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DISCONTINUOUS SEPARATELY
CONTINUOUS FUNCTIONS AND NEAR

COHERENCE OF P -FILTERS

Abstract

We prove that the problem of the existence of a discontinuous sepa-
rately continuous function f : X×Y → R for any non-discrete Tychonov
spaces X, Y of countable pseudocharacter is equivalent to NCPF (Near
Coherence of P -filters) which is independent of ZFC. Also for every non-
discrete Tychonov space X we find an abelian topological group G of
countable cellularity and a discontinuous separately continuous function
f : X ×G→ R.

1 Introduction.

All calculus students learn that a function of two real variables (x, y) can be
continuous for each fixed x and for each fixed y without being continuous
as a function of two real variables. The standard example illustrating this
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phenomenon is the function sp given by

sp(x, y) =

{
2xy
x2+y2 if (x, y) 6= (0, 0)
0 if(x, y) = (0, 0)

It is clear that sp is continuous as a function from the plane R2 to the real
line R everywhere except for the origin.

Looking at this standard example, one could suggest that any non-discrete
Tychonov spaces X,Y admit a discontinuous separately continuous function
f : X × Y → R. However, that is not true. The following theorem proven in
[HW, 6.14] supplies us with many counterexamples. We recall that a topolog-
ical space X is called a P -space if each Gδ-subset of X is open.

Theorem 1. [HW] Every separately continuous function f : X × Y → R
defined on the product of a P -space X and a locally separable space Y is
continuous.

On the other hand, we also have a positive result proved in [MMMS, 2.6].

Theorem 2. [MMMS] Suppose X,Y are Tychonov spaces with non-isolated
Gδ-points a ∈ X, b ∈ Y . If Y is first countable or locally connected at the point
b, then there is a separately continuous function f : X × Y → R continuous
everywhere except for the point (a, b). Moreover, this function f can be chosen
of the form f = sp ◦ (g × h), where g : X → R, h : Y → R are suitable
continuous functions.

In the compact case we have the following characterization from [My2].

Theorem 3. [M] Let X,Y be compact Hausdorff spaces with non-isolated
points a ∈ X, b ∈ Y . There exists a separately continuous function f : X ×
Y → R with a unique discontinuity point (a, b) if and only if there are sequences
(Un)n∈ω and (Vn)n∈ω of open non-empty subsets in X,Y that converge to the
points a, b, respectively.

The preceding theorems show that one should impose some restrictions on
the nature of non-isolated points a ∈ X, b ∈ Y to guarantee the existence of
a separately continuous function f : X × Y → R discontinuous at (a, b). In
light of this, we can ask

Question 1. Suppose X,Y are Tychonov spaces with non-isolated Gδ-points
a ∈ X, b ∈ Y . Is there a separately continuous function f : X × Y → R
discontinuous at (a, b)? Can such a function f be chosen of the form f =
sp ◦ (g × h) for suitable continuous functions g : X → R, h : Y → R?
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This question is closely connected with the problem of relationship between
various topologies on products of topological spaces, which appear naturally in
the theory of separately continuous functions, see [HW], [My1], [HK]. One such
natural topology on the product X × Y of two topological spaces is the cross
topology γ, i.e., the maximal topology coinciding with the product topology
on each “line” {x} × Y , X × {y} where x ∈ X and y ∈ Y . Another one is
the topology σ of separate continuity, i.e., the minimal topology on X ×Y for
which all separately continuous functions X × Y → R are continuous. It is
known that τ ⊂ σ ⊂ γ for every Tychonov spaces X,Y , where τ stands for
the usual product topology on X × Y . Now the question appears: for which
Tychonov spaces are these inclusions strict? According to Corollary 6.15 of
[HW] the equality (X × Y, σ) = (X × Y, τ) holds for any P -space X and any
locally separable space Y . Thus the following question appears naturally.

Question 2. Is (X × Y, σ) 6= (X × Y, τ) for any Tychonov spaces X,Y which
are not P -spaces?

Let us remark that a topological space X is a P -space if each point x ∈ X
is a P -point in X (the latter means that each Gδ-set G ⊂ X containing the
point x is a neighborhood of x in X). If x ∈ X is a non-isolated P -point, then
the pseudocharacter, tightness and π-character at x are all uncountable.

