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FIRST-RETURN LIMITS FOR FUNCTIONS
OF SEVERAL VARIABLES

Abstract

In this paper we begin the search for appropriate definitions of first-
return continuity and first-return approachability for functions of several
real variables. We do this by first reviewing the one dimensional theory
and then considering several candidate definitions in higher dimensions.

1 Introduction.

We shall be considering real-valued functions defined on the n-dimensional
cube, In ≡ [−1, 1]×[−1, 1]×...×[−1, 1] in Euclidean n-space, Rn. A continuous
function f : In → R is uniquely determined by its values on any countable
dense set in In. One of the initial questions in first-return analysis is whether
a Baire class one function is also completely determined by its values on a
countable dense set, and if so, how to determine that countable dense set
and how to compute the value of the function at any point in In. In brief, the
answer to this question is that a Baire class one function is uniquely determined
by its values on some countable dense set, and the algorithm for computing
values everywhere is extremely simple. Of course, unlike the situation for
continuous functions, not just any countable dense set will work for a Baire
class one function. However, if a function is Baire one, there are certain
countable dense sets which carry enough information to permit computation
of the value of the function at any point, provided that the countable dense set
is carefully enumerated. Before explaining further, we need to specify some
notation and terminology.
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Underlying all of our subsequent definitions is the notion of what we shall
call a trajectory. A trajectory is any sequence x = {xn}∞n=0 of distinct points
in In, whose range is dense in In. Any countable dense subset S of In is called
a support set and, of course, any enumeration of S produces a trajectory.

We shall use the standard symbol B(x, ρ) ≡ {y ∈ In : ||x − y|| < ρ} to
denote the open ball of radius ρ centered at x. Furthermore, for each subset
A of Rn, let r(A) denote the first element of the trajectory x that belongs to
the set A.

Definition 1.1. Let x ∈ In, and let x = {xn} be a fixed trajectory. The
first-return route to x, Rx,x = {wk}∞k=1, is defined recursively via

w1 = x0,

wk+1 =
{

r (B(x, ||x− wk||)) if x 6= wk

wk if x = wk.

When the trajectory x is understood, we set Rx = Rx,x. We say that a
function f : In → R is first-return recoverable with respect to x at x provided
that

lim
k→∞

f(wk) = f(x),

and if this happens for each x ∈ I, we say that f is first return recoverable
with respect to {xn}. Finally, we say that f is first-return recoverable if it is
first-return recoverable with respect to some trajectory.

The fundamental result concerning first-return recoverable functions is the
following.

Theorem 1.1. A function f : In → R belongs to Baire class one if and only
if f is first-return recoverable.

This was first proved in the one-variable case by Darji, Evans, and O’Malley
in [3] and extended to the several variable case by Darji and Evans in [1].

If the point (z, f(z)) is an isolated point in the graph of a Baire one function
f , then z will have to be in the range of any trajectory used to recover f . In
this case, the first-return route to z, Rz, is eventually constantly z. A natural
question is whether or not a function with no isolated points on its graph can
be recovered in such a way that the chosen sequence approaching each point
is not eventually constant. Here is a definition, making this precise, and a
theorem, giving a positive answer to this question in the one-variable case.



First-Return Limits for Functions of Several Variables 491

Definition 1.2. For each x ∈ In, the first-return approach to x based on
x = {xn}, Ax = {uk}, is defined recursively via

u1 = r(In \ {x}), and uk+1 = r(B(x, ‖x− uk‖) \ {x}).

We say that a function f : In → R is first-return approachable at x with respect
to the trajectory x provided

lim
k→∞

f(uk) = f(x).

We say that f is first-return approachable with respect to x provided it is
first-return approachable with respect to x at each x ∈ In. Likewise, f is said
to be first-return approachable provided there exists a trajectory with respect
to which f is first-return approachable.

The following characterization was presented by Darji, Evans, and Humke
in [2].

Theorem 1.2. The function f : I → R is Baire one with no isolated points
on its graph if and only if f is first-return approachable.

Definition 1.3. If O is a subset of In, is open in Rn, and has x as a limit
point, we define the first-return approach to x based on x = {xn} relative to
O as the sequence Ax,O = {yk} where

y1 = r(O \ {x}) and

yk+1 = r(O ∩B(x, ||x− yk||) \ {x})

and say that a function f : In → R is first return approachable at x with
respect to x and relative to the specified open set O provided

lim
k→∞

f(yk) = f(x).

2 Identifying the Points of Continuity of a First-Return
Recoverable Function.

It is well-known that the set of points of continuity of a Baire one function is
residual; i.e., it is the complement of a first category set. Thus, from Theorem
1.1, it follows that a first-return recoverable function f : In → R has residually
many points of continuity. If a trajectory x recovers such an f , the question
arises as to whether or not we can use x to identify the points of continuity.
We shall show that we can. This will lead to a characterization of continuous
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functions on In. Interestingly, we will also encounter a characterization of con-
tinuous functions on In (n ≥ 2) which does not apply to continuous functions
on I. We begin with the following lemma.

