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THE COMPOSITION OF TWO
DERIVATIVES HAS A FIXED POINT

Abstract

We show that if f, g : [0, 1] → [0, 1] are both Darboux Baire-1 func-
tions, then their composition, f ◦ g, possesses a fixed point.

In [3], Gibson and Natkaniec refer to a problem of K. C. Ciesielski who
asked whether the composition of two derivative functions from the unit inter-
val to the unit interval necessarily possesses a fixed point. A partial solution
to this problem was given by P. Humke, R. Svetic and C. Weil in [4]. In this
note we answer the question affirmatively. (An alternative proof has also been
found by M. Elekes, T. Keleti and V. Prokaj, see [2]).

Recalling that a Baire-1 function is the pointwise limit of a sequence of
continuous functions and that a Darboux function is one for which the image
of any interval in its domain is connected, we can formulate our main result
as follows.

Theorem 1. If f, g : [0, 1] → [0, 1] are both Darboux Baire-1 functions, then
there is an x ∈ [0, 1] for which (f ◦ g)(x) = x.

Since derivative functions are examples of Darboux Baire-1 functions, this
answers Ciesielski’s question. The rest of the paper consists of a proof of this
theorem.
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1 Proof of Theorem

For φ : I → R, I an interval, we define

graphX(φ) = {(x, φ(x)) : x ∈ I}

and
graphY (φ) = {(φ(y), y) : y ∈ I}

and given a, b ∈ R, we let [a, b], (a, b) denote the closed, and open intervals
connecting them, respectively. For a point p we let (p)x and (p)y denote the
x and y coordinates of p, respectively.

Fix two Darboux Baire-1 functions f, g : [0, 1]→ [0, 1]. Set

F = graphX(f) = {(x, f(x)) ∈ [0, 1]2 : x ∈ [0, 1]}

and
G = graphY (g) = {(g(y), y) ∈ [0, 1]2 : y ∈ [0, 1]},

then in order to prove the theorem it is sufficient to show that F ∩G 6= ∅. We
may assume without loss of generality that

f(0) = 0, f(1) = 1

and
g(0) = 1, g(1) = 0

for, by considering the square [−1, 2]× [−1, 2] and extending the sets F and G
as indicated in Figure 1, and then rescaling, we can define two new Darboux
Baire-1 functions f̃ , g̃ : [0, 1] → [0, 1] with f̃(0) = 0, f̃(1) = 1, g̃(0) = 1 and
g̃(1) = 0 whose composition possesses a fixed point if and only if the original
functions did.

Throughout this note, by rectangle we understand a rectangle whose sides
are parallel to the usual coordinate axes. Topological notions like open, closed,
etc., will be considered relatively to [0, 1]2.

Definition 1. We define a crossing-configuration, R = (A,B) to be an or-
dered pair consisting of non-empty finite subsets A and B of F and G, respec-
tively, such that whenever I and J are closed intervals with A ∪ B ⊂ I × J
and φ : I → R and ψ : J → R are continuous functions with:

A ⊂ graphX(φ) and (1)

B ⊂ graphY (ψ), (2)

then
graphX(φ) ∩ graphY (ψ) 6= ∅.
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g

f

Figure 1: Ensuring that f(0) = 0, f(1) = 1 and g(0) = 1, g(1) = 0

Remark 1. If R = (A,B) is a crossing configuration, and if φ, ψ : I, J →
[0, 1] are continuous functions satisfying (1) and (2) respectively, then for any
rectangle R ⊂ [0, 1]2 which contains A ∪B, we know that

graphX(φ) ∩ graphY (ψ) ∩R 6= ∅.
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Figure 2: Two examples of crossing configurations: points denoted by ◦ lie in
F and points denoted by • lie in G.

Lemma 1. The configurations illustrated in Figure 2 are crossing configura-
tions.