Trying to answer Questions 1 and 2, we discovered (to our big surprise)
that this can not be done in ZFC. Under Martin’s Axiom these questions
have negative answers. On the other hand, there are models of ZFC in which
answers to these questions are affirmative. To describe these models we need
to recall the notion of near coherence of filters introduced and studied in [Bl],
[BS].

Two filters F1, F2 on a set S are said to be near coherent if there is a
finite-to-one function h : S → S such that h(F1)∩ h(F2) 6= ∅ for any F1 ∈ F1,
F2 ∈ F2. A function h : S → S is said to be finite-to-one if h−1(s) is finite for
every s ∈ S. We recall that a filter on a set S is a collection F 63 ∅ of subsets of
S, closed with respect to supersets and intersections. If

⋂
F∈F F = ∅, then the

filter F is called free. Next, F is called a P -filter if every countable collection
C ⊂ F has a pseudointersection in F , i.e., a set A ∈ F such that A\C is finite
for every C ∈ C.

The following theorem reduces the problem of the existence of discontinu-
ous separately continuous functions to the near coherence of P -filters.

Theorem 4. The following statements are equivalent.
1. For any Tychonov spaces X,Y with non-isolated Gδ-points a ∈ X, b ∈ Y

there are continuous maps g : X → R, h : Y → R and a function
ψ : R × R → R such that the function f = ψ ◦ (g × h) : X × Y → R
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is separately continuous, discontinuous at (a, b) and continuous at other
points of X × Y .

2. For any countable spaces X,Y with a unique non-isolated point there is
a discontinuous separately continuous function f : X × Y → R.

3. (X × Y, γ) 6= (X × Y, τ) for any countable spaces X,Y with a unique
non-isolated point.

4. Any two free P -filters on a countable set are near coherent.

The last statement of Theorem 4 will be abbreviated as NCPF (Near Co-
herence of P -Filters) by analogy with NCF (Near Coherence of Filters) intro-
duced and studied in [Bl]. We recall that NCF means that any two free filters
on a countable set are near coherent. NCF contradicts Martin’s Axiom but
holds in some models of ZFC, see [BS] or [HM, p.100]. The following theorem
describes the relationship between NCPF, NCF, Martin’s Axiom, the Contin-
uum Hypothesis and the small cardinals d (the dominating number) and t (the
tower number), see [vD] or [Va].

Theorem 5. (NCF) ⇒ (NCPF) ⇒ (t 6= d) ⇒ (¬MA) ⇒ (¬CH).

Since both NCF and CH are independent of ZFC, we get that NCPF as
well as all the equivalent statements of Theorem 4 are independent of ZFC.

We do not know if NCPF is strictly stronger than NCF.

Problem 6. Is there a model of ZFC in which NCPF holds but NCF fails? In
particular, does NCPF hold in the Shelah’s model [Wi] containing no P-point?

In this respect it is interesting to notice that assuming NCF in place of
NCPF allows us to construct discontinuous separately continuous functions of
some special type and take the function ψ from Theorem 4(1) equal to the
standard separately continuous function sp, defined at the beginning of the
paper.

Theorem 7. Under NCF, for any Tychonov spaces X,Y with non-P-points
a ∈ X, b ∈ Y , there exist continuous functions g : X → R and h : Y → R
such that the separately continuous function f = sp ◦ (g × h) : X × Y → R is
discontinuous at (a, b). If in addition {a} and {b} are Gδ-sets, then one can
make f continuous at all points other than (a, b).

This theorem implies

Corollary 8. Assume NCF. If each separately continuous function f : X ×
Y → R defined on the product of two Tychonov spaces X,Y is continuous,
then one of these spaces is a P-space.
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Problem 9. Are Theorem 7 and Corollary 8 true under NCPF?

According to Corollary 8, it is consistent to assume that any Tychonov
non-P -spaces X,Y admit a discontinuous separately continuous function f :
X × Y → R. As Theorem HW shows, the situation changes if one of the
spaces X or Y is a P -space and the other is locally separable. It is natural to
ask if the local separability in this theorem can be replaced by the countable
cellularity. We shall show that this cannot be done.

