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INEQUALITIES FOR GENERALIZED
RATIONAL FUNCTIONS

Abstract

In this paper, we obtain two inequalities for generalized rational
functions of one variable in L? spaces when a partition of the domain
with a suitable number of measurable subsets is considered.

1 Introduction.

Let u be the Lebesgue measure on R, and let n,m € N. Set {¢1, da,...,Pn} isa
set of linearly independent continuous functions on [a, b], and let {11, a2, ..., ¥ }
be a linearly independent continuous function set on the interval [a,b] satis-

fying a Haar condition [2]; i.e., 0 is the only function of the form 3" ¢;1;(x)
i=1

which has m or more roots on [a, b]. We denote by V' and W, respectively, the
subspaces generated by them. We consider the set of generalized rational func-
tions R := {P/Q: P e V,Q € W,Q # 0in [a,b]}. Clearly, all elements in R
can be written as P/Q, with [|Q1 = 1, where || 327"} a9 (2)[lh := Y7 ).
Henceforth, we assume that |Q||; = 1 for all Q € W. If D is a measurable set
and g is a measurable function on D, we consider the p-norm

1/p
ol = ([ ol an) . 0<p<.

and ||g|loo,p = sup ess,cplg(z)|. If D; C [a,b],1 < j < m, are pairwise disjoint
closed sets of positive measure, D = U”, D;, and f is a measurable function
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defined on [a, b] which satisfies a suitable condition, we obtain in Section 2 an
inequality of the following type:

, (1.1)

P
SKW‘@
p,D

1§j§mH QHOO,D]'

for all P/@Q € R. The function f = 0 satisfies the required condition over f.
Therefore, (1.1) is true in this case.

The Nikolskii type inequalities for algebraic polynomials ([3]); i.e., inequal-
ities of the form (1.1) when m = 1,¢;(z) = 1, and ¢;(z) = 2971,1 < j <n
does not hold for rational functions, as we shall show with an example. The
theory of inequalities for univariate and multivariate algebraic polynomials has
been developed extensively in the literature ([1], [3]). For certain classes of
polynomials, Nikolskii type inequalities have been considered in [1]. In Section
3, we give an estimate of the constant K of the inequality (1.1) in terms of
the u(D;), 1 < j <m, when f =0,n=1, ¢1(z) =1, and ¢;(z) = 2'~1,1 <
i < m. Moreover, we prove that if g is a continuous function which oscillates
r times; i.e., |g| has r local maximum or minimum in the interval (a,b), then
for any collection of measurable sets D; C [a,b], u(D;) > 0,1 < j < r+ 2,
with supD; <infDj 1,1 <j <r+1,it has

1
19lloe.p; = — o p i 1920,

(1.2)

As an application of (1.2) we prove that for any partition of the interval [a, b,
say a = ag < a1 < ... < ar42 = b, there exists a finite set of points, C C [a, b],
such that

> . o 1/p s ]
IIgIIp,[a,b]fogrjnslgﬂla; ajt1l ggg\g(y)\ (1.3)

for all continuous functions g who oscillate at most r times on [a, b].
As example of a class whose members oscillate at the most r-times on [a, b]
for some r € N, we can mention R in the following cases:

o ¢i(x) = 2711 < i < n, Yi(x) = 27711 < i < my ie., algebraic
rational functions;

e For n real numbers, \; < Ay < ... < A, let ¢;(z) = %1 < i <
7171/)1(95) = 1am = 17

e Quotients of trigonometric polynomials.
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2 Generalized Rational Functions.

We begin with a lemma, which is the key to prove the main theorem of this
Section. It can be interesting itself. We denote g|p the restriction of a function
g on the set D and V|p :={g|p:g € V}.

Lemma 2.1. Let D; C [a,b],1 < j < m, be pairwise disjoint closed subsets
of positive measure. Let D := UL, D; and suppose that f : D — R is an
essentially bounded function such that fW|p, V|p, = {0},1 < j < m.
Then, for each 0 < s < 1, there exists a constant o = a(s) > 0 that satisfies

w({re0: - gl ze min flr- Gl ) 2o e

for all P/Q € R. The constant o depends only on W, V, f,D;, and s.