Proof. Figure 2(a): Here f1, f2 are points from F lying on the top and
bottom edges of a closed rectangle, and g1, g2 are points of G lying on the
left and right edges of the rectangle, respectively. Suppose that φ and ψ are
continuous functions with {f1, f2} ⊂ graphX(φ) and {g1, g2} ⊂ graphY (ψ).
Notice that the part of graphX(φ) lying within the vertical strip whose edges
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contain f1 and f2 may be extended to form a Jordan curve separating g1 and
g2 in such a way that the added curve does not intersect graphY (ψ) ∩ (R ×
[(g1)y, (g2)y]). (See Figure 3.)

Since graphY (ψ) ∩ (R × [(g1)y, (g2)y]) connects g1 with g2, we conclude
that

(graphY (ψ) ∩ (R× [(g1)y, (g2)y])) ∩ (graphX(φ) ∩ ([(f1)x, (f2)x]×R)) 6= ∅,

as required.
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Figure 3: graphX(φ)∩ ([(f1)x, (f2)x]×R) may be extended to form a Jordan
curve separating g1 and g2.

Figure 2(b): In this situation we have three points f1, f2, f3 ∈ F and
two points g1, g2 ∈ G with (f1)x < (f2)x = (g1)x < (g2)x, (f1)y ≤ (f2)y ≤
(g1)y ≤ (f3)y and (f1)y ≤ (g2)y ≤ (f3)y. Suppose that φ and ψ are continuous
functions with {f1, f2, f3} ⊂ graphX(φ) and {g1, g2} ⊂ graphY (ψ). Observe
that the part of graphX(φ) lying within the vertical strip whose edges contain
f1 and f3 may be extended to form a Jordan curve separating g1 and g2 in such
a way that the added curve does not intersect graphY (φ)∩ (R× [(g1)y, (g2)y]).
(See Figure 4.)

Since graphY (ψ)∩(R× [(g1)y, (g2)y]) connects g1 and g2, we conclude that

(graphY (ψ) ∩ (R× [(g1)y, (g2)y])) ∩ (graphX(φ) ∩ ([(f1)x, (f2)x]×R)) 6= ∅,

as required.

Remark 2. Since (0, 0) and (1, 1) ∈ F , and (0, 1), (1, 0) ∈ G, we conclude
that R0 = ({(0, 0), (1, 1)}, {(0, 1), (1, 0)}) is a crossing configuration.

The key part of our argument is the following proposition.
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Figure 4: graphX(φ)∩ ([(f1)x, (f3)x]×R) may be extended to form a Jordan
curve separating g1 and g2.

Proposition 2. For all crossing-configurations R = (A,B) and for all open
rectangles R ⊃ A∪B and open sets U ⊃ F (or V ⊃ G), we can find a crossing-
configuration R′ = (A′, B′) and a closed rectangle R′ with A′∪B′ ⊂ R′ ⊂ U∩R
(or V ∩R).

Before proving this, we show how it immediately leads to a proof of The-
orem 1: Since f and g are Darboux, Baire-1 functions, their graphs are Gδ
subsets of the plane (see [5, Ch.II.§31, VII, Thm 1]), so

F =
∞⋂
n=1

Un, where U1 ⊃ U2 ⊃ · · · are open sets

and

G =
∞⋂
n=1

Vn, where V1 ⊃ V2 ⊃ · · · are open sets.

We recall, from Remark 2, that

R0 = ({(0, 0), (1, 1)}, {(0, 1), (1, 0)})

is a crossing-configuration. We now use the proposition to find a sequence of
crossing-configurations Ri = (Ai, Bi) and open rectangles Ri ⊃ Ai ∪ Bi such
that

cl(R2i+1) ⊂ R2i ∩ Ui+1

and
cl(R2(i+1)) ⊂ R2i+1 ∩ Vi+1

for i = 0, 1, 2, . . .. Hence

cl(R0) = R0 ⊃ cl(R1) ⊃ R2 ⊃ cl(R3) ⊃ · · · ,
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∅ 6=
∞⋂
n=1

cl(Rn) ⊂
⋂
n

Un = F

and

∅ 6=
∞⋂
n=1

cl(Rn) ⊂
⋂
n

Vn = G,

which together imply that F ∩G 6= ∅ as required.

