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MEASURES WITH VALUES IN l-GROUPS

Abstract

We find a decomposition of the type of Sobczyk-Hammer for mea-
sures with values in l-groups, and also deduce some convergence theo-
rems for such decompositions. Our procedure is based on some theorems
of the type of Vitali-Hahn-Saks, and on the so-called Stone extension
method.

1 Introduction.

In [3] and [4], we obtained some versions of the Lebesgue decomposition theo-
rem, and of the Vitali-Hahn-Saks theorem for finitely additive measures with
values in (super) Dedekind complete l-groups. In the quoted papers, the notion
of convergence was related to (D)-sequences and therefore many of the con-
cepts and proofs appear somewhat complicated. In this paper we investigate a
different kind of decomposition, and require that the involved l-group is super
Dedekind complete and weakly σ-distributive. This allows us to avoid the ma-
chinery of (D)-convergence [2], thanks to a powerful result concerning suitable
subsequences of an (O)-sequence 2.7. Hence all the relevant convergence prop-
erties can be formulated and proved only by means of (O)-sequences, which
are a more natural tool.
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The core of our research here concerns continuous and atomic l-group-
valued measures. We obtain sufficient conditions for continuity and uniform
continuity. By means of these results, we deduce a decomposition of a measure,
in the sense of Sobczyk-Hammer, that is into its continuous and atomic part.
Finally, we give a convergence theorem for such decompositions.

In Section 2 we give the definitions and state some preliminary results
about the techniques to be used later. In Section 3 we introduce and study con-
tinuity properties of measures, obtaining a sufficient condition for a sequence
of finitely additive measures to be uniformly continuous, and also some use-
ful relations between continuity and absolute continuity. Finally, in Section
4 we introduce the sectional decompositions, and, thanks also to the previ-
ous theorems, we find some results concerning existence and convergence for
Sobczyk-Hammer decompositions.

2 Preliminary Definitions and Results.

We shall introduce now the main definitions we need, together with some
results.

Definition 2.1. An Abelian group (R,+) is called an l-group, if it is endowed
with a compatible ordering ≤, and is a lattice with respect to it. An l-group
R is said to be Dedekind complete, if every nonempty subset of R, bounded
from above, has supremum in R.

One important consequence of this definition is that convergence of series
can be defined, at least when the terms are in R+

0 = {r ∈ R : r ≥ 0}.

Definition 2.2. Given any sequence (an)n in R+
0 , we say that the series∑∞

n=1 an is convergent if the set of all partial sums {sn : n ∈ N} is bounded in
R, where sn =

∑n
i=1 ai for all n. If this is the case, we set

∑∞
n=1 an = sup{sn :

n ∈ N}.

Convergence of series is also related to the so-called (O)-convergence, ac-
cording with the following definition.

Definition 2.3. Given a sequence (rn)n in R, we say that (rn)n (O)-converges
to an element r ∈ R if there exists a sequence (pn)n inR, such that pn ↓ 0 (Such
a sequence will be called an (O)-sequence.), satisfying |rn − r| ≤ pn ∀n ∈ N.

It is not difficult to see that a series
∑∞
n=1 an, an ≥ 0, is convergent to

some element s if and only if the sequence (sn)n (O)-converges to s.
We now introduce a first concept of σ-additivity, similar to the classical

one. (In the sequel we will slightly sharpen this concept.)
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Definition 2.4. Let R be a Dedekind complete l-group, F be an algebra of
subsets of a nonempty set X and m : F → R+

0 be a finitely additive measure.
We say that m is order σ-additive if m (

⋃∞
n=1Hn) =

∑∞
n=1 m(Hn) whenever

(Hn)n is a disjoint sequence of elements of F , such that
⋃∞
n=1Hn ∈ F .

In the sequel we shall assume further properties in our l-group, so we
introduce now some definitions.

Definitions 2.5. A bounded double sequence (ai,j)i,j in R, such that ai,j ↓ 0
for each i ∈ N, is called a regulator or (D)-sequence.

For every (D)-sequence (ai,j)i,j , and every mapping φ : N→ N, the element∨∞
i=1 ai,φ(i) is called a domination of the (D)-sequence.

From now on, we shall denote by Φ the set of all mappings φ : N→ N.

Now we can introduce the conditions we shall impose on R.

Definitions 2.6. We say that R is weakly σ-distributive if, for every (D)-
sequence (ai,j)i,j , the greatest lower bound of its dominations is 0; i.e.,

∧
φ∈Φ

( ∞∨
i=1

ai,φ(i)

)
= 0.

A Dedekind complete l-group R is said to be super Dedekind complete, if
for any nonempty set A ⊂ R, bounded from above, there exists a countable
subset A∗ ⊂ A, such that supA = supA∗.