We recall that a topological space X has countable cellularity if any col-
lection of pairwise disjoint non-empty open subsets of X is at most countable.
Among the most important examples of topological spaces with countable
cellularity are the σ-compact topological groups and their subgroups (which
admit an inner characterization as σ-bounded groups); see [Tk2]. We recall
that a topological group G is called σ-bounded if it is a countable union of
totally bounded subsets (a subset A ⊂ G is totally bounded if for every non-
empty open set U ⊂ G there is a finite subset F ⊂ G with A ⊂ (F ·U)∩(U ·F )).
According to Tkachenko’s Theorem [Tk1], each σ-bounded topological group
(being a dense subgroup of a σ-compact group) has countable cellularity.

Our last theorem shows that the local separability of the space Y in The-
orem HW cannot be replaced by the countable cellularity of Y .

Theorem 10. For any non-discrete Tychonov space X there is a σ-bounded
abelian topological group G and a discontinuous separately continuous function
h : X ×G→ R.

2 Proof of Theorem 10.

The proof of Theorem 10 relies on the following

Lemma 2.1. For every non-discrete Tychonov (P -)space X there exists a
Tychonov (P -)space Y with a unique non-isolated point and a bounded discon-
tinuous separately continuous function f : X × Y → R.

Proof. The spaceX, being non-discrete, contains a non-isolated point a ∈ X.
Let τ(a) be the set of all neighborhoods of the point a in X. For any U ∈ τ(a)
let ↓ U = {V ∈ τ(a) : V ⊂ U}. Let b /∈ τ(a) be any point. On the union
Y = {b} ∪ τ(a) consider the topology in which all points y ∈ τ(a) are isolated
while the sets {b}∪ (↓U), U ∈ τ(a), are neighborhoods of the point b. Clearly,
if X is a P -space, then so is the space Y .

Next, we define a discontinuous separately continuous function f : X ×
Y → [0, 1]. For every neighborhood U ∈ τ(a) of a, fix a continuous function
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fU : X → [0, 1] such that maxx∈X fU (x) = 1 and fU ({a} ∪ (X \ U)) ⊂ {0}.
Define a function f : X × Y → [0, 1] by the formula

f(x, y) =

{
0 if y = b,

fU (x) if y = U ∈ τ(a).

It is easy to see that the function f is separately continuous but discontinuous
at the point (a, b).

Proof of Theorem 10. Given a non-discrete Tychonov space X let f : X×
Y → R be a bounded discontinuous separately continuous function provided by
Lemma 2.1. For every x ∈ X let βfx : βY → R be the continuous extension
of the bounded continuous function fx : Y → R, fx : y 7→ f(x, y), onto
the Stone-Čech compactification βY of Y . Next, let A(βY ) ⊃ βY be a free
abelian topological group of βY (see [Ma]) and hx : A(βY ) → R be a unique
continuous group homomorphism extending the function βfx. Let G be the
group hull of the set Y in A(βY ). It is clear that G, being a subgroup of
the σ-compact group A(βY ), is a σ-bounded group and each element g ∈ G
can be written as g = k1y1 + · · · + knyn for some n ∈ N, k1, . . . , kn ∈ Z, and
y1, . . . , yn ∈ Y . Finally, consider the function h : X × G → R defined by
h(x, g) = hx(g).

It is clear that for every fixed x ∈ X the function h(x, ·) : G → R is a
continuous group homomorphism. To see that h(·, g) : X → R is continuous
for every fixed g ∈ G, observe that

h(x, g) = hx(g) = k1fx(y1) + · · ·+ knfx(yn) = k1f(x, y1) + · · ·+ knf(x, yn),

where g = k1y1 + · · ·+ knyn.
Therefore, h : X × G → R is a separately continuous function. Since

h|X × Y = f , the function h is discontinuous.

3 Proof of Theorem 7.

Let X1, X2 be Tychonov spaces with non-P-(Gδ-)points ai ∈ Xi for i = 1, 2.
Assuming NCF we have to find continuous maps fi : Xi → R for i = 1, 2 such
that the separately continuous function f = sp ◦ (f1 × f2) : X1 ×X2 → R is
discontinuous at (a1, a2) (and continuous at other points of X1 ×X2).