Proof. We prove the proposition 2 for the case when U ⊃ F , the case when
V ⊃ G is similar.

Suppose that R = (A,B) is a crossing configuration, R ⊃ A ∪ B is an
open rectangle, and let S = [x1, x2]× [y1, y2] ⊂ R be a closed rectangle whose
(relative) interior contains A ∪B.

Observe that if φ : [x1, x2]→ R were a continuous function for which A ⊂
graphX(φ) and graphX(φ) ∩ G ∩ S = ∅, then G ⊂ [0, 1]2 \ (graphX(φ) ∩ S)
would be a relatively open set. Since g ∈ DB1, it is almost continuous [1], so
there exists a continuous function ψ : [0, 1]→ R with graphY (ψ) ⊂ R× [0, 1]\
(graphX(φ)∩S). Moreover, we can require that B ⊂ graphY (ψ). (See e.g. [6,
Lemma 6.2].) Hence graphX(φ)∩graphY (ψ)∩S = ∅. But (A,B) is a crossing
configuration — a contradiction.

We suppose that there are no crossing-configurations (A′, B′) and closed
rectangles R′ with

A′ ∪B′ ⊂ R′ ⊂ U ∩R

(noting that this implies F ∩ G ∩ R = ∅). We will prove that this implies
that there is a continuous function φ : [x1, x2] → R with A ⊂ graphX(φ) and
graphX(φ) ∩G ∩ S = ∅ giving us our required contradiction.

We do this via the method of regular intervals: we say an interval I ⊂
[x1, x2] is regular, if for all s, t ∈ I, s < t, we can find a continuous function
φ : [s, t]→ R for which

φ(s) = f(s), φ(t) = f(t)

and
graphX(φ) ∩G ∩ S = ∅.

(Note that regular intervals need neither be open nor closed.) If we show that
[x1, x2] is itself regular, then we are done.

It is easy to see that:
(1) If I and J are regular intervals and I ∩ J 6= ∅, then I ∪ J is regular;
(2) If I is an interval which is the (finite or infinite) union of open regular

intervals, then I is regular.
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It is slightly trickier to verify:
(3) If I is regular, then cl(I) is regular.

Proof of (3): Let r be the left endpoint of I. (The proof for the right endpoint
is similar.) It is enough to show that we can find r′ > r arbitrarily close to r
for which there is a continuous function φ : [r, r′]→ R such that φ(r) = f(r),
φ(r′) = f(r′) and graphX(φ) ∩G ∩ S = ∅.

Choose ri ∈ I such that r1 > r2 > · · · > r, rn → r and for which f(rn)→
f(r) (the Darboux property for f ensures we can find such a sequence). For
each k ∈ N, we can find nk such that

f(rnk
) ∈ (f(r)− 2−k, f(r) + 2−k)

and both
g(f(r)− 2−k) and g(f(r) + 2−k) 6∈ (r, rnk

).

Fix a sequence n1 < n2 < n3 < · · · with this property. Since I is regular we
can find a sequence of continuous functions φk : [rnk+1 , rnk

]→ R for which

φk(rnk
) = f(rnk

), φk(rnk+1) = f(rnk+1) and graphX(φk) ∩G ∩ S = ∅.

Then the function φ̃ : [r, rn1 ]→ R defined by

φ̃(x) =

{
f(r) if x = r

max{min{φk(x), f(r) + 2−k}, f(r)− 2−k} if x ∈ [rnk+1 , rnk
]

is a well-defined continuous function for which φ̃(rnk
) = f(rnk

) for all k,
φ̃(r) = f(r) and graphX(φ̃) ∩G ∩ S = ∅.

Suppose that [x1, x2] is not a regular interval and let

P = [x1, x2] \
⋃
{I ⊂ [x1, x2] : I is relatively open and regular}.