PROOF. Clearly, (2.1) is equivalent to

w({rev: o= Gl =omin (-Gl ) ze @2

for all P/Q € R,\ € R—{0}. Suppose that (2.2) is not true, then we can get
0<s<1,1<jo<m,asequence \; € R— {0}, and a sequence P;/Qr € R
such that:

) 0< B i= |Aef = Bllny, = min {IAcf = £, } and

ii) the sets

dom (ren: st~ B2 oy By

satisfy u(Ag) — 0, for k — oc.

If we substitute Bik()\kf - %) instead of A\ f — % in i) and ii), we can assume

without loss of generality that || Ay f— % l|o0,p;, = 1. Only two cases can occur:
a) f # 0 on a measure positive subset of D,,, and b) f = 0 on D, (p-a.e.).
First, we suppose a). The condition fW|p, (1V|p, = {0} implies that all
elements in fW|p, +V|p, can only be written as (Qf — P)[p,,,Q € W,P €
V. We consider the norms over the linear space fW|p, € V|p,, defined by
01(Qf — P) = |Qf — Plloe.py, and pa(Qf — P) = [Qlloop, I/ loep,y, +
[ Plloc,D;, - On the other hand, we have

1QiAkf — Prlloo,n;, < [Qklloo,D;,

S — <K, = (23)

ol
Qk 00,Dj,
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for some constant K. Since ||f|[oo,n;, > 0, by the equivalence of the norms
p1 and pa, we get that Ay and || Pglle,p,, are bounded sequences. Therefore,
there are subsequences, denoted with the same index, such that Qp — Qg €
W, P, — Py € V,and Ay — Ag € R. Since W satisfies a Haar condition,
there exists 1 < ¢ < m such that |Qo(z)| > 0 for all z € D;. In addition, D; is

closed, thus, we have

b Py

— = Mf — — 2.4
Qk of Qo 24

uniformly on D;. As [Arf = G5 lleo,n; = [Aef = 5 loe,p,, = 1, we obtain

Arf —

H/\o - > 1. (2.5)

ol

QO 00,D;
Let t € (s,1). From (2.5) it follows that there is a p-measurable set B C
D;, p(B) > 0 such that |Aof(z) — Sz((a;)| >t for all x € B. Then, there exists
N such that

‘)\kf(x) - g’;(é)) ’ >s, Vk> N, Vx € B. (2.6)

It follows from (2.6) that B C Ay for all & > N. As consequence of ii), we
obtain p(B) = 0, which is a contradiction. Now we assume b). As in item
a), we obtain subsequences Py, and Qy, converging to Py and @, respectively,
and 1 <4 < m such that |Qo(z)] > 0 for all x € D;. If f =0 on D; (p-a.e.),
in a similar way to a), we get a contradiction. On the contrary, there is a set
T C D;, i(T) > 0 such that |f| has a positive lower bound on T'. In the case
that the sequence Ay is bounded, it has a convergent subsequence, and again
we get a contradiction. If the sequence Ay is not bounded, there exists N7 > 0

such that |Apf(z) — %| > 1, for all kK > N,z € T. Since % uniformly
converges to % on T, there is Ny > 0 such that |Agf(z) — %| > A f(x) —

%| — 155 for all k > N, 2 € T. Finally, we obtain |\, f(z) — %\ > s, for

all £ > max{Ny, No}, z € T which implies T' C Ay, for all & > max{Ny, No}.
Therefore, (T) = 0, which is a contradiction. O

Now, we prove the main result of this Section.

Theorem 2.2. Let D; C [a,b],1 < j < m, be pairwise disjoint closed subsets
of positive measure, and let 0 < p < co. Let D := U7, D;, and suppose that
[+ D — R s an essentially bounded function such that fW|p, V|p, =
{0}, 1 < j <m. Then there exists a constant K > 0 such that

i |7 - Gl <K= 5

1<jsm

p,D
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for all P/Q € R. The constant K depends only on p, D;, W,V, and f.
In particular, when f = 0, there exists a constant K > 0 such that
(2.7)

min
1<j<m

P
<K|—=
=g

al
Q 00,D; p,D

for all P/Q € R.