From now on, we shall always assume that R is a super Dedekind complete
and weakly σ-distributive l-group.

The following lemma is a version of the Fremlin Lemma in the context
of (O)-sequences. Though it is possible to prove it as a consequence of the
Fremlin-type [6, Theorem 3.2.3, page 42], we give here a direct proof, because
it looks somewhat easier.

Lemma 2.7. Let (rn)n be any (O)-sequence in R+
0 . For every U ∈ R+

0 there
exists an element ω ∈ Φ such that the mapping N 7→ U ∧

∑∞
n=N rω(n) is an

(O)-sequence.

Proof. For any couple (i, k) of positive integers, setAi,k = U∧
(∑k+2i−1

n=k rn

)
.

Clearly, (Ai,k)i,k is a (D)-sequence. Next, for every element φ ∈ Φ, define
dφ :=

∨∞
i=1Ai,φ(i). Since R is weakly σ-distributive and super Dedekind com-

plete, there exists a sequence (φh)h in Φ, such that infh dφh
= 0. Without loss

of generality, we shall assume that φh(n) < φh(n + 1) and φh(n) < φh+1(n)
for every h and n in N, so that N 7→ gN := dφN

defines an (O)-sequence. Thus
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we have g1 ≥ U ∧ {rφ1(1) + rφ1(1)+1} and also g1 ≥ U ∧ {rφ1(2) + rφ1(2)+1 +
rφ1(2)+2 + rφ1(2)+3}, and so on. Now we observe that

U ∧ 2rφ1(1)+1 ≤ g1, U ∧ (rφ1(1)+1 + 2rφ1(2)+3) ≤ g1,

U ∧
(
rφ1(1)+1 + rφ1(2)+3 + 2rφ1(3)+7

)
≤ g1

and so on. Then U ∧
(∑k

n=1 rφ1(n)+2n−1

)
≤ g1 holds for every positive integer

k; hence U ∧
(∑∞

n=1 rφ1(n)+2n−1

)
≤ g1. In a similar way, one proves that

U ∧
(∑∞

n=1 rφN (n)+2n−1

)
≤ gN holds, for every positive integer N . Now, we

set ω(N) := φN (N) + 2N − 1. For every natural number k, we have

U ∧

(
N+k∑
n=N

rω(n)

)
= U ∧

(
N+k∑
n=N

rφn(n)+2n−1

)
≤ U ∧

(
N+k∑
n=N

rφN (n)+2n−1

)

≤ U ∧

( ∞∑
n=1

rφN (n)+2n−1

)
≤ gN .

From the arbitrariness of k, we obtain the assertion.

The next result expresses the fact that, as soon as {(r(k)
n )n : k ∈ N} is

an equibounded countable family of (O)-sequences, there exists a single (O)-
sequence, which can replace them all. More precisely, we have the following.

Lemma 2.8. Let {(r(k)
n )n : k ∈ N} be an equibounded countable family of (O)-

sequences. Then there exists an (O)-sequence (bj)j with the following property:
For every j, k ∈ N, an integer n = n(j, k) > 0 exists, such that r(k)

n ≤ bj.

Proof. Define ak,n = r
(k)
n for each k, n. Clearly, (ak,n)k,n is a D-sequence,

hence there exists a sequence (φj)j in Φ, such that j 7→ bj :=
∨∞
n=1 an,φj(n)

defines an (O)-sequence. As above, we can assume that φj(n) < φj(n + 1)
and φj(n) < φj+1(n) for all j, n. Arbitrarily fix j and k, and choose n =
n(j, k) = φj(k). We have then r

(k)
n = ak,φj(k) ≤

∨∞
k=1 ak,φj(k) = bj , which is

the assertion.

From now on, we denote by F an algebra and by A a σ-algebra of subsets
of a nonempty arbitrary set X.

We now introduce the concept of s-boundedness in the context of (O)-
convergence.

Definition 2.9. A finitely additive measurem : F → R is said to be s-bounded
if there exists an (O)-sequence (bj)j such that, for every disjoint sequence
(Hk)k in F and every index j ∈ N, one can find an integer k0 satisfying

|m(Hk)| ≤ bj for each k ∈ N, k ≥ k0. (1)
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We say that the measures mn : F → R, n ∈ N, are uniformly s-bounded, if
the integer k0 in (1) can be chosen independently of n.

We now introduce the notion of σ-additivity in the context of (O)-conver-
gence. This concept is, in general, stronger than the classical one of order
σ-additivity.

