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ON A CONSTRUCTION OF J. TKADLEC
CONCERNING σ-POROUS SETS

Abstract

In the paper [2] Josef Tkadlec gave an example of a finite singular
Borel measure µ on the real line such that all σ-porous sets are of µ-
measure zero. We give an alternative proof, i.e. probably a simpler
construction, of his theorem [2, theorem] and we also give a similar
example in Rn.

A subset S of a metric space (X, d) is said to be porous at a point x,

lim sup
ε→0

f(x, ε)
ε

> 0

where f(x, ε) = sup {r : ∃p, B(p, r) ⊂ B(x, ε) \ S} and B(p, r) denotes the
open ball around p with radius r. The set S is porous if it is porous at each of
its points.

Any porous set S in Rn is of Lebesgue measure zero, because its density
is smaller then 1 at any point of S. Let µ be a Borel measure on [0, 1]n such
that for any 0 < c < 1 there exists a constant d(c) depending only on c such
that

µ(B(p, cr))
µ(B(x, r))

> d(c) (1)

provided that B(p, cr) ⊂ B(x, r) ⊂ [0, 1]n, and r is small enough. Then the
above argument concerning the µ-density of a porous set S shows that µ(S)
has to be zero.
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We are going to construct Borel probability measures on [0, 1]n satisfying
inequality (1), and singular with respect to the Lebesgue measure. It is clear
that we can use the “max” distance in Rn; i.e.

dn(x, y) = max
1≤i≤n

|xi − yi| .

It is enough to show the existence of a singular probability measure on
the real line satisfying (2). Indeed if we have such a µ, a singular probability
Borel measure on [0, 1] then µn = µ × · · · × µ (n-fold product) is a singular
probability measure on [0, 1]n such that

µn(×i(ai, bi))
µn(×i(ci, di))

=
n∏
i=1

µ((ai, bi))
µ((ci, di))

> d(c)n > 0

provided that (ai, bi) ⊂ (ci, di) ⊂ [0, 1], |bi − ai| > c |di − ci| and max(|di − ci|)
is small enough.

We do something more that is needed. Almost with same effort we can
construct a measure such that d(c) can be chosen d · c with (d = 1/216).

So let 0 ≤ αn < 1/4 be a decreasing sequence of non-negative numbers.
We will denote by |I| the length of the interval I. Put

µn,α({i}) =

{
1−αn

3 i = 0, 2
1+2αn

3 i = 1;

i.e. we defined a probability measure on the power set of A = {0, 1, 2}. Let
us form the infinite product measure µα =

∏
n µn,α on the Borel sets of AN.

Denote ν = µ0 the measure we get in this way from the zero sequence.
Define a mapping T : AN → [0, 1] by the formula

T (x) =
∞∑
k=1

x(k)
3k

,

i.e. the sequence x is the ternary expansion of T (x). It is well known that
there are countable sets H ⊂ AN and H ′ ⊂ [0, 1] such that T |AN\H : AN \H →
[0, 1] \ H ′ is bijective, measurable and the inverse is also measurable. So
µα ◦T−1 and ν ◦T−1 are singular if and only if µα and ν is such. Observe that
countable sets are of µα–measure zero, whatever is the sequence α satisfying
0 ≤ αn < 1/4.

It is also clear that ν ◦ T−1 is just the Lebesgue measure on [0, 1]. An old
and famous theorem of Kakutani [1] can be applied to decide which sequences
give singular measure µα ◦ T−1 with respect to the Lebesgue measure. He
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introduced the “inner product” of probability measures τ, ϑ defined on the
same measurable space as follows:

ρ(τ, ϑ) =
∫ (

dτ

dπ

)1/2(
dϑ

dπ

)1/2

dπ

where both τ, and ϑ are absolutely continuous with respect to the measure π.
ρ does not depend on the choice of π. The two measures are the same if ρ is
1 and mutually singular if ρ is 0.

Theorem 1. ([1, Kakutani 1948]) Let µn, νn be a sequence of equivalent mea-
sures.

∏
n µn and

∏
n νn are either singular or equivalent according to∏

ρ(µn, νn) = 0 or > 0.

Corollary 2. µα ◦T−1 is singular with respect to the Lebesgue measure if and
only if

∞∑
k=1

α2
k =∞

Proof. ρ(µk,α, µk,0) = 1/3(2
√

1− αk +
√

1 + 2αk) which has logarithm of
order −α2

k.

In what follows let 0 < αn < 1/4 be a fixed decreasing sequence and µ
denotes µα ◦ T−1. Put

In =
{[

k

3n
,
k + 1

3n

]
: k = 0, 1, . . . , 3n − 1

}
.

