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Abstract

We consider a generalized version (GES) of the well-known Sev-
erini–Egoroff theorem in real analysis, first shown to be undecidable in
ZFC by Tomasz Weiss in [6]. This independence is easily derived from
suitable hypotheses on some cardinal characteristics of the continuum
like b and non(N ).

In this paper, we will consider the following Generalized Egoroff State-
ment, which is a version “without regularity assumptions” of the well-known
Severini–Egoroff theorem from real analysis:

GES Given a sequence (fn : n ∈ N) of arbitrary functions [0, 1] → R con-
verging pointwise to 0, for each η > 0 there is a subset A ⊆ [0, 1] of
outer measure µ∗(A) > 1 − η such that (fn) converges uniformly on
A.

This conjecture first emerged from some questions about the behaviour of
bounded harmonic functions on the unit disc in C; in particular, it has been
used in [2] to show the independence from ZFC of a strong Littlewood-type
statement about tangential approaches. In [6], the author shows the following:

1. In a model M obtained by an ℵ2-iteration with countable supports of
Laver forcing over a countable standard model M0 of ZFC + CH, GES
holds [6, theorem 1].
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2. If the continuum hypothesis CH holds [6, theorem 2], and more generally
if add(M) = c [6, theorem 7], then there is a counterexample to GES
(here c is the cardinality of the continuum and add(M) is the additivity
of the ideal of first category subsets of R).

The aim of this paper is to give a simple combinatorial version of GES (theorem
5), which can be then applied to prove either GES or ¬GES under suitable
hypotheses on the cardinal characteristics of the continuum: corollary 7 shows
the consistency of GES without an “ad-hoc” analysis of forcing extensions,
whereas proposition 8 and corollary 9 provide finer criteria for the failure of
GES, also involving c-Lusin sets.

There are other variants and generalizations of the Egoroff theorem which
have been studied in the literature. Nakano and Luxemburg isolated simple
combinatorial properties of Boolean algebras and of Riesz spaces which are
related to the classical Egoroff theorem; the simplest form in the case of a
Boolean algebra B is the following “Egoroff property”:

EP Given a doubly indexed sequence (bn
k ) of elements of B, such that (bn

k )k
converges monotonically to 1 for all n, there is a sequence (bm) converg-
ing monotonically to 1 and such that ∀m,n∃k (bm ≤ bn

k ).

The article [5] explains in detail these abstract Egoroff conditions and presents
a proof of the equivalence of the following two statements:

i. The Severini–Egoroff theorem holds for a measure space (X, E , µ).

ii. The measure algebra of (X, E , µ) (quotient of the σ-field E modulo the
ideal of µ-nullsets) has the EP.

Forgetting about measures, in [4] the authors completely characterize the sets
X for which the field of all subsets of X has the EP: these are precisely the
sets of cardinality |X| < b. Our approach uses some ideas which are similar
to the ones exploited in the proofs cited above, although our combinatorial
translation of GES is directly adapted for outer measures: to every pointwise
converging sequence of functions X → R, one associates an X-indexed family
of sequences N → N (via the order of convergence), and then one has to study
all subfamilies indexed by sets Y ⊆ X of maximal outer measure µ∗(Y ) =
µ∗(X).

As a preliminary remark, notice that in GES it is necessary to consider
Lebesgue outer measure to avoid simple counterexamples in ZFC:

Proposition 1. There is a decreasing sequence (fn : n ∈ N) of functions
[0, 1] → R, converging pointwise to zero, such that every subset A ⊆ [0, 1] on
which (fn) converges uniformly has Lebesgue inner measure zero.
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Proof. By a theorem of Lusin and Sierpiński, there exists a partition of [0, 1]
into countably many (in fact, even continuum many) pieces {Bn : n ∈ N}
each having full outer measure. Consider then the sequence (fn) where, for
every n ∈ N, fn is the characteristic function of the subset B≥n =

⋃
k≥n Bk

of the unit interval. Clearly, (fn(x)) converges monotonically to zero on every
point x ∈ [0, 1]; if (fn) converges uniformly on a subset A, A has to be disjoint
from B≥n̄ for some n̄ ∈ N, so µ∗(A) ≤ 1− µ∗(B≥n̄) = 0.