Lemma 2.1. Let f : In → R be first-return recoverable on In with respect to
the trajectory x. Then f is continuous at a point z ∈ In if and only if f is
first-return approachable at z via x relative to every open set having z as a
limit point.

Proof. If f is continuous at z, then it is obviously first-return approachable
at z via x relative to every open set having z as a limit point. Conversely,
suppose f is first-return recoverable via x on In and fails to be continuous at
a point z in In. We shall construct an open set G having z as a limit point
such that f is not first-return approachable at z via x relative to G. Since f
is not continuous at z, there exists a sequence {zn} converging to z and an
ε > 0 such that for each n ∈ N,

1 : ||zn+1 − z|| < ||zn−z||
4 .

2 : |f(zn)− f(z)| > ε.

We shall build the open set G by placing a small ball B(zn, rn) about each zn.
We define the radii rn inductively as follows:

Step 1: Choose r1 < ||z1−z||
2 so small that ||f(r(B(z1, r1))− f(z1)|| < ε

2 .
Set y1 = r(B(z1, r1)), and let j1 be such that y1 = xj1 .

Step k: Now, let k ∈ N and assume that rk, yk, and jk have all been
defined. Choose rk+1 < ||zk+1−z||

2 so small that

i).
(
B(zk+1, rk+1) \ {zk+1}

)
∩{xj : j ≤ max (j1, j2, . . . , jk)} = ∅ and

ii). |f(r(B(zk+1, rk+1))− f(zk+1)| < ε
2 .

Set yk+1 = r(B(zk+1, rk+1)), and let jk+1 be such that xjk+1 = yk+1.

Note that the balls B(zk, rk) are pairwise disjoint and that the open set
G = ∪∞k=1B(zk, rk) has z as a limit point. However, f is not first-return ap-
proachable at z via x relative to G because, by construction, the approachAz,G

contains a subsequence of the sequence {yn}, and for each n, |f(yn)− f(z)| >
ε
2 .

As an immediate consequence, we have the following characterization of
continuity:
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Theorem 2.1. A function f : In → R is continuous if and only if there is a
trajectory x such that at each x ∈ In, f is first-return approachable at x via x
relative to every open set having x as a limit point.

Next, we shall show that for n ≥ 2, we can replace open sets in the above
lemma and theorem by open connected sets. Neither result is true when n = 1,
as can be seen by considering the function

f(x) =

{
sin (1/x), if x 6= 0;
0 if x = 0.

For this function, it is easy to think of a trajectory x with respect to which f
will be first-return approachable at 0 relative to every connected set having 0
as a limit point, and an open set O having 0 as a limit point for which f will
not be first-return approachable at 0 via x relative to O.

Lemma 2.2. Suppose that f : In → R (n ≥ 2) has the property that there
exists a trajectory x such that for some x ∈ In, f is first-return approachable
at x via x relative to every open connected set having x as a limit point. Then
f is first-return approachable at x via x relative to every open set having x as
a limit point.

Proof. Let f , x, and x be as described. Let O be a subset of In that is open
in Rn and has x as a limit point; i.e., x ∈ O. Let {yn}∞n=1 be the first-return
approach to x via x relative to O. We shall construct an open connected set
O∗ having x as a limit point and for which

Ax,O∗ = Ax,O = {yn}∞n=1,

from which it follows that

lim
n→∞

f(yn) = f(x),

completing our proof.
For each positive integer k ≥ 2, let Tk be a connected subset of In \

B(x, ‖yk−x‖) that is open as a subset of Rn and that has three more properties:

(1) yk−1 ∈ Tk; (2) yk ∈ Tk; and (3) Tk ∩ {xj : j ≤ sk} = ∅.

Now let O1 denote the union of the connected components of O that contain
at least one point yk. Since Rn is locally connected, each of these components
is open as a subset of Rn. It follows that O1, a subset of In, is open as a subset
of Rn. Then let O∗ = O1 ∪ (∪∞k=2Tk). It follows that O∗, a subset of In, is an
open subset of Rn. Also, a standard argument shows that O∗ is connected.
Furthermore, by construction, we have
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Ax,O∗ = Ax,O

and our proof is complete.

From this and Theorem 2.1, we immediately obtain the following charac-
terization of continuous functions f : In → R when n ≥ 2.

Theorem 2.2. Let n ≥ 2. A function f : In → R is continuous if and only if
there is a trajectory x such that at each x ∈ In, f is first-return approachable
at x via x relative to every open connected set having x as a limit point.

3 Some One-Variable First-Return Concepts that Carry
Over Nicely to Several Variables.

There are a number of theorems concerning the first-return behavior of func-
tions of one variable whose statements make sense in the several variable set-
ting. Often the proof required for the several variable result requires only
cosmetic changes to the one variable proof, substituting open balls for open
intervals, for example. Other proofs require at least some mild reworking. In
this section, we will give examples of both types. These will provide insight
into how other results might be obtained.

As an example of a situation where some mild reworking is necessary to
take into account the more complex geometry of In, we start with a result of
Evans and Humke from [6] which states that a function on I is first-return
recoverable everywhere if and only if it is first-return recoverable except at a
scattered set of points, which is defined as follows:

Definition 3.1. A set S in In is called scattered if S contains no dense-in-
itself subset; equivalently, S is scattered if and only if it is a countable Gδ

set.