Then P is closed, and observations (2) and (3) imply that P ∩ (x1, x2) is non-
empty and has no isolated points. Since f is a Baire-1 function, the continuity
points of f |P form a dense Gδ set in P [5, Ch.II.§31, X, Thm 1]. Thus we can
choose r ∈ P ∩ (x1, x2) such that

• f |P is continuous at r; and

• r is not the endpoint of any interval in [x1, x2] \ P which is contiguous
to P .
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Without loss of generality we can assume that g(f(r)) > r. We will show
that in this case we can always find r′ > r for which (r, r′) is regular which
contradicts our choice of r.

Since the endpoints of any interval contiguous to P belong to P , and the
closure of any regular interval is also regular, then by (1) it is enough to find
an r′ > r such that for s, t ∈ (r, r′) ∩ P we can find continuous φ : [s, t] → R
with φ(s) = f(s), φ(t) = f(t) and graphX(φ) ∩ G ∩ S = ∅. We can assume
that there is no r′ > r for which f |(r,r′) is constant.
Case 1: (r, f(r)) 6∈ S.

In this case, since f |P is continuous at r, the existence of r′ is trivial.
Case 2: (r, f(r)) ∈ S and there is no r∗ > r for which either f |(r,r∗) ≥ f(r)
or f |(r,r∗) ≤ f(r).

z

z

2

1

(r,f(r))

1 1R  =[r,r*]x[z   ,z  ]2

2

1(r’  ,f(r’ ))

(r  ’ ,f(r’ ))

1

2

R  =[r,r**]x[z’  ,z’  ]212

z’

z’

1

2

(r***,f(r))

(g(v),v)

(g(v’),v’)

(r*,f(r)) (g(f(r)),f(r))

Figure 5: Case 2

Choose r < r∗ < g(f(r)) and z1 < f(r) < z2 for which R1 = [r, r∗] ×
[z1, z2] ⊂ R ∩ U . (See Figure 5.) Then we can find r′1, r

′
2 ∈ (r, r∗) such that

z1 < f(r′1) < f(r) < f(r′2) < z2.

Now we choose z′1, z
′
2 and r < r∗∗ < min{r′1, r′2} such that

f(r′1) < z′1 < f(r) < z′2 < f(r′2),

R2 = [r, r∗∗]× [z′1, z
′
2] ⊂ R1 and
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graphX(f |P∩[r,r∗∗]) ⊂ R2.

Finally by the Darboux property, we can find r∗∗∗ ∈ (r, r∗∗) for which
f(r∗∗∗) = f(r).
Claim: ([r, r∗∗∗]× [z′1, z

′
2]) ∩G = ∅.

Proof of claim: For suppose (g(v), v) ∈ [r, r∗∗∗] × [z′1, z
′
2], without loss of

generality we can assume that v > f(r). By the Darboux property applied to
g we can find v′ ∈ [f(r), v] with g(v′) = r′2. But then

({(r∗∗∗, f(r∗∗∗)), (r′2, f(r′2))}, {(g(v), v), (g(v′), v′)})

is a crossing-configuration of the type (a) illustrated in Figure 2 contained in

[g(v), g(v′)]× [f(r), f(r′2)] ⊂ R ∩ U,

which is a contradiction.
But now clearly the interval (r, r∗∗∗) is regular.

Case 3: (r, f(r)) ∈ S and there is r∗ > r such that f |(r,r∗) ≥ f(r). (Or
(r, f(r)) ∈ S and there is r∗ > r such that f |(r,r∗) ≤ f(r).)

Without loss of generality, we do the case when there is an r∗ > r with
f |(r,r∗) ≥ f(r) and there is no r′ > r for which f |(r,r′) is constant. Choose
z2 > f(r) and r∗ > r for which f |(r,r∗) ≥ f(r) and [r, r∗]× [f(r), z2] ⊂ R ∩ U
and set R1 = [r, r∗]× [f(r), z2].

