ¥log s;

Also, f is strictly decreasing with lim ((g) = 400 and lirf B(q) = — o
q— —00 q— T

(see for instance, Falconer [1], b, 193). From the definitions we deduce that
for 0 < r < +o0, ﬂ(m—D )= r+D . Since (1) = 0, we get

B(G2) - (1) il

b=~ =D,
r+D, r+D,
N
) , _;pi log ps ) 5
Thus lrlﬁ} D, =-0'(1) =% = Dy if we can show that IT}F(} b =1

> pilogs;
i=1

Since 0 < - f B <1 for all r € (0,+00) the claim is proved provided that, for

every 1, | 0 for which ( +D )neN converges to some a, it follows that a = 1.
N

But this obviously holds because 1 = lim ) (p;s;" )TH+DM Z pe. O

c¢) It is an interesting question under what conditions the limit lim neD* ex-

n—oo

ists. If S1...8,: R? — R? are defined by S;z = §x + x; with 1 = (0,0),
T2 = (%70)7 xr3 = (Oaé)a Ty = (év 2) and P = (i,i,i7i), then the corre-
sponding self-similar probability P is the uniform distribution on the square

[0,1]2. In this case D, = 2 and lim nel. exists for all r € [0, +00] (see [5],

n,r
n—oo

Theorem 6.2 and Theorem 10.7 and [4], Theorem 3.2). If S1,52: R — R are
defined by Siz = %x and Syx = %x—l—% and p = (2, 2) then the corresponding
self-similar probability P is the uniform distribution on the classical Cantor

set, the quantization dimension of order 2 is Dy = }ggg, and the sequence

(nef"‘é)neN does not converge (see [3], Theorem 6.3).

d) For general relationships between Hausdorff and box dimension of a prob-
ability P and the quantization dimensions of P the reader is referred to [4]
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and [5]. There he will also find a definition of upper and lower quantization
dimensions together with their basic properties.

4 Proof of the Main Result

In this section we always assume that the assumptions of Theorem 3.1 are
satisfied. Moreover, let U be a bounded open subset of R? with AN U # 0,
Siy(U) c U, and S;(U) N S;(U) = 0 for i # j. That lim supnely < +oo is

n—oo

shown in [5], Proposition 14.5 and 14.6 for r € (0,+o0] and in [4], Theorem
5.3 for r = 0. (Strictly speaking [5] only deals with » € [1,400] but the results
extend to r € (0,1) without change of proof). Here the OSC need not be
assumed. Proposition 14.13 in [5] shows that 0 < lim infnels and relies on

n—oo
the open set condition. That 0 < lim infne?r < lim supne?r < oo implies
n—0oo ’ n— oo ’
lim — llggg; ~ = D, is shown in [5], Corollary 11.4 (b). To prove Theorem 3.1

it, therefore, remains to verify that 0 < lim infneﬁ; for all r € [0,+00). To
establish this inequality we will need a series of lemmas.

Lemma 4.1. For every finite set o C R the function R? — [—o00,+00],
r — logd(z,a UU®) is P-integrable. (U¢:=RNU, log0 := —c0).

ProOOF. For every x € R? we have
log d(z, a0 UU®) = min(log d(z, @), log d(z, U®)).

According to [2], Prop. 3.4 the map z +— logd(x,U¢) is P-integrable. It follows
from Proposition 5.1 b) and the proof of Lemma 2.6 in [4] that z — log d(z, @)
is P—integrable and the lemma is proved. O

Definition 4.2. For every natural number n > 1 define
Un,0 :inf{exp/log d(z,a UU)dP(z)|a C R, card(a) < n},tn,0 = log uy o,
and, for 0 < r < 400,

Uy, = inf { /d(x, aUU®)" dP(z)|a ¢ RY, card(a) < n}

Remark 4.3. Obviously we have u,o < e, and, for 0 < r < oo; also
Up,r < ez,r. The main idea in the proof of 0 < liminf nePr. is to replace enr

n— 00 n,r

1
by w;,» and then to use the techniques developed in [4] and [5] for the proof
of lim inf ne,’Z » > 0 in the case of strongly separated self-similar probabilities.

n—oo
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Lemma 4.4. For every r € [0,+00) and every n € N there exists a set
a, C R with card(ay,) < n and

N exp [logd(z, o, UU)dP(z) ifr=0
T [d(z, an UUC)T dP () if 1> 0.