Definition 2.10. Let m : F → R be a finitely additive measure. We say
that m is σ-additive if there exists an (O)-sequence (bj)j such that, for every
sequence (Hk)k in F , decreasing to the empty set, and for every positive
integer j, there exists a natural number k0 satisfying |m(B)| ≤ bj for every
B ∈ F , B ⊂ Hk0 . A similar definition concerns uniform σ-additivity for a
family {mi : F → R}i of measures.

We observe that, in case of an equibounded sequence (mn)n of σ-additive
measures, it is possible to find a unique (O)-sequence (bj)j which is related to
the σ-additivity of all the mn. This is a consequence of Lemma 2.8. The same
also holds for other properties,such as continuity, to be introduced later.

From the extension theorems found in [4], it is possible to deduce that any
s-bounded positive order σ-additive measure is also σ-additive.

Some of these extension theorems will now be recalled, for completeness,
and also for further reference.

We first introduce some notation: given an algebra F of subsets of any
nonempty set X, we denote by σ(F) the σ-algebra generated by F .

A stronger notion of convergence is also needed.

Definition 2.11. Let T be any nonempty set, and (fn : T → R)n be any
sequence of functions. We say that the sequence (fn)n is (RO)-convergent to
a limit function f if there exists an (O)-sequence (pj)j in R such that, for
every positive integer j and every element t ∈ T , a natural number n0 can be
found, n0 = n0(j, t), for which |fn(t)− f(t)| ≤ pj ∀n ≥ n0.

This definition will be mainly used for sequences of R-valued measures.

The theorems we list deal mainly with the so-called Stone Isomorphism
technique. The well-known Stone Isomorphism Theorem asserts that any
Boolean algebra F is algebraically isomorphic with the algebra Σ of clopen
sets in a suitable compact, totally disconnected, Hausdorff space S. Denoting
by ψ : F → Σ such an isomorphism, any finitely additive measure m : F → R
can be associated with the measure m ◦ ψ−1 : Σ → R. Since Σ turns out to
be perfect, any finitely additive measure on Σ is also order σ-additive.

Thus a suitable extension procedure, inspired by Carathéodory’s construc-
tion, yields the following theorem [4].
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Theorem 2.12. Let m : F → R+
0 be any finitely additive, s-bounded measure.

There exists a σ-additive measure m̃ : σ(Σ) → R+
0 such that m̃|Σ = m ◦ ψ−1.

Moreover, there exists a suitable (O)-sequence (bj)j in R, such that, for every
element A ∈ σ(Σ) and each positive integer j, an element F ∈ F can be found,
satisfying m̃(A∆ψ(F )) ≤ bj.

Combining this theorem with a convergence theorem of the type of Vitali-
Hahn-Saks [3, 4], the following result can be deduced.

Theorem 2.13. Let (mn : A → R)n be an equibounded sequence of s-bounded
finitely additive measures, defined on a σ-algebra A. Assuming that the se-
quence (mn(A))n is (RO)-convergent to a limit m(A), ∀A ∈ A, then: (i) the
sequence (mn)n is uniformly s-bounded, and therefore m is s-bounded too; and,
(ii) the sequence (m̃n(B))n is (RO)-convergent to m̃(B), ∀B ∈ σ(Σ), where
as usual Σ denotes the Stone algebra isomorphic with A, and m̃n, m̃ are the
Stone extensions to the σ-algebra σ(Σ) of mn and m respectively.

3 Continuous and Atomic Measures.

We now introduce the concept of continuity for l-group-valued measures [1, 7].

Definition 3.1. We say that a finitely additive measure m : F → R+
0 is

continuous if infP∈Π [supD∈P m(D)] = 0, where P is any finite partition of
X, and the infimum is taken with respect to the totality Π of such partitions.
The finitely additive measures mn : F → R+

0 , n ∈ N, are said to be uniformly
continuous if infP∈Π [supD∈P (supnmn(D))] = 0.

The following result is a characterization of continuity for finitely additive
positive measures.

Proposition 3.2. A finitely additive measure m : F → R+
0 is continuous if

and only if there exists an (O)-sequence (bj)j in R such that for all j ∈ N
there exists a finite partition Qj of X into sets D1, . . . , Dhj

, for which

m(Di) ≤ bj ∀ i = 1, . . . , hj . (2)

Analogously, the finitely additive measures mn : F → R+
0 , n ∈ N, are uni-

formly continuous if, and only if, there exists an (O)-sequence (bj)j in R such
that for all j ∈ N, there exists a finite partition Qj of X into sets D1, . . . , Dhj

,
satisfying supnmn(Di) ≤ bj ∀ i = 1, . . . , hj.

Proof. We give the proof only for the first part of the proposition. Let m
be a positive continuous finitely additive measure. Since R is super Dedekind
complete, then there exists a sequence (Qj)j of finite partitions of X, such
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that infj
[

supD∈Qj
m(D)

]
= 0. Without loss of generality, we can assume

that the sequence (Qj)j is increasing with respect to the refinement order;
i.e., we assume that, for every positive integer j, each element in Qj is the
union of some elements from Qj+1.