Fix once and for all a decreasing vanishing sequence ε = (εn)n∈N of positive
real numbers, e.g., εn = 2−n; consider the following function, mapping a
sequence of reals to its (ε-)order of convergence to zero:

oc : c0 → NN↑, defined on each a = (an) ∈ c0 as

(oc a)n = min
{
m : ∀l ≥ m

(
|al| ≤ εn

)}
,

(1)

where c0 denotes the set of infinitesimal real-valued sequences and NN↑ ⊆ NN
is the set of nondecreasing sequences of natural numbers.

Using the natural identification of N(XR) with X(NR), we can view a se-
quence of real-valued functions X → R converging pointwise to zero as a single
function F : X → c0, and then study the associated order of convergence,
oc F = oc ◦F : X → NN↑.

Lemma 2. F converges uniformly to zero if and only if the range of oc F is
bounded in (NN,≤), where ≤ is the partial order of everywhere domination:
α ≤ β iff ∀n (αn ≤ βn).

Proof. This is just a restatement of the definition of uniform convergence:

F converges uniformly to 0 ↔
↔ ∀n ∃m ∀x ∈ X ∀l ≥ m

(
|Fl(x)| ≤ εn

)
↔

↔ ∃ (mn) ∈ NN ∀n ∀x ∈ X
(
(oc F (x))n ≤ mn

)
.

Lemma 3. For all ϕ : X → NN↑, there exists a sequence F of real-valued
functions on X converging pointwise to 0 with order oc F = ϕ.

Proof. It is sufficient to prove the lemma pointwise. Given a nondecreas-
ing sequence of natural numbers α ∈ NN↑, we construct a sequence a ∈ c0

converging to 0 with order α. For that, just let

a = (an)n∈N where an = inf {εk : αk ≤ n} ;

it is straightforward to check that this works; i.e., oc a = α.
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Let µ∗ be an upward continuous outer measure on a set X; i.e., an outer
measure Pow X → [0,+∞] satisfying

A =
⋃
n∈N

An → µ∗(A) = lim
n→∞

µ∗
( ⋃

k<n

Ak

)
.

For every sequence F of real-valued functions on X converging pointwise to
zero, consider the statement

GES(X, µ∗, F ) for each M < µ∗(X), there is a subset A ⊆ X such that
µ∗(A) > M and F converges uniformly on A.

The Generalized Egoroff Statement relative to the space (X, µ∗) is the formula

GES(X, µ∗) = ∀F GES(X, µ∗, F ).

Clearly, our original statement GES is just GES([0, 1],m∗), where m∗ is Le-
besgue outer measure on the unit interval [0, 1] ⊆ R. Denote by Kσ the
σ-ideal generated by the bounded subsets of (NN,≤); equivalently, Kσ is the
family of those subsets which are bounded with respect to the order ≤∗ of
eventual domination,

α ≤∗ β ↔ ∀∞n (αn ≤ βn) ↔ ∃n ∀k ≥ n (αk ≤ βk) (α, β ∈ NN),

and Kσ is also the σ-ideal generated by the compact subsets of the Baire space
NN (see [3]).

Lemma 4. GES(X, µ∗, F ) holds iff there is a subset Y ⊆ X such that µ∗(Y ) =
µ∗(X) and oc F [Y ] ∈ Kσ.

Proof. Fix an increasing sequence of positive real numbers (Mn) with limit
µ∗(X). Assume GES(X, µ∗, F ): by lemma 2, for every n ∈ N, there is a subset
An ⊆ X such that µ∗(An) > Mn and oc F [An] is bounded in NN. Taking Y =⋃

n∈N An, Y has outer measure equal to µ∗(X) and oc F [Y ] =
⋃

n∈N oc F [An]
is σ-bounded, as required. Conversely, suppose that µ∗(Y ) = µ∗(X) and
oc F [Y ] ⊆

⋃
n∈N Bn, where each Bn is a bounded subset of (NN,≤), and put

An = (oc F )−1[B0 ∪ . . . ∪Bn−1].