For every i = 1, 2 fix an Fσ-subset Fi ⊂ Xi with ai ∈ F̄i \ Fi and a
continuous function αi : Xi → [0, 1] such that αi(ai) = 0 and αi(Fi) ⊂ (0, 1].
Let Bi = α−1

i (0). Since a ∈ F̄i and Fi ∩ Bi = ∅, we conclude that Bi is
not a neighborhood of ai in Xi. If ai is a Gδ-point of Xi, then we may take
Fi = Xi \ {ai} and get that Bi = {ai}.
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Now consider the separately continuous function sp◦(α1×α2) : X1×X2 →
R. It is easy to see that it is continuous on the set X1 ×X2 \B1 ×B2.

If this function is discontinuous at the point (a1, a2), then we finish the
proof. This is so if for some i = 1, 2 the image αi(W ) of any neighborhood
W ⊂ Xi of ai is a neighborhood of zero in [0, 1].

Next, consider the (non-trivial) case when sp ◦ (α1 × α2) is continuous at
(a1, a2) and for every i ∈ {1, 2} there is a neighborhood Wi ⊂ Xi of the point
ai whose image αi(Wi) is not a neighborhood of zero in [0, 1]. This means
that αi(Wi) contains many “holes” tending to zero. Using this fact, construct
a continuous map ri : αi(Wi) → S0 of αi(Wi) onto the convergent sequence
S0 = {0} ∪ S where S = { 1

n : n ∈ N}. This map may be chosen so that
r−1
i (0) = {0}. Observe that the family

Fi = {S ∩ ri ◦ αi(U) : U ⊂Wi is a neighborhood of ai}

is a free filter on the countable set S.
NCF implies that the filters F1 and F2 are near coherent. Hence there is a

finite-to-one function β : S → S such that β(A1)∩β(A2) 6= ∅ for any Ai ∈ Fi,
i = 1, 2. The function β admits a unique continuous extension β̄ : S0 → S0

with β̄(0) = 0. For every i = 1, 2, pick a continuous function λi : Xi → [0, 1]
such that λi(Xi\Wi) = {0} while λ−1

i (1) is a neighborhood of ai in Xi. Define
a continuous function fi : Xi → [0, 1] letting

fi(x) =

{
λi(x) · β̄ ◦ ri ◦ αi(x) + (1− λi(x))αi(x) if x ∈Wi,
αi(x) if x 6∈Wi.

We claim that the separately continuous function f = sp◦(f1×f2) : X1×X2 →
R is discontinuous at (a1, a2) and continuous on the set X1 ×X2 \B1 ×B2.

The continuity of f on the set X1×X2\B1×B2 follows from the continuity
of sp on R2 \ {(0, 0)} and the inclusions fi(Xi \Bi) ⊂ (0, 1] for i = 1, 2.

Assuming that f is continuous at (a1, a2), we may find neighborhoods
Ui ⊂ λ−1

i (1) ⊂ Wi of the points ai, i = 1, 2 such that f(U1 × U2) ⊂ (−1, 1).
Let Ai = S ∩ ri ◦ αi(Ui) ∈ Fi for i = 1, 2. Since β(A1) ∩ β(A2) 3 y for
some y ∈ S, there exist points xi ∈ Ui, i = 1, 2, such that y = β ◦ r ◦ αi(xi)
for i = 1, 2 which yields that f(x1, x2) = sp(y, y) = 1, a contradiction with
f(x1, x2) ∈ f(U1 × U2) ⊂ (−1, 1). �

4 Proof of Theorem 4.

To prove Theorem 4 we shall verify the implications (1)⇒ (2)⇒ (3)⇒ (4)⇒
(1). In fact, the implications (1)⇒ (2)⇒ (3) are trivial.
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To prove the implication (4) ⇒ (1), repeat the proof of Theorem 7; to
handle the case in which one of the filters F1 or F2 fails to be a P -filter,
so that F1 and F2 fail to be nearly coherent, apply the following additional
lemma (using the same denotation as in the proof of Theorem 7).

Lemma 4.1. If B1 = {a1} and F1 is not a P -filter, then there is a function
ψ : R × R → R and continuous maps fi : Xi → [0, 1] for i = 1, 2 such
that the function f = ψ ◦ (f1 × f2) : X1 × X2 → R is separately continuous,
discontinuous at (a1, a2) and continuous on the set X1 ×X2 \B1 ×B2.