For every index j ∈ N, define bj := supD∈Qj
m(D). Thus, (bj)j turns out

to be an (O)-sequence, and the sequence (Qj)j is the required one.
Conversely, let (Qj)j be a sequence of finite partitions of X, satisfying (2).

We get infj
[

supD∈Qj
m(D)

]
= 0 and, a fortiori, infP∈Π

[
supD∈P m(D)

]
= 0,

that is, continuity of m.

Definition 3.3. A finitely additive measure m : A → R+
0 is said to be atomic

if 0 is the unique finitely additive and continuous measure ν : A → R+
0 ,

satisfying ν ≤ m.

We note that the given definition of atomic measure agrees with the clas-
sical one of atomic R+

0 -valued measure, by virtue of the Sobczyk-Hammer
decomposition theorem for scalar measures [7].

In the sequel, a suitable notion of absolute continuity is needed. We intro-
duce it now, only for σ-additive measures, and will then deduce a useful result
about continuity of measures.

Definition 3.4. Let ν : A → R+
0 be any σ-additive measure, defined on a

σ-algebra A. Given any other σ-additive measure m : A → R+
0 , we say m is

absolutely continuous with respect to ν if ν(A) = 0⇒ m(A) = 0.

Here is the theorem concerning continuity.

Theorem 3.5. Let m, ν : A → R+
0 , and assume m and ν are σ-additive,

m is absolutely continuous with respect to ν and ν is continuous. Then m is
continuous.

Proof. Set U := m(X) + ν(X). Fix an (O)-sequence (bj)j in R, agreeing
with the σ-additivity of m, with σ-additivity and with continuity of ν. Thanks
to Lemma 2.7, there exists a subsequence (bjk)k such that (ρN )N is an (O)-
sequence, where ρN := U ∧

∑
k≥N bjk for all N . Set b′N := bjN , and define

αN := sup{m(A) : ν(A) ≤ b′N},∀N ∈ N. We shall prove that (αN )N is
an (O)-sequence. Clearly, (αN )N is decreasing, so all that must be shown is
α := infN αN coincides with 0.

If this is not the case, then there exists an integer N such that α 6≤ bN ;
hence αk 6≤ bN ∀k. This means that, for every natural number k, an element
Ak ∈ A can be found, such that ν(Ak) ≤ b′k,but m(Ak) 6≤ bN . For all positive
integers s, define A∗s :=

⋃
k≥sAk. We get ν(A∗s) ≤ U ∧

∑
k≥s b

′
k ≤ ρs, but

m(A∗s) 6≤ bN , (3)
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for all s. The sequence (A∗s)s is decreasing. Denoting its limit by A, we get
ν(A) = 0 by σ-additivity, and then m(A) = 0. Hence, the sequence (A∗s \A)s
is decreasing to ∅, and m(A∗s \A) = m(A∗s) for all s. Thus, by σ-additivity, a
positive integer τN can be found, satisfying m(A∗τN

) ≤ bN . But this is contrary
to (3). We must conclude that α = 0.

Now, we can easily prove the continuity of m. Indeed, for each N ∈ N, a
partition P of X exists, such that ν(D) ≤ b′N for all D ∈ P . Then m(D) ≤ αN
for all D ∈ P , and the assertion is proved.

We now prove that, for continuous equibounded finitely additive measures,
uniform s-boundedness is a sufficient condition for uniform continuity. To this
aim, we begin with the following definition.

Definition 3.6. Let m : F → R+
0 be any set function, and fix u ∈ R+

0 . Given
any set A ∈ F , we say that A is u-decomposable (with respect to m), if there
exists a finite partition of A into sets D1, . . . , Dk of F , such that m(Di) ≤ u
for all i = 1, . . . , k. Thus we get that a positive finitely additive measure m is
continuous if, and only if, there exists an (O)-sequence (rj)j in R such that,
for each j ∈ N, the set X is rj-decomposable (see also Proposition 3.2).

Let (mn : F → R+
0 )n be a sequence of finitely additive equibounded mea-

sures. For every A ∈ F , set M(A) := supn∈N mn(A). Given A ∈ F , we say
that A is uniformly u-decomposable if it is u-decomposable with respect to M .

Thus we get that the mn’s are uniformly continuous if, and only if, there
exists an (O)-sequence (rj)j in R such that, for each j ∈ N, the set X is
uniformly rj-decomposable.

We also need the following lemma.