Before stating and proving this result in the several variable setting, we look
into a little background information. First, consider a function f : In → R
that is first-return recoverable via x at each x ∈ In except at a finite set
E = {e1, . . . , ej}. Then, clearly it is first-return recoverable everywhere on In

via the trajectory {yi} where

yi =

{
ei, if i = 1, . . . , j;
xi−j , if i ≥ j + 1.

(1)

On the other hand, if g denotes the characteristic function of the set Q of
points in In, all of whose coordinates are rational, then g is easily seen to be
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first-return approachable at each point of In \ Q via any trajectory lying in
In\Q. However, g is not everywhere first-return recoverable via any trajectory
because g has no points of continuity and hence is not a Baire one function.

Theorem 3.1. Let f : In → R. The following are equivalent:

1. f is recoverable.

2. f is recoverable except on a scattered set.

Proof. Since it is obvious that (1)⇒(2), it only remains to show that (2)⇒(1).
To this end, suppose D is a support set, E ⊂ In \D is scattered, and x = {xj}
is an ordering of D which recovers f except on E. We shall produce an order-
ing y of D ∪ E which recovers f on In. More specifically, we shall define y in
such a way that for each x ∈ In \ E, the first return route to x based on the
trajectory y, Rx,y, and the first return route to x based on the trajectory x,
Rx,x, have a common tail sequence. Indeed, we shall arrange things so that
for each x ∈ In \ E, Rx,y contains only finitely many points of E.

Enumerate E as {ek}. We shall define the modified trajectory y by insert-
ing each ek between two carefully chosen terms in x. Since E is scattered, it
is a countable Gδ, and we may write E = ∩∞i=1Gi, where each Gi is open and
G1 ⊃ G2 ⊃ . . . .

We first choose where to insert e1. Let r1 > 0 so that B(e1, r1) ⊆ G1. Let
S1 denote the hypersphere which is the boundary of B(e1, 2r1/3). Since S1 is
compact, we may cover it with a finite collection of balls B1 = {B(z1,i, r1/3) :
zi ∈ S1, i = 1, 2, . . . , p1}. Choose j1 so large that each ball in B1 contains an
xj for some j < j1. Note that if x /∈ G1, then there is an xj with j < j1 for
which ‖x − xj‖ < ‖x − e1‖. To see this, let z denote the nearest point in S1

to x. Then ‖x − e1‖ = ‖x − z‖ + 2r1/3. Next, choose a ball from B1 such
that z ∈ B(z1,i, r1/3). There is a j < j1 such that xj ∈ B(z1,i, r1/3). Then
‖x − xj‖ ≤ ‖x − z‖ + ‖z − xj‖ < ‖x − z‖ + 2r1/3 = ‖x − e1‖. We begin
the definition of y by inserting e1 between xj1 and xj1+1; that is, y begins as
{x1, x2, . . . , xj1 , e1, xj1+1}.

Next, we choose where to insert e2. Let r2 > 0 so that B(e2, r2) ⊆ G2. Let
S2 denote the hypersphere which is the boundary of B(e2, 2r2/3). Since S2 is
compact, we may cover it with a finite collection of balls B2 = {B(z2,i, r2/3) :
zi ∈ S2, i = 1, 2, . . . , p2}. Choose j2 > j1 so large that each ball in B2 con-
tains an xj for some j < j2. Note that if x /∈ G2, then there is an xj with
j < j2 for which ‖x − xj‖ < ‖x − e2‖. We extend the definition of the ini-
tial string in y by inserting e2 between xj2 and xj2+1; that is, y begins as
{x1, x2, . . . , xj1 , e1, xj1+1, . . . , xj2 , e2, xj2+1}.

We continue this process, inductively inserting ek between an xjk
and

xjk+1. The key feature to note is that if x /∈ Gk, then ek is not in the
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first return route to x based on the trajectory y. Thus, if {ekt}∞t=1 ⊆ Rx,y,
then x ∈ ∩∞t=1Gkt = E. Therefore, if x ∈ In \ E, then Rx,y can contain only
finitely many points of E and, thus, form some point on Rx,y and Rx,x agree.
Hence, y recovers f on In.

If one compares the above proof with that given in [6] for n = 1, it will
be noted that the basic idea prevails, but the “blocking” of the ek’s is more
involved due to the richer geometry of In.

As an example of a situation where a virtually cosmetic change to the
one-variable proof is sufficient, we consider the problem of characterizing con-
sistently recoverable functions as addressed by Evans, Humke, and O’Malley
in [7].

Definition 3.2. Let f : In → R. Let D be a support set. We shall say
that D consistently recovers f provided that f is first-return recoverable with
respect to every ordering of D. A function is said to be consistently recoverable
(f ∈ CR) if there exists a support set D which consistently recovers f .

Theorem 3.2. A function f : In → R is consistently first-return recoverable
if and only if f is continuous except at countably many points.