PROOF. Fix 0 < s < 1. Let 0 < a = a(s) be as in Lemma 2.1. For g €ER,
we consider the set

P s i -2, )

By the Lemma 2.1, we have u(A) > a. Then for all P/Q € R,

A=AP/Q) = {xeD:‘f(x)—

lr=5l = [l a
> [ |1 - SEB "du (2.8)
2als min [7-3l.,,)"
The result follows with K = 1/sal/?. O

We observe with a simple example that the inequality (2.7) is not true, in
general, if we consider only 7 sets D; with » < m. In fact, we can consider
m = 2, p=1, and the sequence

Py(z) 1/k
Qr(r)  1/k+(1—1/k)z

It is easy to see that there is not a constant M such that ||Py/Qkllco,p, <
M]||Py/Qk|l1,p,, for all k € N. Next, we see that the condition that the D, are
closed sets cannot be removed in Theorem 2.2. We take f =0, n =1, m =

2, ¢1(x) =1, and ¢;(x) = 271, i =1,2. Let

and D; = [0,1].

oo o0

1 1 1 1
PP | IR Py TR N
! U 2n' 2n —1 an 2 U 2n+1"2n

n=1 n=1
Then, for 0 < a < 1,

1

H H T
a+ (1 —a)zlle,D;

1
1—a)x Hl,[o,l] Cl-a

1
:f,j:LQmﬂH
e a+ (
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On the other hand,

lim 1/—Oé—oo
a—0t —Ina/(1—a)

So, the inequality (2.7) is not true.

3 Finite Oscillation Functions.

In this Section, we give an estimate for the constant K in (2.7), as a func-
tion of the numbers p(D;). Inequalities of this type for multivariate algebraic
polynomials have been given by Ganzburg and other authors (see [3]).

Definition 3.1. We shall say that a continuous function f : [a,b] — R os-

cillates r-times on [a, ] if |f| has exactly r local maximums or minimums in
(a,b).

We begin with an auxiliary lemma.

Lemma 3.2. Let f be a continuous function which oscillates r-times on [a, b].
Let D; C [a,b],1 < j < r+2, be a family of measurable sets, u(D;) >

0, supD; < inf Dj4q. Let o := 1§Ijn§i$+2”f”°°’Dj' IfA={1<j<r+2:

”f”oo,Dj = a}, then A <r+1.

PROOF. Let s := fA. Then there are s sets D;, w.lo.g. say D;, 1 < j <s,
such that | f|le,p, = a. Let x; € D;j, 1 < j < s, for i # k such that

|f(z;)] = a. Clearly, we must have a local maximum or minimum in each
interval (x;,2;41), 1 <4 < s— 1. As the sets D; are pairwise disjoint, it
follows that s — 1 < r. O

Theorem 3.3. Let f be a continuous function which oscillates r-times on
[a,b], and let 0 < p < oo. Let D; C [a,b],1 < j < r+2, be a family of
measurable sets, p(D;) >0, supD; <infDj;yq1,1<j<r+1. Then

i fllen, < ! £
1<gree 1T 100D = i (D) e Y 2D
1<i<r42

(3.1)

PROOF. If p = oo, it is trivial. Suppose that 0 < p < co. We write « :=

i v ={1<j < : = «}. Fi S
| Juin ) | flloo,p;> and A :={1 < j <7 +2: | fllc,n; = a}. First, we suppose

that sup D; <inf D;yq,1 <j <r+1. Lemma 3.2 implies that B := {1 < j <



INEQUALITIES FOR GENERALIZED RATIONAL FUNCTIONS 531

r+2:j ¢ A} # 0. Suppose that for all ¢ € B, inf,ep,|f(x)] < a. Then for
each i € B, there are z;,y; € D; such that | f(z;)| < @ < |f(y;)|- Therefore, for
each ¢ € B, there exists z; belonging to the interval of extremes x; and y; such
that |f(2;)| = . Since sup D; < inf Dj14,1 < j <r+1, then z; # 2k, i # k.
On the other hand, for each j € A, there exists t; € D; satisfying | f(¢;)] = o
As the points t; are different from the points z;, we get r 4+ 2 points x with
|f(z)| = a. Thus, the function f does not oscillate r-times on [a,b]. It is a
contradiction. In consequence, there is jo € B such that infyep, |f(z)] > .
Therefore, we obtain