Lemma 3.7. Let (mn : F → R+
0 )n be a sequence of continuous, equibounded

and uniformly s-bounded measures, and let (rj)j be an (O)-sequence, according
with the uniform s-boundedness and continuity of each measure mn. Assume
that, for some j ∈ N, there exists A ∈ F , with M(A) 6≤ 2rj. Then there exists
H ⊂ A, H ∈ F , uniformly rj-decomposable and such that M(H) 6≤ 2rj.

Proof. Let (rj)j be as in the hypotheses. We note that such a sequence
does exist, by virtue of Lemma 2.8 and equiboundedness. Without loss of
generality, suppose j = 1, and set r = r1. By contradiction, suppose that
there exists A ∈ F , with M(A) 6≤ 2r, such that there are no uniformly r-
decomposable subsets H ∈ F , with M(H) 6≤ 2r. Without loss of generality,
suppose that m1(A) 6≤ 2r. By the continuity of m1, there exists a partition DA
of A into sets D1, . . . , Dk, such that m1(Di) ≤ r for all i = 1, . . . , k. By virtue
of the assumed contradiction, we get M(Dk1) 6≤ 2r for some index k1 ≤ k,
and thus, in correspondence with k1, there exists an integer n1 > 1 such that
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mn1(Dk1) 6≤ 2r. Set A1 := Dk1 and B1 := A \ A1. By difference, we get
m1(B1) 6≤ r. By the continuity of m1,m2, . . .mn1 , there exists a partition D
of A1 into sets D′1, D

′
2, . . ., D′s, such that m1(D′i)∨m2(D′i)∨ . . .∨mn1(D′i) ≤ r

for each i = 1, . . . , s. Again by contradiction, it follows: M(D′k2) 6≤ 2r for a
suitable index k2 ≤ s, and hence there exists an integer n2 > n1 such that
mn2(D′k2) 6≤ 2r. Put A2 := D′k2 , and B2 := A1 \ A2. By difference, we get
mn1(B2) 6≤ r. By virtue of continuity of m1,m2, . . . ,mn2 , select a partition
of A2 and a set A3 ⊂ A2, A3 ∈ F , such that M(A3) 6≤ 2r and mn2(A3) ≤ r.
Setting B3 := A2 \A3, by difference we have mn2(B3) 6≤ r. Proceeding in this
way, we find an increasing sequence of natural numbers (nh)h and a decreasing
sequence of sets (Ah)h in F , such that mnh

(Bh+1) 6≤ r for all h ∈ N, where
(Bh := Ah \ Ah+1)h is a disjoint sequence in F . This contradicts uniform
s-boundedness, and the lemma is proved.

We finally turn to the announced useful result.

Theorem 3.8. Under the same notations as in Lemma 3.7, if the mn’s are
positive, continuous, equibounded and uniformly s-bounded finitely additive R-
valued measures, then they are uniformly continuous.

Proof. By virtue of equiboundedness and thanks to Lemma 2.8, there exists
an (O)-sequence (rj)j , agreeing both with the uniform s-boundedness and with
the continuity of each measure mn. To prove the theorem, we shall show that,
for every j ∈ N, X is uniformly 2rj-decomposable. Fix any positive integer j,
and set r = rj . Suppose, for purposes of contradiction, that X is not uniformly
2r-decomposable. (From now on in this proof, the term “decomposable” will
always mean “uniformly decomposable.”) Then M(X) 6≤ 2r, and thus, by
Lemma 3.7, there exists a set A1 ∈ F , with M(A1) 6≤ 2r, but r-decomposable.
By the assumed contradiction, X \ A1 is not 2r-decomposable, and hence we
have M(X \ A1) 6≤ 2r. Again by Lemma 3.7, there exists an r-decomposable
set A2 ⊂ X \ A1, with A2 ∈ F , such that M(A2) 6≤ 2r. Since A1 and A2

are r-decomposable and X is not, then X \ (A1 ∪A2) is not 2r-decomposable,
and thus, again by Lemma 3.7, there exists an r-decomposable set A3 in F ,
disjoint both from A1 and from A2, such that M(A3) 6≤ 2r. Thus we get the
existence of a sequence (Ak)k of pairwise disjoint r-decomposable sets of F ,
such that M(Ak) 6≤ 2r, ∀ k ∈ N. This contradicts uniform s-boundedness of
the measures mn, and thus X is 2r-decomposable. So the assertion follows.

4 Sobczyk-Hammer Decompositions.

In this section, we deduce existence and convergence theorems for Sobczyk-
Hammer decompositions, first for σ-additive measures, and then for finitely
additive ones.
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For σ-additive measures m, we shall obtain a decomposition of sectional
type; i.e., we shall find a suitable set H ∈ A, such that the restrictions of m
to H and to Hc are continuous and atomic respectively.

We begin with a lemma.