Proof. Suppose that f is consistently recoverable with respect to D. Suppose
there is a point s ∈ In \ D at which f is discontinuous. Hence, there is an
ε > 0 and a sequence {sk} converging to s such that ||sk+1− s|| < ||sk−s||

3 and
|f(sk) − f(s)| > ε for all k. Let x = {xj} be an arbitrary but fixed ordering
of D. We shall inductively define a rearrangement {yk} of {xj} which fails to
first-return recover f at s.

Since f restricted to D, denoted f |D, is dense in f , there is a point y1 ∈ D

such that ||y1−s1|| < ||s1−s||
3 and |f(y1)−f(s1)| < ε

2 . There are finitely many,
say K, integers j less than x(−1)(y1) for which ||xj − s|| ≥ ||y1− s||. List these
in any order as y2, y3, . . . , yk1 , where k1 = K + 1.

Next, suppose that for a natural number n, an integer kn has been chosen,
and y1, y2, . . . , ykn

have been defined. There is a point ykn+1 ∈ D such that
||ykn+1 − sn+1|| < ||sn+2−s||

3 and |f(ykn+1)− f(sn+1)| < ε
2 . There are finitely

many, say P , integers j less than x(−1)(ykn+1) for which ||xj−s|| ≥ ||ykn+1−s||
and xj /∈ {yk : k ≤ kn + 1}. List these in any order as ykn+2, ykn+3, . . . , ykn+1 ,
where kn+1 = P + kn + 1.

In this inductive manner we have defined a rearrangement {yk} of {xj}.
Furthermore, with respect to the trajectory {yk}, we have that the first-return
route to s contains the sequence {ykn+1}. For each n, we have

|f(ykn+1)− f(s)| ≥ |f(sn)− f(s)| − |f(ykn+1)− f(sn)| > ε
2 ,
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indicating that f is not first-return recoverable with respect to {yk} at s.
Conversely, suppose that f is continuous except at countably many points.

Let D = {x : f is not continuous at x}. Extend D to a countable, dense set
S ⊆ In. For every ordering of x, f is obviously first-return recoverable with
respect to x.

In [6], Evans and Humke examined what type of functions f : I → R can
be obtained if the requirement that f be first-return recoverable on I is weak-
ened to that of being first-return recoverable except on a “small” set, where
various interpretations of “small” were explored. For example, as noted pre-
viously, there is no difference between being first-return recoverable except at
a scattered set and being first-return recoverable everywhere. Other examples
of small sets considered in [6] include countable sets, first category sets, mea-
sure zero sets, and so on. For example, there it was shown that a function
f : I → R has the Baire property if and only if there is a trajectory x such
that f is first-return recoverable via x except at a first category set of points.
Furthermore, it was shown that any reordering of x will work as well. We shall
now show that the analogous results carry over easily to In. We first need a
few relevant definitions.

Definition 3.3. A set S has the property of Baire if and only if it can be
represented in the form A = F 4Q, where F is closed, Q is of first category,
and F 4Q ≡

(
F ∪Q

)
\
(
F ∩Q

)
≡

(
F \Q

)
∪

(
Q \ F

)
.

It is easy to see that the collection of sets that have the Baire property
form a σ-algebra [10].

Definition 3.4. A function f has the property of Baire if for each open set
O, f−1(O) has the property of Baire.

Definition 3.5. Let f : In → R. We say that f is

1. typically recoverable (f ∈ T R) if there exists a trajectory x which recov-
ers f at each point of In \ S, where S is of first category.

2. typically consistently recoverable (f ∈ T CR) if there is a first category
set S and a support set D, every ordering of which recovers f at each
point of In \ S.

3. consistently typically recoverable (f ∈ CT R) if there is a support set D
such that every ordering x of D recovers f at each point of In \ S(x),
where S(x) is of first category.
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We call the next several results “observations” because they are known
to be true, but are not generally treated in a standard undergraduate real
analysis course. The proofs, which are given in [12], closely follow those given
in standard texts, such as [11], for the analogous results concerning Lebesgue
measurable functions. These proofs will be omitted here.

Observation 3.1. Let f : In → R. Then the following statements are equiv-
alent:

1. For each real number α, the set {x : f(x) > α} has the Baire property.

2. For each real number α, the set {x : f(x) ≥ α} has the Baire property.

3. For each real number α, the set {x : f(x) < α} has the Baire property.

4. For each real number α, the set {x : f(x) ≤ α} has the Baire property.

Just as is the case with Lebesgue measurability, we may recast the defini-
tion of a function having the Baire property as follows:

Corollary 3.1. A function f : In → R has the Baire property if and only if
it satisfies one of the four statements in Observation 3.1.

Observation 3.2. Let {fk} be a sequence of functions from In → R. If all
the functions in the sequence {fk} have the Baire property, and for all x ∈ In,

lim
k→∞

fk(x) = f(x),

then f also has the Baire property.

Observation 3.3. If f has the Baire property and f = g on a residual subset
of In (where f, g : In → R), then g has the Baire property.

Observation 3.4. For each k ∈ N, let fk : In → R have the Baire property,
and let S be a residual set. Let f : In → R and suppose that for all x ∈ S,

limk→∞ fk(x) = f(x).