Proof. Since F1 is not a P -filter, there is a sequence (An)∞n=1 ⊂ F1 having
no pseudointersection in F1. Replacing each set An by A1 ∩ · · · ∩An, we may
assume that the sequence (An)∞n=1 is decreasing. Let R0 stand for the real line
endowed with the topology τ coinciding with the usual topology of the real
line at all points except for 0. A subset U ⊂ R is declared a neighborhood of
0 in the topology τ if U \ {0} is open in R and U ⊃ An ∪ {0} for some n ∈ N.

It is easy to construct a separately continuous function ψ : R0 × R → R
which is continuous on the set R0 × R \ {(0, 0)} and satisfies the condition

ψ(x, y) =

{
1 if 0 < x ≤ y = 1

n and x /∈ An for some n ∈ N,
0 otherwise

for any (x, y) ∈ S0 × S0.
For every i = 1, 2, pick a continuous function λi : Xi → [0, 1] such that

λi(Xi \Wi) = {0} and λ−1
i (1) is a neighborhood of ai in Xi. Next, for every

i = 1, 2 consider the continuous function fi : Xi → [0, 1] defined by

fi(x) =

{
λi(x) · ri ◦ αi(x) + (1− λi(x))αi(x) if x ∈Wi,
αi(x) if x 6∈Wi.

Observe that f−1
2 (0) = B2, f−1

1 (0) = B1 = {a1}, and f1 is continuous as a
function from X1 into R0. Then the function f = ψ ◦ (f1× f2) : X1×X2 → R
is separately continuous and continuous outside the set B1 × B2 = (f1 ×
f2)−1(0, 0).

It remains to verify that f is discontinuous at the point (a1, a2). Assuming
the converse we would find a neighborhood U1 × U2 ⊂ λ−1

1 (1) × λ−1
2 (1) of

(a1, a2) in X1 ×X2 such that f(U1 × U2) ⊂ (−1, 1). Let P = S ∩ r1 ◦ α1(U1).
Since P ∈ F1, P is not a pseudointersection of the collection {An}∞n=1, and
thus P\An is infinite for some n ∈ N. Since the sequence (An)∞n=1 is decreasing,
P \Am is infinite for all m ≥ n. Pick any point 1

m ∈ r2 ◦ α2(U2) with m ≥ n.
Since P \ Am is infinite, we can find a point 1

k ∈ P \ Am with k ≥ m. By
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the definition of ψ, ψ( 1
k ,

1
m ) = 1. Pick any points x1 ∈ U1, x2 ∈ U2 with

r1 ◦ α1(x1) = 1
k and r2 ◦ α2(x2) = 1

m . Then f(x1, x2) = ψ( 1
k ,

1
m ) = 1, a

contradiction which proves the discontinuity of f at (a1, a2).

This proves the implication (4) ⇒ (1) of Theorem 4. To prove the impli-
cation (3)⇒(4) we need several auxiliary results.

We define a subset A ⊂ N × N to be cross-finite if for every n ∈ N the
intersection A ∩ (N × {n} ∪ {n} × N) is finite. Under a standard cross-finite
subset, we understand a subset A ⊂ N × N of the form A =

⋃
n∈N h

−1(n) ×
h−1(n) for some finite-to-one function h : N→ N.

Lemma 4.2. Every cross-finite subset A ⊂ N × N lies in the union of two
standard cross-finite sets.

Proof. Inductively, we can construct a strictly increasing function f : N→ N
such that f(n) > n and f(n) ≥ max{k ∈ N : ∃i ≤ n with (k, i) ∈ A or
(i, k) ∈ A}. Next, define recursively the function g : N→ N letting g(1) = f(1)
and g(n) = f(g(n− 1)) for n > 1. Let also g(−1) = g(0) = 1. Finally, define
two finite-to-one functions h1, h2 : N→ N letting h−1

1 (k) = [g(2k−3), g(2k−1))
and h−1

2 (k) = [g(2k − 2), g(2k)) for k ∈ N. We claim that A ⊂ A1 ∪ A2,
where Ai =

⋃
k∈N h

−1
i (k) × h−1

i (k) for i = 1, 2. Indeed, fix any (i, j) ∈ A.
Without loss of generality, i ≤ j. Find n ∈ N with g(n− 1) ≤ i < g(n). Then
g(n−1) ≤ i ≤ j ≤ f(i) < f(g(n)) = g(n+1) and (i, j) ∈ [g(n−1), g(n+1))2 ⊂
A1 ∪A2.

