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A NEW ELEMENTARY PROOF OF A
THEOREM OF DE LA VALLEE POUSSIN

Abstract

We give a new elementary proof of the Classical Theorem: Let f be
of bounded variation on [a, b] and let V be its total variation function.
Then there is a set N such that m(V(N)) = m(f(N)) = m(N) = 0,
and for each x not in N, f and V have derivatives, finite or infinite, and

Vi) = |f'(=)].

Let f be a real valued function of bounded variation on [a,b], and for
x € [a,b], let V(x) denote the total variation of f on the interval [a, x]. In this
note we give a new elementary proof of a classical result of de la Valée Poussin
(see [3, Theorem 9.6 (ii), chapter IV]).

Classical Theorem. There exists a set N C [a,b] such that
m(V(N)) =m(f(N)) =m(N) =0

(where m denotes Lebesque outer measure) and such that for x € [a,b] \ N,
V'(z) and f'(z) exist (finite or infinite) and |f'(x)| = V (z).

Recently Vasile Ene in [1] revived interest in the Theorem by giving ana-
logues for it and other work involving functions of generalized bounded varia-
tion. Thus he found new proofs of the Classical Theorem by these sophisticated
means. We will not require integrals nor arc length. We use derived numbers
[2, p. 207] and the Vitali Covering Theorem [2, p. 81] and little else. The
proof is almost immediate from our Lemma 1.

Lemma 1. Let h and k be positive numbers with h < k and let E C [a,b] be
a set such that at each x € E, V has a derived number greater than k and f
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has a derived number whose absolute value is less than h. Let S C [a,b] be a
set such that at each x € S, f has a positive and a negative derived number.
Then

m(V(EUS)) =m(f(EUS))=m(EUS)=0.

PROOF. Take any € > 0. Let a = u, < u; < --- < u, = b be a partition of
[a, b] such that for any partition a = 2z, < z1 < --- < z; = b that contains all
the u; we have

V(b) —V(a) < Z!f(zn — flzim1)| +e,

and hence

t t

V(b) = V(a) = Z(V(zi) —V(zi-1)) < Z|f(2z') — flzic)|+e. (1)

=1 i=1

Let P denote the finite set {ug,u1,...,u,}.

Without loss of generality we assume that V and f are continuous at each
point of EUS. Let U be an open set with V(E) C U and m(U) < m(V(E))-+e.
We use the Vitali Covering Theorem (on the y-axis) to cover V(E) almost
everywhere with mutually disjoint intervals [V (a;),V (b;)] where

[V(ai), V(b;)] € U and V(b;) — V(a;) > k(b; — a;) for each i.

Then the intervals [a;, b;] are also mutually disjoint, and
m(V(E)) +e>m(U) =Y (V(bi) = V(a) > kD (b —a;),

S0

> (i —ai) < (m((V(E)) + )k 2)
Again we use the Vitali Covering Theorem (on the y-axis) to cover V(E) al-
most everywhere with mutually disjoint intervals [V (c;), V(d;)] where [c;, d;]
C Uilai, bi], PN [cj,d,] is void, and

|f(dj) - f(Cj)| < h(dj —¢;) for each j.

Then
m(V(E)) <> (V(d) = V(e) .- (3)

J
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But we deduce from (1) that
Do (V) = Vieg) < DI F(d) = Fey)] + e (4)
j j
and from Uj[c;, d;] C U;[as, bi] we deduce that
Z(dj —¢) < Z(bi —ai). (5)
j i

We combine (3), (4) and (5) to obtain
(V(E) <3 (Vi) ~ V(er) = S1F) - flep)| + e
ShZ(dj — Cj) + € S hZ(bZ — ai) + €

and

(m(V(E)) - e)h’l <D —a). (6)

We combine (2) and (6) to obtain (m(V(E)) —l—e) k=t > (m(V(E)) - e) h~1t.
But € was arbitrary, so m(V(E))k~" > (m(V(E)))h‘l. Now 0 < h < k, and

it follows that m(V(E)) = 0.

We use the definition of S and the Covering Theorem again to cover V(.S)
almost everywhere with mutually disjoint intervals [V (r;),V (s;)] so that for
each i, f(s;) > f(r;), PN [ry, s is void and

m(V($)) < 3 (V(si) = V) <D (flsi) = i)+ (7)

Again cover the set V(S) almost everywhere with mutually disjoint intervals

[V(pj),V(qj)] with [p;,¢;] C Us[ri, si], PN [pj,q;] is void and f(g;) < f(p;)
for each j, so that

m(V(8)) <> (Vig) = V() <> (flps) — fg) +e. (8)
J J
We compare upper and lower variations of f and deduce that

Do w5) = Flap) + 22 (F(s) = F0r) < D2(Vise) = V().
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By (7) and (8) we have
2 (Vig) = Vi) = e+ 3 (V(si) = V() —e < 3 (V(si) = V()

J
and Zj (V(qj) — V(pj)) < 2e. We invoke (8) and obtain m(V(S)) < 2e. But
e was arbitrary, so m(V(S)) = 0. It follows that m(V(E U S)) = 0. Cover
V(E'US) with intervals I; such that }, m(I;) < e. Now each set F(V=(1y))
is contained in an interval whose length does not exceed that of I;. It follows
that m(f(EUS)) <e. Hence m(f(EUS)) = 0.

Finally at each point of £ U S, V has a positive derived number. That
m(E US) = 0 can be proved by a standard Vitali covering argument, this
time on the z-axis. The argument can be found, for example, in [2, pp. 210,
211], so we leave it. O

PrROOF OF THEOREM. We let h and k£ run through all the positive rational
numbers (h < k) and deduce from Lemma 1 that there is a set N C [a, b] such
that

m(V(N)) = m(F(N)) = m(N) =0
and for any = € [a,b] \ N, for any derived number DV (z) of V' at = and for
any derived number D f(z) of f at z, we have DV (z) < |Df(x)|, moreover f
does not have two derived numbers of opposite sign at x.

Let Df(x) be a derived number of f at z. Then there cannot be a derived
number D, f(z) such that |Df(z)| > ’le(x)‘; otherwise V' would have a
derived number as large as ’Df(x)’ and larger than ’Dl f(x) |, contrary to the
choice of z. Thus | D f(z)| and —| D f(x)| are the only possible derived numbers
of f at x, so there can be only one. It follows that f has a derivative at x,
finite or infinite. If DV (x) is a derived number of V' at x, then necessarily
DV (z) > |f(x)|. We deduce from the choice of x that DV (z) = |f'(x)|,

V' has only one derived number at x, V has a derivative at z, and moreover
V(@) =|f'@)]- -
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