Lemma 4.1. Suppose m : A → R is a positive, σ-additive measure. If m is
not atomic, then there exists at least a set F ∈ A with m(F ) 6= 0, such that
m|F is continuous.

Proof. Since m is not atomic, there exists a continuous non-trivial measure
µ : A → R+

0 , such that µ ≤ m. It is readily seen that µ is σ-additive. Let now
H be the family of all sets H ∈ A such that µ(H) = 0, and define

α = sup{m(H) : H ∈ H}. (4)

By super Dedekind completeness, there exists a sequence (Kn)n in H, such
that α = supn m(Kn). Without loss of generality, we can assume that the
sequence (Kn)n is non-decreasing. Then, m(K) = α and µ(K) = 0, where
K =

⋃∞
n=1 Kn.

Put F = Kc, and let us show that F is the required set. First of all, it is
easy to check that the measure m|F is absolutely continuous with respect to
µ. Indeed, if there exists a set G ∈ A such that µ(G) = 0 and m|F (G) > 0,
then m[(G ∩ F ) ∪ K] = m(G ∩ F ) + m(K) > α. But µ[(G ∩ F ) ∪ K] =
µ(G ∩ F ) + µ(K) = 0, and therefore α could not be the supremum in (4), a
contradiction. Thus, by virtue of Theorem 3.5, m|F is continuous. Finally we
observe that m(F ) 6= 0, otherwise µ ≡ 0, which is impossible.

A useful consequence is the following.

Proposition 4.2. Let m1 and m2 be two atomic (continuous) σ-additive pos-
itive R-valued measures, defined on A. Then m1 +m2 is atomic (continuous).

Proof. The assertion concerning continuous measures is easy, so we deal only
with the atomic case. Let us assume that m1 and m2 are atomic, and m1 +m2

is not. Then there exists a set F , according with the previous Lemma. Thus
m1|F is continuous, and hence null. Similarly, m2|F is null; hence we obtain
(m1 +m2)|F = 0, a contradiction.

We now turn to the following Sobczyk-Hammer-type theorem.

Theorem 4.3. If m : A → R is a σ-additive positive measure, then there
exists a set E ∈ A, such that m|E is continuous and m|Ec is atomic.
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Proof. If m is atomic, it is enough to take E = ∅. Otherwise, by virtue of
Lemma 4.1, there exists F ∈ A such that m(F ) 6= 0 and m|F is continuous.
Denote by K the family of such sets, and write α := sup{m(F ) : F ∈ K}. By
super Dedekind completeness of R, there exists an increasing sequence (Fn)n
in K, such that supnm(Fn) = α. Put E =

⋃∞
n=1 Fn. We prove that E is the

requested set. First of all, note that

m|E(A) = sup
n
m|Fn

(A) (5)

for all A ∈ A. Moreover, it is easy to check that the m|Fn
’s, n ∈ N, are uni-

formly s-bounded. By Theorem 3.8, these measures are uniformly continuous,
and hence, by (5), m|E is σ-additive and continuous.

Finally we prove that m|Ec is atomic. Otherwise, by Theorem 4.1, there
exists a set H ∈ A, such that m(H) 6= 0, H ∩ E = ∅ and m|H is continuous.
Then H ∪ E ∈ K and m(H ∪ E) > α, a contradiction.

We now prove some convergence theorems for Sobczyk-Hammer-type de-
compositions.

First, consider the case of positive, σ-additive, (RO)-convergent measures.
Recall that a sequence (mk)k of finitely additive measures, defined on an
algebra F with values in R, is (RO)-convergent to a measure m, if there exists
an (O)-sequence (rn)n such that, for all A ∈ F and n ∈ N, an integer k0 can
be found, such that |mk(A)−m(A)| ≤ rn for all k ≥ k0.

In order to give convergence theorems for decompositions, we first prove
the following.

Proposition 4.4. Let (mn)n be a sequence of σ-additive positive R-valued
measures, defined on a σ-algebra A. If the mn’s are equibounded, then there
exists H ∈ A such that mn|H is continuous and mn|Hc is atomic for every
n ∈ N.

Proof. For any N ∈ N, denote by µN the measure µN :=
∑N
i=1 mi, and let

(AN , AcN ) be a Sobczyk-Hammer sectional decomposition of µN (See Theorem
4.3.). Set now, for positive integers N,L, with N ≤ L: BN,L :=

⋃L−N
p=0 AN+p,

BN :=
⋃∞
j=N BN,j =

⋃∞
j=N Aj . We have

mN |BN,L
≤
L−N∑
p=0

(µN+p)|AN+p

and hence mN |BN,L
is continuous. Letting L → ∞, we deduce, by uniform

s-boundedness, that the measure mN |BN
is continuous (see Theorem 3.8).
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Clearly, µN |Bc
N
≤ µN |Ac

N
is atomic, for every N . Set now

H :=
∞⋂
N=1

BN .

