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ON A CONSTRUCTION OF J. TKADLEC
CONCERNING 0-POROUS SETS

Abstract

In the paper [2] Josef Tkadlec gave an example of a finite singular
Borel measure p on the real line such that all o-porous sets are of u-
measure zero. We give an alternative proof, i.e. probably a simpler
construction, of his theorem [2, theorem| and we also give a similar
example in R".

A subset S of a metric space (X, d) is said to be porous at a point z,

lim sup M >0
e—0 €

where f(x,e) = sup{r : 3p, B(p,r) C B(z,e) \ S} and B(p,r) denotes the
open ball around p with radius r. The set S is porous if it is porous at each of
its points.
Any porous set S in R™ is of Lebesgue measure zero, because its density
is smaller then 1 at any point of S. Let u be a Borel measure on [0, 1] such
that for any 0 < ¢ < 1 there exists a constant d(c) depending only on ¢ such
that
1(B(p,cr))
— = > d(c) (1)
w(B(z,r))

provided that B(p,cr) C B(x,r) C [0,1]", and r is small enough. Then the

above argument concerning the p-density of a porous set S shows that p(.S)
has to be zero.
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We are going to construct Borel probability measures on [0, 1] satisfying
inequality (1), and singular with respect to the Lebesgue measure. It is clear
that we can use the “max” distance in R"; i.e.

dn(x7y) = 121%)(” ‘xi - yz‘ .

It is enough to show the existence of a singular probability measure on
the real line satisfying (2). Indeed if we have such a p, a singular probability
Borel measure on [0,1] then p, = g x -+ x p (n-fold product) is a singular
probability measure on [0, 1]™ such that

Mn(xi(ai,bi)) - - u((aivbi)) 0"
) ~ L ey ~ "> 0

i=1

provided that (a;,b;) C (¢i,d;) C [0,1], |b; — a;| > ¢|d; — ¢;| and max(|d; — ¢;|)
is small enough.

We do something more that is needed. Almost with same effort we can
construct a measure such that d(c¢) can be chosen d - ¢ with (d = 1/216).

So let 0 < e, < 1/4 be a decreasing sequence of non-negative numbers.
We will denote by |I| the length of the interval I. Put

l—«o .
. n 3=0,2
fn,a({i}) = {1_;,_32@" 1
—3 !

)

i.e. we defined a probability measure on the power set of A = {0,1,2}. Let

us form the infinite product measure pio = [],, ftn,o on the Borel sets of AN,

Denote v = ug the measure we get in this way from the zero sequence.
Define a mapping T : AY — [0, 1] by the formula

i.e. the sequence z is the ternary expansion of T'(z). It is well known that
there are countable sets H C AN and H’ C [0, 1] such that T'|m\ g : AN\ H —
[0,1] \ H’ is bijective, measurable and the inverse is also measurable. So
fooT 1 and voT ! are singular if and only if ;1 and v is such. Observe that
countable sets are of p,—measure zero, whatever is the sequence « satisfying
0<a,<1/4.

It is also clear that v o T~! is just the Lebesgue measure on [0, 1]. An old
and famous theorem of Kakutani [1] can be applied to decide which sequences
give singular measure j, o T—! with respect to the Lebesgue measure. He
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introduced the “inner product” of probability measures 7,1 defined on the
same measurable space as follows:

dr\'"? (do\ '/
o= [(5) (&) o
where both 7, and 9 are absolutely continuous with respect to the measure 7.

p does not depend on the choice of 7. The two measures are the same if p is
1 and mutually singular if p is 0.

Theorem 1. ([1, Kakutani 1948]) Let ju,, vy, be a sequence of equivalent mea-
sures. [[,, pn and [, vn are either singular or equivalent according to

Hp(un,yn) =0 or >0.

Corollary 2. ji, 0T~ is singular with respect to the Lebesgue measure if and
only if

o0

Z ai =00

k=1

PROOF. p(tik,as ko) = 1/3(2v/1 — o + 1+ 2a;) which has logarithm of
order —ai. O]

In what follows let 0 < v, < 1/4 be a fixed decreasing sequence and p
denotes pi, 0o T71. Put

kok+1
T,=<|— "2 : k=0,1,...,3" —1}.
n {|:3n’ 371:| k 077 73 }

We say that two intervals are joining if one of their endpoints coincide, more
precisely I and J are joining if I U J is interval and I N J has at most one
point.