Lemma 4.3. Two filters F1 and F2 on N are near coherent if and only if
there is a cross-finite subset A ⊂ N×N such that A∩ (F1 × F2) 6= ∅ for every
Fi ∈ Fi, i = 1, 2.

Proof. To prove the “only if” part, assume that the filters F1 and F2 are
near coherent. Then there is a finite-to-one function h : N → N such that
h(F1)∩h(F2) 6= ∅ for every sets Fi ∈ Fi, i = 1, 2. Consider the standard cross-
finite subset A =

⋃
n∈N h

−1(n)×h−1(n) of N×N. It follows that (F1×F2)∩A 6=
∅ for every Fi ∈ Fi, i = 1, 2.

To prove the “if” part, assume that A is a cross-finite subset of N×N such
that (F1 × F2) ∩A 6= ∅ for every F1 ∈ F1 and F2 ∈ F2. By Lemma 4.2, there
are two standard cross-finite subsets A1, A2 of N such that A ⊂ A1∪A2. Find
finite-to-one functions h1, h2 : N → N with Ai =

⋃
n∈N h

−1
i (n) × h−1

i (n) for
i = 1, 2. Assuming that the filters F1 and F2 are not near coherent we would
find sets F1 ∈ F1 and F2 ∈ F2 such that hi(F1)∩hi(F2) = ∅ for every i = 1, 2.
This yields (F1 × F2)× (A1 ∪A2) = ∅, a contradiction with A ⊂ A1 ∪A2 and
(F1 × F2) ∩A 6= ∅.
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Now we are able to prove the implication (3)⇒(4). Given a free filter F
on N let NF = N ∪ {∞} be the one-point extension of the discrete space N
with the sets {∞}∪F , F ∈ F , being neighborhoods of the unique non-isolated
point ∞ of NF .

Lemma 4.4. Two free P -filters F1 and F2 on N are near coherent if and
only if the cross topology γ on NF1 ×NF2 is strictly stronger than the product
topology.

Proof. If free filters F1 and F2 on N are near coherent, then by Lemma 4.3,
there is a cross-finite set A ⊂ N × N such that (F1 × F2) ∩ A 6= ∅ for every
Fi ∈ Fi, i = 1, 2. It is clear that the set U = (NF1 × NF2) \ A, being
a neighborhood of (∞,∞) in the cross topology, is not a neighborhood of
(∞,∞) in the product topology. Thus the cross topology in strictly stronger
than the product topology on NF1 × NF2 .

Next, we prove that the cross topology on NF1 × NF2 coincides with the
product topology if the free P -filters F1 and F2 are not near coherent. In
fact, it suffices to verify that these topologies coincide at (∞,∞). Let U ⊂
NF1 × NF2 be a neighborhood of (∞,∞) in the cross topology. Since F1, F2

are P -filters, we may find sets P1 ∈ F1, P2 ∈ F2 such that (P1 × {j}) \U and
({i}×P2)\U are finite for every i, j ∈ N with (∞, j), (i,∞) ∈ U . Moreover, we
can assume that P1 × {∞} ∪ {∞}× P2 ⊂ U . Then the set A = (P1 × P2) \ U
is cross-finite. By Lemma 4.3, there are sets F1 ∈ F1, F2 ∈ F2 such that
(F1 × F2)∩A = ∅. Replacing Fi by Fi ∩ Pi, if necessary, we may assume that
Fi ⊂ Pi for i = 1, 2. Then F1 × F2 ⊂ U and ({∞} ∪ F1) × ({∞} ∪ F2) ⊂ U
which shows that U is a neighborhood of (∞,∞) in the product topology of
NF1 × NF2 .

5 Proof of Theorem 5.

First we recall some standard notation, see [vD], [Va]. We identify cardinals
with the smallest ordinals of the corresponding size. It is well known that each
ordinal α can be uniquely written as α = β + n, where β is a limit ordinal
and n ∈ ω (such n will be called the integer part of α and will be denoted by
n(α)).