We say that two intervals are joining if one of their endpoints coincide, more
precisely I and J are joining if I ∪ J is interval and I ∩ J has at most one
point.

The following two lemmas are trivial corollaries of the definition of µ

Lemma 3. Let I, J ∈ In be two joining intervals, then 1/2 < µ(I)
µ(J) < 2.

Proof. By induction on n. For n = 0 there is nothing to prove. Let I, J ∈
In+1 two joining intervals. Either there is K ∈ In such that I, J ⊂ K or there
are joining intervals K0,K1 ∈ In such that I ⊂ K0 and J ⊂ K1. In the first
case

1
2
<

1− αn+1

1 + 2αn+1
≤ µ(J)
µ(I)

≤ 1 + 2αn+1

1− αn+1
< 2
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In the second case

µ(J)
µ(I)

=
1−αn+1

3 µ(K1)
1−αn+1

3 µ(K0)
=
µ(K1)
µ(K0)

which is between 1/2 and 2 by induction hypothesis.

Lemma 4. Let J ∈ In and I ∈ In+k such that I ⊂ J, then

k∏
l=1

(1− αn+l) ≤
3kµ(I)
µ(J)

≤
k∏
l=1

(1 + 2αn+l).

Lemma 5. Let c > 0 and I, J two subintervals of [0, 1] such that I ⊂ J and
|I| > c |J | , then

µ(I)
µ(J)

≥ c
∏m
l=1(1− αn+l)

108
,

where n = [−log3(|J |)] and m = [−log3(c/12)] + 1 ([a] denotes the integer part
of a and log3 stands for the logarithm of base 3.)

Proof. Let n be an integer such that 1/3 < 3n |J | ≤ 1, i.e n = [−log3(|J |)].
Then there are joining intervals J1, J2 ∈ In such that J ⊂ J1 ∪ J2, e.g. let
J1 = [a, b] ∈ In such that (a, b] contains the left endpoint of J and let J2 =
[b, b+ 3−n]. Therefore

µ(J) ≤ µ(J1) + µ(J2) ≤ 3 min(µ(J1), µ(J2)) (2)

Either for k = 1 or k = 2 we have that

|I ∩ Jk| ≥
1
2
|I| ≥ c

2
|J | ≥ c

2
|Jk|
3

Let m be an integer such that 3−m < c
12 ≤ 3·3−m, i.e. m = [−log3(c/12)]+

1, there is an interval I0 in In+m such that I0 ⊂ I ∩ Jk because in Im+n

there are intervals only of length at most the half of the length of I ∩ Jk and
∪In+m = [0, 1]. So by lemma 4 we get

µ(I) ≥ µ(I0) ≥ µ(Jk)3−m
m∏
l=1

(1− αn+l) ≥ µ(Jk)
c

36

m∏
l=1

(1− αn+l) (3)

Comparing the inequalities (3) and (2) we get the statement.

Corollary 6. Let 0 < αn < 1/4 be an arbitrary sequence such that
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1. αn → 0

2.
∑
n α

2
n =∞.

The associated Borel measure µα ◦T−1 is singular and takes on a value of zero
on any σ-porous Borel set.

Proof. By property 1 for any c > 0 there is an n0 such that for n ≥ n0,∏m
l=1(1 − αn+l) > 1/2 where m = [−log3(c/12)] + 1. This means that if J is

small enough and I ⊂ J, |I| > c |J | then

µ(I)
µ(J)

>
c

216

So the sufficient condition (1) is satisfied, µ assigns measure zero to porous
sets. By the theorem of Kakutani this measure is singular with respect to the
Lebesgue measure.

Corollary 7. There is a continuum family of pairwise mutually singular Borel
measures on [0, 1] such that each measure is singular with respect to the Le-
besgue measure and takes on a value of zero on σ-porous sets.

Proof. Let µa be the measure corresponding to αn = a · n−1/2 where a ∈
(0, 1/4). Using the previous corollary we have to prove only that if a, b ∈
(0, 1/4) and a 6= b then µa and µb are mutually singular. We can apply
Kakutani’s theorem again since

ρ (µn,a, µn,b) =
2
3

√
(1− a√

n
)(1− b√

n
) +

1
3

√
(1 + 2

a√
n

)(1 + 2
b√
n

)

which has logarithm of order −n−1.

The above construction gives something more that we actually need. In-
deed for the constructed measure the constant d(c) can depend on c linearly.
If we do not care about this we can choose 0 < αn < 1/4 to be a constant
sequence and then instead of Kakutani’s theorem we can apply the strong
law of large numbers to see that µα is singular with respect to the Lebesgue
measure.
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