Since f |(r,r∗) is not constant (and so f(r) < 1), then we can find r < r′2 < r∗

such that f(r) < f(r′2) < z2. Choose R2 = [r, r′′]× [f(r), z′2] such that

f(r) < z′2 < f(r′2), r < r′′ < r′2 and

graphX(f |P∩[r,r′′]) ⊂ R2.

We show that there are no points (u, f(u)), (g(v), v) in R2 for which u = g(v)
and f(u) < v. For if there were, we could use the fact that g is Darboux to
find w ∈ (f(r), v) for which g(w) = r′2 and then we would have a crossing-
configuration, namely ({(u, f(u)), (r, f(r)), (r′2, f(r′2))}, {(g(v), v), (g(w), w)})
contained in R1, see Lemma 1 and Figure 6.

Lemma 2. There is a rectangle R3 = [r, r′′′] × [f(r), z′′2 ] ⊂ R2 such that
graphX(f |P∩[r,r′′′]) ⊂ R3 and there are no points (u, f(u)), (g(v), v) ∈ R3 for
which g(v) ≤ u, f(u) ≤ v.

Proof. If R3 = R2 does not satisfy the lemma, then there is (u0, f(u0)) and
(g(v0), v0) ∈ R2 for which

g(v0) ≤ u0 and f(u0) ≤ v0.
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(r,f(r)) (g(f(r)),f(r))
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(g(v),v)

(u,f(u))

2

Figure 6: Diagram illustrating occurrence of a crossing-configuration in Case 3
if we can find u = g(v) and f(u) < v in R2.

Choose f(r) < z′′2 < f(u0) and use the fact that r is a continuity point of f |P to
find r < r′′′ < g(v0) for which graphX(f |P∩[r,r′′′]) ⊂ R3 = [r, r′′′]× [f(r), z′′2 ].

Suppose now that we can find (u, f(u)) and (g(v), v) in R3 for which g(v) ≤
u and f(u) ≤ v. Then by the Darboux property for g, we can find a point
(g(v2), v2) with v2 ∈ (v, v0) and g(v2) = f(u) but then u = g(v2) and f(u) < v2
contradicting the observation made just before this lemma; see Figure 7. Hence
the lemma holds.

(r,f(r))

R
2

(u    ,f(u   ))

z’’

R 3

2
(g(v),v)

(u,f(u))

(g(v   ),v   )22

(g(f(r)),f(r))

(g(v   ),v   )0 0

0 0

Figure 7: The figure for Lemma 2

We now prove that the interval (r, r′′′) we have constructed is regular;
that is, for all s, t ∈ P ∩ [r, r′′′] with s < t, we can find a continuous function
φ : [s, t]→ R for which graphX(φ)∩G∩S = ∅, and φ(s) = f(s) and φ(t) = f(t).
We know that (s, f(s)) and (t, f(t)) are in R3. We can assume that s is
not the left endpoint of an interval contiguous to P . If f(s) ≥ f(t), then
Lemma 2 allows us to choose φ to be the affine function joining f(s) and f(t).
If f(s) < f(t) we distinguish two cases:
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(A): There is u ∈ (s, t) such that f(u) ≤ f(s).
In this case, Lemma 2 implies that G does not meet the shaded region of

Figure 8 and we can join (s, f(s), (u, f(t)) and (t, f(t)) by a piecewise linear
function.

(u,f(u))

(u,f(t))
(t,f(t))

(s,f(s))

Figure 8: Constructing our continuous function φ in Case (A).

(B): There is a sequence (un) with t > u1 > u2 > · · · → s such that f(t) >
f(u1) > f(u2) > · · · → f(s). In this case we can join the points (t, f(t)),
(u1, f(t)), (u2, f(u1)), (u3, f(u2)), . . . piecewise linearly, see Figure 9.

2 Open problems

There are a couple of natural questions suggested by this result:

1. is the graph of the composition of two Darboux Baire-1 functions con-
nected?

2. does a similar result hold for the composition of n Darboux Baire-1
functions when n ≥ 3?
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