We shall show that H is the requested set. Indeed, for every N ∈ N, we have
mN |H ≤ mN |BN

; hence mN |H is continuous.
We finally prove that mN |Hc is atomic, for all N . To this aim, fix any

integer N ∈ N, and let β be any positive measure, β ≤ mN |Hc : we deduce
easily that β|Bc

N+p
≤ mN |Bc

N+p
≤ (µN+p)|Bc

N+p
for all p ∈ N, and hence β|Bc

N+p

is null, by atomicity of (µN+p)|Bc
N+p

. But β|Hc = (RO) limp→∞ β|Bc
N+p

; hence
β is null. This concludes the proof, by arbitrariness of N .

We now prove a first convergence theorem for Sobczyk-Hammer-type de-
compositions.

Theorem 4.5. Let (mn)n be a sequence of σ-additive positive R-valued mea-
sures, defined on a σ-algebra A. Suppose the mn are equibounded and (RO)-
convergent to a measure m. Then m is σ-additive, and the sequences (m1

n)n
and (m2

n)n are (RO)-convergent to the measures m1 and m2, where (m1
n,m

2
n),

(m1,m2) are the sectional Sobczyk-Hammer decompositions of mn and m re-
spectively, n ∈ N.

Proof. By virtue of the Vitali-Hahn-Saks theorem [4], the measures mn are
uniformly s-bounded, and hence the limit measure m is σ-additive. By ap-
plying Proposition 4.4 to the sequence (mn)n, we get the existence of a set
H ∈ A, which yields a sectional decomposition of the measures mn, n ∈ N,
and of the limit measure m. The assertion follows immediately from (RO)-
convergence.

We now turn to the finitely additive case.

Theorem 4.6. Let m : F → R be any positive, finitely additive, s-bounded
measure, defined on an algebra F . There exists a decomposition m = m1 +m2

of m into two positive, finitely additive measures, such that m1 is continuous
and m2 is atomic.

Proof. We make use of the Stone isomorphism; namely we consider the Stone
space S associated with F , and the algebraic isomorphism ψ from F to the
algebra Σ of all clopen subsets of S. From Theorem 2.12, the measure m0 :=
m ◦ψ−1 can be extended to a σ-additive measure m̃ on σ(Σ). Using Theorem
4.4, decompose m̃ into the sum m̃1+m̃2, in the sense of Sobczyk-Hammer,
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where m̃1 is continuous and m̃2 is atomic. Now, restrict m̃1 and m̃2 to the
algebra Σ, thus obtaining two measures, denoted by m1

S and m2
S respectively.

We shall see that m1
S and m2

S are continuous and atomic, respectively.
From this, it will follow immediately that the measures, m1 := m1

S ◦ ψ and
m2 := m2

S ◦ ψ, give the requested decomposition of m. Let us prove that m1
S

is continuous. By the continuity of m̃1, there exists an (O)-sequence (aj)j
such that, for all j ∈ N, a finite partition {D1, . . . , Dhj} in σ(Σ) can be found,
satisfying m̃1(Dk) ≤ aj , ∀ k = 1, . . . , hj . Now, by virtue of Theorem 2.12,
there exists an (O)-sequence (bj)j such that, for all D ∈ σ(Σ) and j ∈ N, it is
possible to find E ∈ Σ such that m̃1(E∆D) ≤ bj .

Moreover, thanks to Lemma 2.7, and denoting by U any majorant for all
elements mn(X), n ∈ N, there exists a subsequence (bjl)l such that N 7→
U ∧

∑∞
l=N bjl is still an (O)-sequence. Let us call (ρN )N such a sequence.

The (O)-sequence (aN + ρN )N can be used to prove continuity of m1
S .

To this aim, fix any N ∈ N. We can find a partition {D1, . . . , DhN
} in σ(Σ),

satisfying m̃1(Dk) ≤ aN for all k. For each index k, from 1 to hN , choose an
element Ek ∈ Σ such that m̃1(Ek∆Dk) ≤ bj(N+k) . We have m̃1(Ek) ≤ aN+ρN ,
for all k.

Let F1 = E1, F2 = E2 \E1, . . ., FhN
= EhN

\ (E1 ∪ . . . ∪EhN−1). Finally,
set FhN +1 := X \

⋃hN

k=1 Fk = X \
⋃hN

k=1Ek.
Of course, all the sets Fk, k ∈ N, belong to Σ, and

m1
S(Fk) = m̃1(Fk) ≤ bN + ρN ∀ k = 1, . . . , hN .