Let ω stand for the set of finite ordinals, [ω]ω denote the set of all infinite
subsets of ω and ωω be the set of all functions from ω into ω. On ωω we
consider the usual partial order: f ≤ g iff f(n) ≤ g(n) for all n ∈ ω. A set
D ⊂ ωω is dominating if for every f ∈ ωω there is g ∈ D with f ≤ g.

For A,B in [ω]ω we say that A is almost included in B (denoted A ⊂∗ B) if
A\B is finite. A set A ⊂ ω is called a pseudo-intersection of a family T ⊂ [ω]ω
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if A ⊂∗ B for every B ∈ T . A family T ⊂ [ω]ω well-ordered by ⊃∗ is called
a (decreasing) scale. By a normal scale we shall mean a family T ⊂ [ω]ω for
which there are an ordinal α and a map f : α → T such that f(β) ⊂∗ f(γ),
f(γ + 1) ⊂ f(γ), and f(β) 63 n(β) for any ordinals γ < β < α. A family
T ⊂ [ω]ω is a tower if T is a scale having no infinite pseudo-intersection. Let

d = min{|D| : D is a dominating set in ωω},
t = min{|T | : T ⊂ [ω]ω is a tower}.

It is known that ℵ1 ≤ t ≤ d ≤ c, where c stands for the cardinality of contin-
uum. It is consistent to assume that any of the above inequalities is strict, see
[vD]. Martin’s Axiom (MA) implies the equality t = d = c, see [Ru, 8] or [Va].

Among the implications (NCF)⇒ (NCPF)⇒ (d 6= t)⇒ (¬MA)⇒ (¬CH)
of Theorem 5, all except for the second one are trivial or well-known. The
second implication will be proved next.

Lemma 5.1. If t = d, then there are two free P -filters F1, F2 on ω that are
not near coherent.

Proof. Assume that t = d and let D = {gα : α < d} be a dominating set
in ωω with g0 ≡ 0. By transfinite induction we shall construct normal scales
T1 = {Xα : α < d} and T2 = {Yα : α < d} of subsets of ω such that for every
ordinal α < d the following condition is satisfied:

Xα ∩ Yα = ∅ and gα(x) < y for every x, y ∈ Xα ∪ Yα with x < y. (∗α)
Let X0 = {2n + 1 : n ∈ ω} and Y0 = {2n + 2 : n ∈ ω}. Assume that

for some ordinal α < d we have constructed normal scales {Xβ : β < α} and
{Yβ : β < α} satisfying the conditions (∗β) for all β < α. Since α < d = t,
the scale {Xβ : β < α} is not a tower and hence has an infinite pseudo-
intersection I1 63 n(α). In case of a non-limit ordinal α, we may additionally
assume that I1 ⊂ Xα−1. The same argument allows us to find an infinite
pseudo-intersection I2 for the family {Yβ : β < α} such that I2 63 n(α) and
I2 ⊂ Yα−1 if α is not limit.

By induction, construct infinite disjoint subsets Xα ⊂ I1 and Yα ⊂ I2
such that gα(x) < y for any x, y ∈ Xα ∪ Yα with x < y. This completes the
inductive step.

For every i = 1, 2 consider the filter Fi = {F ⊂ ω : F ⊃ T for some T ∈ Ti}
whose base is the scale Ti. Using the facts that the cofinality of the cardinal
d is uncountable [vD, 3.1] and Ti is a scale, we can easily show that Fi is a
P -filter. Assuming that the P -filters F1, F2 are near coherent, we would find
a finite-to-one function h : ω → ω such that h(Xα) ∩ h(Yα) 6= ∅ for every
α < d. Since the set D is dominating, there is an ordinal α < d such that
gα(i) ≥ max{k ∈ ω : h(k) = h(i)} for each i ∈ ω. Since h(Xα) ∩ h(Yα) 6= ∅,
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there are i ∈ Xα and j ∈ Yα with h(i) = h(j). Since Xα ∩ Yα = ∅, we get
i 6= j. If i < j, then by (∗α) we get gα(i) < j and by the choice of gα,
j > gα(i) ≥ max{k ∈ ω : h(k) = h(i)} ≥ j, a contradiction. So, j < i. In this
case, we use (∗α) to get a contradiction: i > gα(j) ≥ i.
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