Then f also has the Baire property.

Definition 3.6. If x = {xk}∞k=1 is a trajectory in Rn, then call the set

U(x, xk) ≡ {x : ||x− xk|| < ||x− xi|| for every i ∈ {1, . . . , k − 1}}

the open set of influence of xk. Note that for x ∈ Rn, xk ∈ R(x, x) if and only
if x ∈ U(x, xk).
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Proposition 3.1. If f ∈ T R, then f has the Baire property.

Proof. Let x be a trajectory and P a first category set such that x recovers
f at each point of In \ P . Define the sequence fk : In → R inductively by
f1(x) = f(x1), and for every k > 1,

fk(x) =

{
f(xk) if x ∈ U(x, xk)
fk−1(x) otherwise.

(2)

Then each fk has the Baire property, and we claim that for all x ∈ In \ P,
fk(x) → f(x). To see this, let x ∈ In \ P . If the sequence Rx is eventually
constant; i.e., if x = xk0 for some k0, then fk(x) = f(x) for all k ≥ k0. On the
other hand, if Rx is not eventually constant, then it is a subsequence of x, say
Rx = {xkj}∞j=1. Note that fk(x) = fkj (x) for all kj ≤ k < kj+1. Therefore,

limk→∞ fk(x) = limj→∞ fkj (x) = limj→∞ f(xkj ) = f(x).

Thus, the proof follows from Observation 3.4.

Now, we are ready to state the following theorem.

Theorem 3.3. Let f : In → R. The following are equivalent:

1. f has the Baire property.

2. f ∈ T R.

3. f ∈ CT R.

4. f ∈ T CR.

Proof. That (4)⇒(3)⇒(2) follows directly from the definitions. That (2)⇒(1)
follows from Proposition 3.2. It remains to show that (1)⇒(4). To this end,
let f have the Baire property. Then there is a residual set S such that f |S
is continuous. Let D be any support set lying entirely in S. Clearly, every
ordering of D recovers f at each point of S. Hence, f ∈ T CR, thus completing
our proof.

Next, we could explore what happens when we replace the first-category
exceptional sets in the above with countable exceptional sets.

Definition 3.7. Let f : In → R. We say that f is

1. nearly consistently recoverable (f ∈ NCR) if there is a countable set S
and a support set D, every ordering of which recovers f at each point of
In \ S.
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2. consistently nearly recoverable (f ∈ CNR) if there is a support set D
such that every ordering x of D recovers f at each point of In \ S(x),
where S(x) is countable.

The following theorem was proved in [12] by following the single-variable
proof of Evans and Humke in [6], making only the obvious alterations.

Theorem 3.4. Let f : In → R. The following are equivalent:

1. f ∈ NCR.

2. f ∈ CNR.

3. There is a co-countable set T ⊆ In such that f |T is continuous.

4 In Search of a Definition for First-Return Continuity
in the Several Variables Case.

The one-variable notion of first-return approachability can be strengthened to
first-return continuity. The following definition is taken from the recent survey
article of Evans and O’Malley [8].

Definition 4.1. Let {xn} be a trajectory. For 0 < x ≤ 1, the left first return
path to x based on {xn}, P l

x = {tk}, is defined recursively via

t1 = r(0, x), and tk+1 = r(tk, x).

For 0 ≤ x < 1, the right first return path to x based on {xn}, Pr
x = {sk},

is defined analogously. We say that f is first return continuous from the left
[right] at x with respect to the trajectory {xn} provided

lim
k→∞

f(tk) = f(x)
[

lim
k→∞

f(sk) = f(x)
]
.

We say that for any x ∈ (0, 1), f is first return continuous at x with respect
to the trajectory {xn} provided it is both left and right first return continuous
at x with respect to the trajectory {xn}. (For x = 0 or x = 1, we only require
the appropriate one-sided first-return continuity.)

We say that f is first return continuous with respect to {xn} provided it
is first return continuous with respect to {xn} at each x ∈ [0, 1]. Likewise, f
is said to be first return continuous provided there exists a trajectory with
respect to which f is first return continuous.
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The Baire one, Darboux functions turn out to be precisely the first-return
continuous functions as evidenced by the following result of Darji, Evans, and
O’Malley [4].

Theorem 4.1. A function f : I → R is Baire one, Darboux if and only if it
is first-return continuous.

Thus, first-return continuous functions of one variable have the intermedi-
ate value property, taking connected sets to connected sets. Note that, unlike
the situation in the previous section, there is not an obvious analog in In of the
concept of being first-return approachable from both the left and right. In-
deed, there are numerous possibilities for analogs of this notion for functions of
several variables. Even for functions of two variables, there are many options.
In the one variable case, first-return continuity at a point forces approachabil-
ity relative to every connected set having that point as a limit point. Which
connected sets and of what type should be utilized in the plane? Here we shall
explore several of the more natural choices for a function of two variables.

Definition 4.2. A sector S at x has the form:
S ={z: θ1 < arg(z − x) < θ2}, where x is viewed in the complex plane.