Since oc F [An] is bounded, F converges uniformly on every An (lemma 2);
moreover, as µ∗ is continuous and Y ⊆

⋃
n∈N An, for all m there is some n

such that µ∗(An) > Mm, that is, GES(X, µ∗, F ) holds.

Theorem 5. GES(X, µ∗) holds if and only if for all functions ϕ : X → NN,
there is a subset Y ⊆ X such that µ∗(Y ) = µ∗(X) and ϕ[Y ] ∈ Kσ.
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This theorem provides a translation of GES into a purely set-theoretical
statement.

Proof. The “if” direction follows directly from lemma 4 using ϕ = oc F . For
the converse, consider the function Θ which maps a sequence α = (αn)n∈N to

the nondecreasing sequence
(∑

k≤n αk

)
n∈N

: it is a bijective order morphism

(NN,≤) → (NN↑,≤) satisfying α ≤ Θ(α). Therefore, for all Y ⊆ NN, Θ[Y ] is
(σ-)bounded iff Y is (σ-)bounded. Assume GES(X, µ∗) and let ϕ be a function
X → NN. By lemma 3, there exists a sequence F of real-valued functions
converging pointwise to 0 with oc F = Θ ◦ ϕ, so there is a set Y ⊆ X of such
that µ∗(Y ) = µ∗(X) and Θ[ϕ[Y ]] = oc F [Y ] ∈ Kσ (lemma 4); i.e., ϕ[Y ] ∈ Kσ

as desired.

Remark. Theorem 5 is still valid for measure spaces (X, µ) and the classical
Egoroff Statement, provided that we only consider measurable maps ϕ and
measurable subsets Y ⊆ X. Thus, theorem 5 entails the Severini–Egoroff
theorem: if µ is finite and ϕ : X → NN is measurable, the image measure ϕ∗µ
is a finite Borel measure on NN, hence it is regular, and it is always supported
by a σ-compact subset.

Recall that the bounding number b = non(Kσ) (see [3]) is the smallest
possible size of a subset of NN not belonging to Kσ. Let us also denote with
o(X, µ∗) the least cardinality of a subset of X having outer measure equal to
µ∗(X); when X = [0, 1] and µ∗ = m∗ (Lebesgue outer measure), this cardinal
is well-known.

Lemma 6. o([0, 1],m∗) = non(N ), that is, o([0, 1],m∗) is the least size of a
Lebesgue non-null subset of [0, 1].

Proof. The inequality non(N ) ≤ o([0, 1],m∗) is obvious. Consider a non-null
set A ⊆ [0, 1] of size non(N ); the sum (modulo 1) Ã = A + Q has cardinality
non(N ) too, and we claim that it is a set of full outer measure, thus proving
the reverse inequality non(N ) ≥ o([0, 1],m∗). In fact, let E be any measurable
set containing Ã: the set

Ẽ =
⋂
q∈Q

(q + E) ⊆ E

is measurable, Q-invariant and non-null (since it contains Ã), so it has measure
1 by the Zero-One law (see [1]); it follows that E has measure 1 too, and
therefore m∗(Ã) = 1.
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Corollary 7. Assuming o(X, µ∗) < b, GES(X, µ∗) holds. In particular,
non(N ) < b implies GES1.

Proof. Fix a subset Y ⊆ X of maximal outer measure with |Y | = o(X, µ∗);
then every function ϕ : X → NN maps Y onto a set of cardinality less than b,
hence ϕ[Y ] ∈ Kσ.

We can also invoke theorem 5 to prove sufficient conditions for the failure
of GES. Precisely, we infer ¬GES(X, µ∗) by constructing (under suitable hy-
potheses) a set Z ⊆ NN of cardinality |Z| ≥ |X| such that all subsets of Z
belonging to Kσ have size less than o(X, µ∗). Once this is achieved, if ϕ is
any injection X → Z, no subset Y ⊆ X of outer measure µ∗(Y ) = µ∗(X) can
be mapped onto an element of Kσ, because |ϕ[Y ]| = |Y | ≥ o(X, µ∗). In order
to state the next proposition, we recall that the dominating number d ≥ b is
the least cardinality of a cofinal subset of (NN,≤∗) and that a κ-Lusin set is a
subset L ⊆ R of cardinality κ whose meager (i.e., Baire first category) subsets
have size less than κ.