The following two lemmas are trivial corollaries of the definition of u

Lemma 3. Let I,J € T,, be two joining intervals, then 1/2 < % < 2.

Proor. By induction on n. For n = 0 there is nothing to prove. Let I,J €
Zn+1 two joining intervals. Either there is K € Z,, such that I, J C K or there
are joining intervals Ky, K; € Z, such that I C Ky and J C K;. In the first
case

- 1— a1 < w(J) < 14 2041

1
- <2
2 " 142ap41 ~ p() T 1—apt
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In the second case

p(g) _ EEpl)  p(k)
p(I) H‘%“M(Ko) 1(Ko)

which is between 1/2 and 2 by induction hypothesis. O

Lemma 4. Let J €7, and I € T4k such that I C J, then

k k
H (1—anq) < H + 200041)-
=1 =1

Lemma 5. Let ¢ > 0 and I,J two subintervals of [0,1] such that I C J and
|| > c|J|, then

(1) > cHl:l(l - anJrl)’

u() = 108

where n = [—log,(|J])] and m = [—log,(c/12)]+1 (la] denotes the integer part
of a and log, stands for the logarithm of base 3.)

k

PROOF. Let n be an integer such that 1/3 < 3™ |J| < 1, i.e n = [—log,(|J]])].
Then there are joining intervals Ji, Jy € 7,, such that J C J; U Js, e.g. let
J1 = [a,b] € T,, such that (a,b] contains the left endpoint of J and let Jp =
[b, b+ 37™]. Therefore

p(J) < p(Jr) + p(J2) < 3min(u(1), u(J2)) (2)

Either for £ = 1 or kK = 2 we have that

1 c [ Jxl
1 >—|I>=J >
T2 51> 512 5
Let m be an integer such that 37™ < 5 < 3-37™,i.e. m = [~log,(c/12)]+
1, there is an interval Iy in Z,4,, such that Iy C I N Jg because in Z,, 4,
there are intervals only of length at most the half of the length of I N Jj and
UZy+m = [0,1]. So by lemma 4 we get

. m c m
u(l) = ullo) > p(J)3™" [T = any) > p(I) g6 [T = an) - (3)
=1 I=1
Comparing the inequalities (3) and (2) we get the statement. O

Corollary 6. Let 0 < o, < 1/4 be an arbitrary sequence such that
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1. a, — 0
2.3, a2 =oo.

The associated Borel measure i 0T~ is singular and takes on a value of zero
on any o-porous Borel set.

PrOOF. By property 1 for any ¢ > 0 there is an ng such that for n > ny,
IT%,(1 — angs) > 1/2 where m = [—log,(¢/12)] + 1. This means that if J is
small enough and I C J, |I| > ¢|J| then

pl) _ c

W(7) ~ 216

So the sufficient condition (1) is satisfied, p assigns measure zero to porous
sets. By the theorem of Kakutani this measure is singular with respect to the
Lebesgue measure. O

Corollary 7. There is a continuum family of pairwise mutually singular Borel
measures on [0,1] such that each measure is singular with respect to the Le-
besgue measure and takes on a value of zero on o-porous sets.

PROOF. Let i, be the measure corresponding to a, = a - n~'/? where a €
(0,1/4). Using the previous corollary we have to prove only that if a,b €
(0,1/4) and a # b then p, and pp, are mutually singular. We can apply
Kakutani’s theorem again since

2 a b 1 b
P (Hnyas tinp) = 54 [ (1= —=)(1——=)+ /(1 +2 (1+2
( ) 3\/( \/ﬁ)( \/ﬁ) \f) \f)
which has logarithm of order —n~!. O

The above construction gives something more that we actually need. In-
deed for the constructed measure the constant d(c) can depend on c linearly.
If we do not care about this we can choose 0 < «,, < 1/4 to be a constant
sequence and then instead of Kakutani’s theorem we can apply the strong
law of large numbers to see that u, is singular with respect to the Lebesgue
measure.
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