Definition 4.3. A function f : I2 → R will be said to be sectorially first-
return approachable at x ∈ I2 with respect to a trajectory x if it is first-return
approachable relative to every sector at x. If a function is sectorially first-
return approachable at x ∈ I2 with respect to a trajectory x for all x ∈ In, we
say it is sectorially first-return approachable.

Definition 4.4. Let x, y ∈ I2. An arc from y to x is a continuous one-to-one
function g : [0, 1] → I2 with g(0) = y and g(1) = x. An arc at x is a continuous
one-to-one function g : [0, 1] → I2 with g(1) = x. When the context makes
the usage clear, we shall not distinguish between an arc and its range. If the
function g is linear, we call it a ray at x. If g is an arc at x, then any open
set containing g \ {x} is called an envelope for g. Likewise, if g is piecewise
linear, we call it a polygonal arc. Specifically, g is piecewise linear if there is a
partition P = (0 = a0 < a1 < a2 < · · · < an = 1) of [0, 1] such that g is linear
on each [ai−1, ai], i = 1, . . . , n.

Definition 4.5. A function f : I2 → R will be said to be radially-sectorially
first-return approachable at x ∈ I2 with respect to a trajectory x if for every
ray g at x, there is a sector A at x which is an envelope for g such that f is
first-return approachable relative to every sector B ⊆ A at x which is also an
envelope for g. If a function is radially-sectorially first-return approachable
at x ∈ In with respect to a trajectory x for all x ∈ I2, we say it is radially-
sectorially first-return approachable.
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Definition 4.6. A function f : I2 → R will be said to be radially first-return
approachable at x ∈ I2 with respect to a trajectory x if for every ray g at x,
there is an envelope Gg such that f is first-return approachable relative to
every envelope G of g for which G ⊂ Gg. If a function is radially first-return
approachable at x ∈ I2 with respect to a trajectory x for all x ∈ I2, we say it
is radially first-return approachable.

Definition 4.7. Let f : I2 → R, and let x be a trajectory. We say that f
is arcwise first-return approachable with respect to x at x if for each arc g at
x, there is an envelope Gg such that for every subenvelope G ⊆ Gg of g, we
have that f is first-return approachable at x with respect to x relative to G.
If a function is arcwise first-return approachable at x ∈ I2 with respect to a
trajectory x for all x ∈ I2, we say it is arcwise first-return approachable.

The relative strength of these concepts is clear in several instances. For ex-
ample, it is immediate that if a function is sectorially first-return approachable
at a point x with respect to a trajectory x, then it is first-return approach-
able at x with respect to x. Similarly, in an a priori fashion, we see that if
a function is arcwise first-return approachable at a point x with respect to a
trajectory x, then it is radially first-return approachable at x with respect to
x. Also, it is obvious that if a function is sectorially first-return approachable
at x with respect to the trajectory x, then it is radially-sectorially first-return
approachable at x with respect to the trajectory x. We shall next examine
other pointwise relationships among the above-listed concepts. When we are
finished we will have shown that the following relationships exist, with each
arrow representing a relationship and no non-trivial arrows possible:

It is important to keep in mind that all of these relationships are pointwise
and with respect to one given trajectory.

First, we shall observe that arcwise first-return approachability with re-
spect to x at a point implies sectorially first-return approachability with re-
spect to x at that point.

Proposition 4.1. If a function f : I2 → I is arcwise first-return approachable
with respect to a trajectory x at a point x, then f is sectorially first-return
approachable with respect to x at x.

Proof. Suppose a function f : I2 → I is arcwise first-return approachable
with respect to a trajectory x at a point x, but is not sectorially first-return
approachable with respect to x at x. Then, for some sector S at x, f fails
to be first-return approachable at x relative to S. Thus, there is an ε>0 and
a subsequence {zk} of the first-return approach to x relative to S such that
|f(zk) − f(x)| > ε for all k. For each k, we let gk be an arc from zk to zk+1
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such that

gk ⊂ S ∩ B(x, ||zk − x||)\B(x, ||zk+1 − x||).

Then the union of the gk and the singleton {x} yields an arc g at x. Fur-
thermore, if Gg is any envelope for g, then S ∩Gg is a subenvelope for g and
each zk will belong to the first-return approach to x relative to S∩Gg, contra-
dicting the assumption that f is arcwise first-return approachable at x. This
contradiction completes our proof.

We continue by observing that the similar-looking notions of radial and
radially-sectorial first-return approachability are independent in the sense that
neither implies the other. To see that radially-sectorially first-return approach-
able does not imply radially first return approachable, we shall actually show
that sectorially first-return approachable does not imply radially first-return
approachable.

We shall find it useful to define the following “dunce-cap” auxiliary func-
tion:

Definition 4.8. Given p a point, r a radius, and a ball B(p, r), let dp,r be
defined as the function which has the value 1 at p, 0 on the circle centered at
p of radius r, and is the linear interpolation on the rest of B(p, r).
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Example 4.1. There is a function f : I2 → I which is sectorially first-return
approachable everywhere with respect to a trajectory x, but f is not radially
first-return approachable at least at one point with respect to x.