PROOF. r = 0: Let U be the closure of U and define f: U™ — R by

flz,. .. zy) :/logd(x,{xl,...,xn}UUC)dP(x).

We will show that f is continuous. Let (z1,...,7n) € U™ be arbitrary and let
((z1,ks -+, %Tnk))ken be an arbitrary sequence in U™ with
khjgo(ml’k’ cey Tnk) = (X1, ., Tp)-

Since, for every x € A and every (y1,...,yn) € U",

logd(x, {y1,...,yn UUC) =min({log ||z —y:|| [ =1,...,n} U {logd(x,U)})
<logd(z,U®)

and since z +— log d(z,U¢) is P—integrable (see [2], Prop. 3.4) we deduce from
Lebesgue’s dominated convergence theorem that

klim /logJr dz,{x1 k.., Tnik} YU)dP(x)

:/b&d@&mwnwﬁUUﬂMWW

Since [gdP = [ P(g >t)dt for every non—negative measurable g: R? — R,
0

by an obvious substitution

[logdGa. . v} LU aP(@)
:/P({x e Ald(z,{y1,...,yn} UU®) < s})%
0

Now we have

P({z € Ald(z, {yr.. .. yn} UU®) < 5})
=P{z e AlFel,...,n: |z —yl <s}U{x e Aldz,U° < s})

< ZP(B(%, s)) 4+ P({x € Ald(z,U°) < s})
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where B(y;, s) is the closed ball with radius s and center y;. Since

/P {z € Ald(z,U°) < s}) /10g7 d(z,U®) dP(z) < 400,
0

[(sup P(B(y,s))L)ds < 400 (see [4], Prop. 5.1a) and for A—a.a. s € [0, +00),
yeRd

kllrrgo P({z € Ald(z,{z1 k.. 21} UU®) < s})
=P({z € Ald(z,{z1,...,z,} UU®) < s}).

Lebesgue’s dominated convergence theorem implies

d
lim /p {z € Ald(x, {z1.4, .., T} UUS) < s})f

1
:/p ({z € Ald(z, {z1,..., 20} UU®) §s})%
0

Hence
klim /log_ d(z,{z1 k.., Tnk} UU) dP(z)
—00

:/log_ d(z, {@1,. .., 2n)) dP(z).

Combining the preceding results yields the continuity of f. Since U™ is com-
pact, f attains its minimum at some (a1, ...,a,) € U™ and «o,, = {a1,...,an}
satisfies the conclusion of the lemma for r = 0.

r > 0: Define f: U™ — R by

flz1,.. . xn) :/d(x,{o:l,...,zn}UUC)TdP(x).

Using similar techniques as above one can see that f is continuous. Hence it
attains its minimum at some point (a1, ..., a,) € U™. Obviously this minimum
equals u,, , and o, = {a1,...,a,} has the desired property. O
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4.1 Definition and Remark

For a finite set « C R? and a € « the set
W(ala) = {z e RY |z —a| = d(z,a)}

is called the Voronoi cell of a with respect to a. A partition (B,)acq of R?
into Borel sets is said to be a Voronoi partition w.r.t. « iff B, C W(al|a) for
all @ € . It is obvious that, for every finite set o C R?, there exists a Voronoi
partition w.r.t. a.

Although an analogous result holds for r € (0,400) we will need (and
formulate) the following lemma only for r = 0.

Lemma 4.5. Forn € N let o, C RY satisfy card(a,,) < n and
U0 = exp/log d(z,a, UU®)dP(x) (¢f. Lemma 4.4).

Moreover, let C,, = {x € R4d(z,a,) > d(x,U)} and let (By)aca be a Voronoi
partition with respect to . Let v, = {a € an|P(B,\Crn) > 0}. Then
card(y,) = n, in particular o, C U and card(ow,) = n.

PROOF. First we will show that 4,0 = [logd(z,~, UU¢) dP(z). The inequal-
ity dn,0 < [logd(x,v,UU®) dP(x) holds by the definition of u, ¢ and i, 9. To
show the converse inequality note that, for every a € v, and every x € B,\C,

d(z, o) = [lz = al| = d(z,1m) > d(z, o).