As to FhN +1, we see that

m1
S(FhN +1) =m̃1(X)−

hN∑
k=1

m̃1(Fk) = m̃1

(
hN⋃
k=1

Dk \
hN⋃
k=1

Ek

)

≤m̃1

(
hN⋃
k=1

(Dk∆Ek)

)
≤ U ∧

hN∑
k=1

bj(N+k) ≤ ρN .

Hence, the partition {F1, . . . , FhN
, FhN +1} satisfies the condition m1

S(Fk) ≤
ρN + aN for all k = 1, . . . , hN + 1, and thus m1

S is continuous.
We now prove the atomicity of m2

S . Let ν : Σ→ R be a continuous positive
finitely additive measure, such that 0 ≤ ν(A) ≤ m2

S(A), ∀A ∈ Σ. Then ν
admits a Carathéodory-type extension ν̃ to the whole of σ(Σ). The continuity
of ν̃ follows immediately from the continuity of ν. Thus we get that ν̃ is a
continuous finitely additive measure, such that 0 ≤ ν̃(A) ≤ m̃2(A), ∀A ∈
σ(Σ). Thanks to the atomicity of m̃2, we get ν̃ ≡ 0 on σ(Σ), and thus, a
fortiori, ν ≡ 0 on Σ.
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Before stating our final convergence theorem, we introduce some defini-
tions, in order to also consider measures taking values not necessarily positive.

Definition 4.7. Let F be any algebra of subsets of a nonempty setX. Assume
that m : F → R is any finitely additive bounded measure. We put:

m+(A) = sup{m(B) : B ∈ F , B ⊂ A},
m−(A) =− inf{m(B) : B ∈ F , B ⊂ A},
v(m)(A) = sup{|m(B)| : B ∈ F , B ⊂ A}

for all A ∈ F . The set functions m+, m−, v(m) are called the positive varia-
tion, negative variation and semivariation of m respectively. It is easy to see
that m+ and m− are positive finitely additive measures, m+ −m− = m, and
v(m) ≤ m+ +m− ≤ 2v(m).

For any bounded finitely additive measure m : F → R, we shall say that
m is continuous (resp. atomic) if the measure m+ +m− is.

From these definitions, it turns out immediately that any s-bounded finitely
additive measure m : F → R admits a Sobczyk-Hammer decomposition. It
suffices to decompose m+ and m−, and then apply Proposition 4.2.

We now state our final theorem.

Theorem 4.8. Let (mn)n be any sequence of s-bounded, equibounded, finitely
additive measures, defined on a σ-algebra A and taking values in R, and as-
sume that (RO) limn mn(A) = m(A) exists, for all A ∈ A. Then, m is
s-bounded, and the sequences (m1

n)n and (m2
n)n are (RO)-convergent to the

measures m1 and m2, where (m1
n,m

2
n), (m1,m2) are the continuous and the

atomic parts which form the Sobczyk-Hammer decompositions of mn, n ∈ N
and m, respectively.

Proof. Again, we make use of the Stone isomorphism technique. Denote
by Σ the algebra of clopen sets, which is isomorphic to A, and denote by
ψ : A → Σ such an isomorphism. Denote respectively by m̃n, m̃

+
n , and so

on, the countably additive extensions of mn,m
+
n and so on, to the σ-algebra

σ(Σ). (We observe that mn, n ∈ N, and m are s-bounded, and hence their
Stone extensions, m̃n, m̃ do exist.)

Thanks to Theorem 2.13, the sequence (m̃n)n is (RO)-convergent to m̃ in

σ(Σ). Now, apply Proposition 4.4 to the sequences (m̃+
n )n and (m̃−n )n; thus

obtaining a set H ∈ σ(Σ) such that:

(1) m̃+
n |H is continuous, m̃+

n |Hc is atomic (and the same for m̃−n );
(2) (RO) limn m̃n|H = m̃|H , (RO) limn m̃n|Hc = m̃|Hc .
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If we denote by m1
nS , m2

nS , m1
S , m2

S the restrictions to Σ of the measures
m̃n|H , m̃n|Hc , m̃|H , m̃|Hc , respectively, then m1

n := m1
nS◦ψ,m2

n := m2
nS◦ψ are

the Sobczyk-Hammer decompositions of the measures mn, and m1 := m1
S ◦ψ,

m2 := m2
S ◦ψ give the Sobczyk-Hammer decomposition of m. Clearly, (RO)-

convergence of the measures m̃n|H and m̃n|Hc implies (RO)-convergence of
m1
n to m1 and of m2

n to m2.
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[5] M. Duchoň and B. Riečan, On the Kurzweil-Stieltjes integral in ordered
spaces, Tatra Mountains Math. Publ., 8 (1996), 133–141.
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