Proof. Let A = {(x, y) ∈ I2 : x > 0, 0 < |y| < x2}. Let S be a support set
that is dense in each circle of rational radius at most one centered at the origin
and that contains the points of the form ( 1

n , 0), n ∈ N, on the positive x-axis.
Let {tk} be an enumeration of S. Let f : I2 → R be the function given by:

f(x) =

{
d(1/n,0),(1/3n2)(x), if x ∈ B((1/n, 0), (1/3n2)), n ∈ N;
0, otherwise.

(3)

Note that f is continuous everywhere except at the origin. We shall order
S into a trajectory x in such a way that f will be radially-sectorially first-
return approachable at the origin with respect x, but not radially first-return
approachable at the origin with respect to x. We shall define the trajectory
x inductively in stages. We shall find it convenient to let Cn = {(x, y) ∈ I2 :
x2 + y2 = 1/n2} ∩ S \A.

Step 1: Select four points from C1, one from each quadrant, and begin
the sequence that will become the trajectory x by listing these four
points as x1, x2, x3, x4. Then set x5 = (1, 0). Now look at t1. If it lies
more than one unit from the origin and has not yet been appended to
the sequence, do it now as x6, define j1 = 6, and proceed to stage 2.
Otherwise, do not yet append it, set j1 = 5, and move on to stage 2.

Step n: Assume that n > 1 and stage n − 1 has been completed. In
particular, assume that the ordering {xj}jn−1

j=1 has been defined. Select a
sufficiently large but finite number, say in, of points from Cn so that for
every sector T at the origin with vertex angle at least π/n, we have that
T ∩ Cn 6= ∅. Starting with xjn−1+1, append these points to {xj} in any
order, then append the point (1/n, 0). If any of the points t1, t2, . . . tn lie
more than 1/n from the origin and have not yet been appended to the
sequence, append them now in any order. Let jn denote the total number
of points in the partial trajectory x through this stage. This completes
stage n, and by induction completes the definition of the sequence x.

Clearly, x is an ordering of S and thus is a trajectory. Note that f is
not radially first-return approachable with respect to the trajectory x at the
origin. To see this, consider the ray g at the origin along the positive x-axis.
If Gg is any envelope for g, then A ∩ Gg is a subenvelope of Gg, and the
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first-return approach to the origin relative to A ∩Gg is a tail of the sequence
{(1/n, 0)} at each point of which f has value 1, but f(0) = 0. On the other
hand, for any sector T at the origin, we have that the first return approach
to (0, 0) relative to T has a tail, all points of which lie outside of A. Since f
has value 0 at these points, f is first-return approachable at (0, 0) relative to
T . Furthermore, since f is continuous at each point other than the origin, it
follows from the definition that it is first-return approachable everywhere.

Next we shall show that there is a function f : I2 → I which is radially
first-return approachable everywhere with respect to a trajectory x, but f is
not radially-sectorially first-return approachable at least at one point x with
respect to x. In fact, we shall show more by first showing that radial-sectorial
first-return approachability with respect to x at a point implies first-return
approachability with respect to x at that point. Then, in Example 4.4, we
show that radial first-return approachability everywhere with respect to x
does not imply first-return approachability at every point.

Proposition 4.2. If a function f : I2 → I is radially-sectorially first-return
approachable with respect to a trajectory x at a point x, then f is first-return
approachable with respect to x at x.

Proof. Suppose a function f : I2 → I is radially-sectorially first-return ap-
proachable with respect to a trajectory x at a point x, but is not first-return
approachable with respect to x at x. Then there exists a sequence of points
zk in the first-return approach to x and an ε > 0 such that |f(zk)− f(x)| > ε
for all k. Expressing each zk in polar form (rk, θk) with the origin at x, we
see there is a subsequence {zkj

} and a θ0 ∈ [0, 2π) such that limj→∞ θkj
= θ0.

Now, if A is any sector at x containing the ray at x in the direction θ0, then
a tail of the sequence {zkj} will lie in the first-return approach to x relative
to A, implying that f is not radially-sectorially first-return approachable with
respect to x at x. This contradiction completes our proof.

Next, we shall observe that there is a function f : I2 → I which is first-
return approachable everywhere with respect to a trajectory x, but is not
radially-sectorially first-return approachable with respect to x at least at one
point.

Example 4.2. There is a function f : I2 → I which is first-return approach-
able everywhere with respect to a trajectory x, but f is not radially-sectorially
first-return approachable at least at one point x with respect to x.

Proof. Let A = {(x, y) ∈ I2 : x > 0, 0 < |y| < x2}. Consider the function
f , the support set S, and the initial ordering {tk} from Example 1. Now,
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we will order S into a trajectory x in such a way that f will be first-return
approachable at every point with respect to x, but not radially-sectorially
first-return approachable at the origin with respect to x. We shall define the
trajectory x inductively in stages. We shall again find it convenient to let
Cn = {(x, y) ∈ I2 : x2 + y2 = 1

n2 } ∩ S \ (A ∪ {(x, y) : y = 0, x < 0}).