Hence d(z, a,) = d(x, 7). Using this fact we obtain
1p,0 Z/log d(z,0, UU®)dP(x)

= / logd(z, ) dP(x) + /log d(z,U°) dP(x)
C,

*€mpA\C, s

= Z / log d(z,7,) dP(x) —|—C/ log d(z,U¢) dP(x)

€ A\C, s

- / log d(x, y.) dP(x) + / log d(x, U°) dP()
Cg Chn

> /1og d(x, v, UU) dP(x).
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Next, we claim that for every a € 7, there exists a b € B, such that
P({z € A|||lz—a| > ||l = b||} N (B\Cr)) > 0. Let a € ~,, be arbitrary. Since
P(B,\Cp) > 0 and P is continuous we have P(B,\({a} UC},)) > 0. Hence,
there is a compact set K C B,\({a} U C,,) with P(K) > 0. The open sets
Uy ={z € RY ||z —a| > ||z —1b||}, b € K form a covering of K since, for every

b € K, we have b € U,. Thus, there exists a finite set 3 C K with K C |J U,
bep
which implies P(K NU;) > 0 for some b € 8 C K and proves our claim.
Finally we prove card(y,) = n. Assume to the contrary that card(vy,) < n.
Choose ag € v, and b € B,, with P(Up N (Bg,\Cr)) > 0. Then we get

o < / log d(x, v U {b} U U®) dP(x)

= Y / log d(,v, U {b} UU®) dP(x)
aev\{ao} p\c,

+ / log d(z, v, U{b} UU)dP(x) + /logd(z,'yn U{b}uU)dP(x)

Bau\cn Cr
< > log d(z, v, UU®) dP(z) + / log ||z — b|| dP(x)
ae\{ao} g e, (Bag \Cn)NUy
+ / log || — ao|| dP(x) + /logd(m,yn UU®) dP(x).
(Bag\cn)\Ub Cn
Since
loglle ~ b dP) < [ loglle - aolldP(o)
(Bag \Cn)NUs (Bag\Cn)NU,,
and since
/ log || — ao|| dP(z) = / log d(x, 1) dP(x),
Bag\Chn Bag\Cn
we deduce
ino < Y / logd(ﬂcmn)dp(x)+/10gd(:rmn)dP($)7
a€Yn Ba\Chr C,
g'&n,Oa

a contradiction. Thus, the lemma is proved. O
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Lemma 4.6. lim (dy0 — Gpy1,0) =0.

n—oo

PROOF. Let a1 C R satisfy card(a,41) < n+ 1 and
+ +

Unt1,0 = /log d(x, 1 UU®) dP(z).

According to Lemma 4.6 we have card(a,,+1NU) =n+1. Let (B,)qca, ., and
Cp41 be as in Lemma 4.6. Then there exists an ag € ay,+1 with P(By,) <
and we get

n+1’

o < / log d(z, (ans1\{ao}) U U®) dP(x)

< Y[ lpde @un\ah uU%) dP)

a€ant1\{ao} Ba\Crni1

+ / logd(z,U°)dP(x) + / log d(z,U¢) dP(x)

B(LO\Cn+1 Cn-f—l
-y / log |1z — al| dP(z) - / log [l — aol dP(z)
aean+1 Ba\CTL+1 Bao\c'rL+1
+ / log d(z, U°) dP(z) + / log d(z, U°) dP(x).
Bao\cn+1 Cn+1

Since A is bounded, there exists a ¢ € (1,+00) with logd(z,U¢) < ¢ for all
x € A. For every x € Cy,11 we have d(z,U¢) = d(x, ape1 UUC) and

Z / log ||z — a|| dP(x) = / log d(z, an+1 UUC) dP(x).

acx
7LJrlBa\CnJrl CTCL+1

Thus, we deduce

U0 < Uny1,0 — / log ||z — ao|| dP(z) + c¢P(Bay \Chnt1)-

Bao \Cn+1
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Now

/ log || — ao|| dP(z) > / log ||z — ao|| dP()
Bag\cpia (Bao\cn+1)ﬂB(a071)
1

. /p((B%\an) A Bla, s))%.