Proposition 8. Assume o(X, µ∗) = |X| = κ; then GES(X, µ∗) fails in each
of the following cases:

1. κ = b;

2. κ = d;

3. there exists a κ-Lusin set.

Proof. Following the plan outlined before stating the proposition, we try
to build a “κ-Lusin set” Z for the ideal Kσ instead of the ideal of meager
sets. This is automatic under hypothesis (3): every (true) κ-Lusin set has the
required properties, since all compact subsets of NN have empty interior and
thus every Kσ set is meager.

Assume κ = b and let
{
αξ

}
ξ<b

be an unbounded family in (NN,≤∗). By
transfinite recursion, we build a well ordered unbounded chain Z =

{
βξ

}
ξ<b

of length b. After the construction of all βη for η < ξ, pick βξ among the
strict ≤∗-upper bounds of the set

{
αξ

}
∪ {βη}η<ξ (which has size less than b

and thus is ≤∗-bounded). It is clear that no ≤∗-bounded subset of Z can be
cofinal in Z, hence all Kσ subsets of Z have cardinality < b.

1The fact that GES holds when there is a subset Y of [0, 1] of full outer measure and size
less than b has also been pointed out by I. Rec law (see [6]). This is also a consequence of
[4, theorem 2], since the field of all subsets of such a Y has the abstract Egoroff property
EP, which means that for all pointwise converging sequences of functions Y → R, Y is the
union of a countable increasing sequence of subsets Yn where the convergence is uniform.
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Finally, suppose κ = d and let
{
αξ

}
ξ<d

be a cofinal family in (NN,≤∗). We
build a set Z =

{
βξ

}
ξ<d

of cardinality d by transfinite recursion as follows:
after the construction of all βη for η < ξ, pick an element βξ which is not
≤∗ any element of the set {αη}η≤ξ ∪ {βη}η<ξ (which has size less than d and
thus is not ≤∗-cofinal). Z has the desired properties:

(
βξ

)
ξ<d

is a sequence
without repetitions, hence |Z| = d, and moreover, if A ⊆ Z is in Kσ, some αξ

has to eventually dominate all elements of A, which implies that A ⊆ {βη}η<ξ

has cardinality less than d.

Corollary 9. GES fails whenever at least one of the following hypotheses is
satisfied:

1. non(N ) = d = c;

2. there exists a c-Lusin set and non(N ) = c;

3. there exists a c-Lusin set and c is a regular cardinal.

The last two conditions provide an affirmative answer (at least when c is
regular or it coincides with non(N )) to a question posed by T. Weiss about
the failure of GES under the assumption that there are c-Lusin sets; he also
noticed that there are models of ZFC (e.g. the iterated Mathias real model,
where non(N ) = d = c) which contain no c-Lusin sets, but nevertheless satisfy
¬GES.

Proof. Assumptions (1) and (2) are just particular instances of cases (2)
and (3), respectively, of proposition 8. Moreover, hypothesis (3) is stronger
than both (1) and (2). If κ is a regular cardinal and there is a κ-Lusin set,
then cov(M) ≥ κ, and thus min {d,non(N )} ≥ cov(M) ≥ κ (see [1] for the
relevant definitions of these cardinal characteristics associated to the σ-ideals
M of meager sets and N of Lebesgue nullsets, as well as for the proofs in ZFC
of the stated inequalities).

Corollary 10 (T. Weiss). GES is undecidable in ZFC.

Proof. The hypothesis of corollary 7, and therefore GES, holds in the iterated
Laver real model (see [1] and the proof of theorem 1 in [6]). On the other hand,
non(N ) = d = c is certainly true (thus ¬GES holds) under the Continuum
Hypothesis CH or just Martin’s Axiom MA, which are consistent with ZFC.
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