I/

prt2p, 2 flp.p,, = infeep,, 1f(2)] 1(Ds)'? > ap(Dj,) V7,
as we want to show. Now, suppose supD; < inf D;;,1 < j < r+ 1. Let
E;(e) :=[inf Dj+e,supD; —€]ND;, 1 < j < r+2. For e sufficiently small, the
sets I (e) satisfy that u(E;(e)) > 0 and sup Ej(e) < inf Ej1q1(e), 1 < j <r+1.
We have proved, for the first part, that

1

i w(Ei(e))

i <
| Jnin [ flloo,2;(e) <

1/p I/ |p7U'}iij(€)' (3.2)

Finally, the Theorem follows by a limit process in (3.2) for € tending to 0. [

Remark 3.4. We note that the Theorem 3.3 gives an estimate of the constant
K in the inequality (2.7) for the particular case of algebraic rational functions
mentioned in Section 1, with n = 1. In fact, here r +2 =m .

The next example shows that the amount r 4 2 of sets D; in Theorem 3.3
is essential. Let f(z) =z, p = 2, D1 = [0,a|, and Dy = [—a,0] with a > 0.
Then

2 . .
[f1l2,0,0D, = 4/ §a3 < a®? = min{p(D1)"?, 1(D2)"?} min || f]|so, 0, UD -

Now, we give another example which shows that the condition sup D; <
inf Dj;41,1 < j <r+1,in Theorem 3.3 is also essential. Let f(z) = z%ﬂ and
p=1. Let a; > 0,1 <¢<3,and by =1 — a;. Consider the following sets

Dy = [b1, 1] U [ag,bl —|—CL2], Dy = —Dq,and D3 = [O,al] U [a3,b1 +a3].

Then p(D;) = 1,1 <@ < 3. It is easy to see that [|f|,,us p, — 0as a1 — 0,
as — 00, and a3 — oo. However, 113123 Il fllco.0; = 1/2. So, (3.1) is not true.
_/L_

An immediate consequence of Theorem 3.3 is the following Corollary.
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Corollary 3.5. Let B :={a; € [a,b] : 0 < j<r+2},a=ay<a; < ..<
ary2 = b, be a partition of the interval [a,b]. If

H:={CCB:CNlaj,aj41] #0,0<j <r+1}.

Then
. 1 .
1 llp fap) = ) min faj — aj] /pglgﬁgggmy)h (3.3)
for all continuous functions f oscillating at the most r times on [a,b] and for
all 0 < p < oo.

PROOF. If p = o0, it is trivial. Suppose that 0 < p < co. Let f be a continuous
function which oscillates at the most r times. We write D; = [a;,a;41],0 <
j <r+1. Given C € H, we have

. < 3 .
min|f(y)l < min_ | flle.p,

Therefore, Theorem 3.3 implies the inequality (3.3). O

The inequality (3.3) gives a lower bound for the p-norm of a continuous
function f, oscillating r times, in terms of the values of f on a finite set of
[(r + 3)/2] points, where [ ] denotes the integer part. In fact, we can take in
the Corollary 3.5, a; = a—|—ji’_7_;, 0<j<r+4+2and C={a+(2j—-1)
1<5<[(r+3)/2]}.

b—a .
r+2 °

Remark 3.6. Let F be the class of algebraic polynomials of degree less than
or equal to n. Let a; = a—l—j;’%fl, 0<j7<2n+1, be with a,b € R. By
Corollary 3.5, we get

(2n +1)1/P

< M )
S -

1§g1'1§1i2171L+1HPH00’[aj’aj+1] ”P”p,[a,b]a VP e F. (34)

A comparison of (3.4) with the well known Nikolskii inequality (see [3],
p-298),
8(n + 1)%/P

P <
1Pl ot < 3= a1

I1Pllpfap); VP € F, (3.5)

shows that as the constant for a suitable partition of the domain decreases,
the constant in (3.4) is of order n'/?, while that in (3.5) is of order n?/?.
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