0
Let p > 1 and ¢ with % + % = 1. Then Holder’s inequality yields
P((Buy\Cu41) N B(ao, s)) < P(Ba,\Coy1)¥ P(Blao, 5)) 7.
By [4], Prop. 5.1 a), there is a C € R and ¢ > 0 with, P(B(z,s)) < Cs! for
all 2 € R? and all s € [0,1]. Hence we obtain
1
0 <lni10+ / P((Bao\cw))%cst% + ¢P(Bay\Cpi1)
0

1
n+1

1
c.
n+1

S =

)

N 1
<lpy1,0 + ( Cg +

Hence, the lemma is proved. O

Lemma 4.7. Letr € [0,+00) and, for each n € N, let the set a,, C R? satisfy
card(aw,) < n and

N exp [logd(z, o, UU®)dP(z) ifr=0
T [d(z, a, UUS)T dP() if r > 0.
Set 0y, = majx(d(x, an, UU®). Then lim §, =0.

A n—oo

PROOF. Since P is continuous and P(ANU) = 1 (follows from [2], Proposition
3.4), we have §,, > 0 for all n € N. For each n € N there is an z,, € A and an
ap, € a, UUC with ||, —ay| = d(2y, a, UUC) = 6, For all x € ANB(xy, %(5”)
and all a € a,, UU® we have

1 1
) e —all = e - all = len = 2l 2 llen = anll = 562 = 56

r=0: Set Br41 = a, U{x,}. Then z € AN B(xy, 36,) implies

d(x, Bpy1 UU®) = ||l — ]
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Thus we deduce

10 < / log d(z, B U U®) dP(x)

< / log ||z — z,|| dP(x) + / log d(z, a,, UU€) dP(x)

B(n,3) A\B(@n, )
= /log d(z,an, UU) dP(x) — / log d(z, a,, UU€) dP ()
B(wn, %)
+ / log || — || dP(x).
B(:I)n,%”)

Since d(z, oy, UU®) > 57" for all x € AN B(xy, %"), we obtain

/ logd(x, a, UU®)dP(x) > P(B(:cn%)) log %

B(zn, %)

and therefore,

. . On, On
o~ 10 2 P(Ban, g )log g = [ log o — 20| dP(o).

B(ITHJT”)

o%l\,‘g

If 6, < 2, then it follows that @, — @ns1,0 > [ P(B(zn,s))L. If 6, > 2,

then it follows that

~ ~ 5n 671 (571
Up,0 = Unt1,0 2P(B(7y, ?)) log o log 5 dP(z)
B(tn,2)\B(zn,1)
1
ds
- log ||z — zp|| dP(x) > P(B(xn,s))?.
B(zn,1) 0

Since, for every w € [0,1], the map z — [ P(B(z,s))% is continuous, we

w
have g(w) = ming(B(ac7 s)) % > 0 for w > 0 and the function g: [0,1] — R
S 0
is nondecreasing. We obtain @, — ny1,0 > ¢(min(l, %")) Now because
lim (@0 — @nt1,0) = 0 (see Lemma 4.7) this implies lim 4, = 0.

n—oo
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r > 0: From (%) we deduce
Up,r = /d(x, an UU)" dP(z)
1 . 1 , 1
> / (§5n)7 dP(x) = (ién)’P(B(:cn, 56"))

B(zn,%2)

Assume lim supd, > § > 0. Then 6§, > § for infinitely many n and hence

n—oo

Un,r > P(B(2y,30))(36)" for infinitely many n. Since miEP(B(m, 16)) >0
zE

this implies lim sup u, , > 0. Since e,

n—oo

Lemma 6.1). This yields a contradiction and the lemma is proved. O

» > Up, and lim e,, = 0 (see [5],
n—oo

Lemma 4.8. Letr € [0,+00) be given. Then there exists an ng € N such that,

N
for all n > ng, there are ni(n),...,nn(n) € N with n;(n) > 1, > ni(n) <n
i=1
and
N .
[ (Sittn;(ny,0)P" if r=0
Up,r = ’Lil
Z PiSiUn,;(n),r T >0,
PROOF. There is a 7 € {1,...,N}* with A, C U (see, for instance, [2], proof

of Lemma 3.3). Then ¢ = d(A,,U¢) > 0. Set Spin = min{sy,...,sny}. We
deduce d(S;(A;), S;(U)°) = s;d(A;,U°) > Smine and, hence, that d(z,U°) >
d(z,S;(U)%) > Smine for all z € S;(A;). Let «,, and §,, be as in Lemma
4.8 and choose ng such that &, < smmme for all n > ng. Let n > ng and
x € S;(A;) be fixed for the moment. Then there exists an a € «,, U U with
|z —a|| = d(z,, UU®) < 6, < Smine- Thus we get a € S;(U) C U and,
therefore, S;(U) N ay, # 0.

Now define o, ; = @, N S; ( ) and n; = card(ay, ;). Then n; > 1 and, since

S;(U)NS;(U) =0 for i # j, an < card(ay,) < n.
Using the self-similarity of P and the fact that S;(U) C U, we obtain for r = 0

Un

/logd (Six, a, UU) dP(x)

Y

uMz an

/logd Six, o, U S;(U)°) dP(x)
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/logd (Ssz, 00m i U Si(U)°) dP(x)
o ot

log(sid(x, S; (e, ;) UUC) dP(x)

logsﬁ—sz/logd z,8; () UUC) dP()

N
pilogs; + Zpiﬂnio

i=1

'Mz an uMz HMz

«
I
—

Vv

and, for r > 0,

N
Uns = _Di / d(Siz, 0, UUC)" dP(z)
i=1

N N
> Zpisf/d(x,Si_l(an,i) UU)"dP(x) > Zpisfunw.
i=1 i=1

Thus the lemma is proved. O

Lemma 4.9.

a) inf{nﬁoun,oz neN} >0

b) inf{noru, ,: n €N} >0 forr e (0,+00).
PROOF.

a) It is enough to show inf{Di0 logn + tin0: n € N} > —oo. It follows from
Lemma 4.1 and Lemma 4.4 that 4,0 > —oo for all n € N. Let ng € N and,
for n > ng, n1(n),...,ny(n) be as in Lemma 4.9. Set

1
c= min{D—logn +lno:n <mnp}.
0
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If n > ng and D%]logk—i—ﬁk,o > cfor all k <n —1, then
N N
Up.0 > Zpi log Si + Zpi’&ni(n),()
=1 =1

N N
1
> E p; log s; + g pi(c— Do logn;(n))
i=1 i=1

1 al 1 & n;(n)
>c— D—Ologn—i-izzlpilogsi— D—OZpilogT.

i=1

N v N
Since ) p;log # < > pilogp;, we get
i i=1

i=1

N N
1 1

D—Ologn—&—ﬁn,o >c+ ;pi log s; — D—O ;pi log p; = c.
By induction we obtain inf{D%) logn + Gy, 0ln € N} > ¢ > —o0.
b) Let v, be as in Lemma 4.8. Since P(AN(a,,UU®)) = 0 and d(x, a,, UU€) > 0
for all x € A\(a,, UU®) we get uy,, » > 0 for all n € N. Let ng and, for n > ny,
ni(n),...,ny(n) be as in Lemma 4.9. Set ¢ = min{nor u, ,: n < ng}. Then
we have ¢ > 0. Let n > ng be such that kDLruk’r >cforall k <n—1. Using
Lemma 4.9 we deduce

N
r T

T T
o o . _
nor Uy > nOr E Pis;ni(n)” Prng(n) Pr ty, (n),r-
i=1

T N . T
Since n;(n) < n, we obtain nPru,, > ¢y pisf(n"fl"))_ﬁ. Using Holder’s
i=1

inequality (exponents less than 1) yields

n

N Dy
Sy -2 _ 1
- n

By induction we get nor Up,» > c for all n € N and the lemma is proved. [

al ni(n),_ - al D r
> pisr (s szis;)(rwr)”dr(
i=1 i=1

PROOF OF THEOREM 3.1. According to the considerations at the beginning of
this section the theorem is proved if one can establish that for all r € [0, 4+00)
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0 < lim infnel;. We know that

n—oo
enr ifr=0
Unyr <9 .
e ifr>0

n,r

Dy
im infnu,’ >0

and Lemma 4.10 immediately implies lim inf nuf 9 >0 andl
n—oo ’

for r € (0,4+00). Thus the theorem is proved.
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