Step 1: Select x1 = (−1, 0) and x2 = (1, 0). Then select 4 points from
C1, one from each quadrant, and add them to the sequence by listing
these four points as x3, x4, x5, x6. Now look at t1. If it lies more than
one unit from the origin and has not yet been appended to the sequence,
do it now as x7, define j1 = 7, and proceed to stage 2. Otherwise, do
not yet append it, set j1 = 6, and move on to stage 2.

Step n: Assume that n > 1 and stage n − 1 has been completed. In
particular, assume that the ordering {xj}jn−1

j=1 has been defined. Select
the points xjn−1+1 = (− 1

n , 0), and xjn−1+2 = ( 1
n , 0). Now, select a

sufficiently large but finite number, say in, of points from Cn so that for
every sector T at the origin with vertex π

n , we have that T ∩ Cn 6= ∅.
Starting with xjn−1+3, append these points to {xj} in any order. If any
of the points t1, t2, . . . , tn lie more than 1

n from the origin and have not
yet been appended to the sequence, append them now in any order. Let
jn denote the total number of points in the partial trajectory x through
this stage. This completes stage n, and by induction completes the
definition of the sequence x.

Clearly, x is an ordering of S and thus is a trajectory. Note that f is not
radially-sectorially first-return approachable with respect to the trajectory x
at the origin. To see this, consider the ray −→g at the origin along the positive
x-axis. If Tg is any sector that is an envelope for −→g , then the first-return
approach to the origin in this sector along x is by construction of the points of
the form ( 1

n , 0), and f assumes the value of 1 at each such point, but f(0) = 0.
On the other hand, the first-return approachability at the origin is obvious
since the points of the form (− 1

n , 0) form the first-return approach to the
origin, and f assumes the value of 0 at each of these points. Also, because of the
structure of f , it is obvious that it is first-return approachable at every point
other than the origin since it is actually continuous at each such point as noted
in Example 1. So we have that f is first-return approachable everywhere but is
not radially-sectorially first-return approachable at the origin, thus completing
our proof. (Note that we now see how a simple re-ordering of the trajectory
can yield quite different results concerning first-return limits.)



First-Return Limits for Functions of Several Variables 507

Example 4.3. There is a function f : I2 → I which is radially-sectorially
first-return approachable everywhere with respect to a trajectory x, but f is
not sectorially first-return approachable at least at one point with respect to x.

Proof. Again, let A = {(x, y) ∈ I2 : x > 0, 0 < |y| < x2}. Note that for
each n, there exists a unique point an in the first quadrant where the parabola
y = x2 intersects the circle x2 + y2 = 1/n2. Likewise, for each n, we let bn

denote the unique point in the fourth quadrant where y = −x2 intersects the
circle x2 + y2 = 1/n2. Let S be a support set of I2 which contains all an and
bn and is dense in each Cn where Cn = {(x, y) ∈ I2 : x2 + y2 = 1/n2} ∩ S \A.
Let f be defined by:

f(x) =

{
dan,(1/3n2)(x), if x ∈ B(an, (1/3n2));
0, otherwise.

(4)

Note that f is continuous everywhere except at the origin, and therefore
it is both sectorially and radially-sectorially first-return approachable at least
at every point other than the origin with respect to any trajectory. Let {tk}
be an arbitrary but fixed enumeration of S. We shall define the trajectory x
inductively in stages.

Step 1: Select x1 = (−1, 0), x2 = b1, and x3 = a1. Then choose four
points from C1, one from each quadrant, and append them to x as
x4, x5, x6, x7. Now look at t1. If it lies more than one unit from the
origin and has not yet been appended to the sequence, do it now as x8,
set j1 = 8, and proceed to stage 2. Otherwise, do not yet append it, set
j1 = 7 and move on to stage 2.

Step n: Assume that n > 1 and stage n − 1 has been completed. In
particular, assume that the ordering {xj}jn−1

j=1 has been defined. Append
the points (− 1

n , 0), bn, and an to the sequence as xjn−1+1, xjn−1+2, and
xjn−1+3, respectively. Select a sufficiently large but finite number, say
in, of points from Cn so that for every sector T at the origin with vertex
at least π/n, we have that T ∩ Cn 6= ∅. Starting with xjn−1+4, append
these points to {xj} in any order. If any of the points t1, t2, . . . , tn lie
more than 1/n from the origin and have not yet been appended to the
sequence, append them now in any order. Let jn denote the total number
of points in the partial trajectory x through this stage. This completes
stage n, and by induction completes the definition of the sequence x.

Consider the sector T defined to be Quadrant 1. With respect to the
trajectory x, the first-return approach to the origin is {a1, a2, a3, . . . }, and
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since f assumes a value of 1 at each such point, and yet f(0) = 0, clearly f is
not sectorially first-return approachable to the origin with respect to T and x.

Now consider any ray −→g at the origin. If −→g is not the positive x-axis, then,
by construction of x, clearly f is first-return approachable inside any sector E
that is an envelope for −→g because by the construction of f , E∩A∩B(0, δ) = ∅
for δ small enough. If −→g is the positive x-axis, then for any sector E that is
an envelope for −→g , the first-return approach to the origin relative to E has
the tail sequence {bj , bj+1, bj+2, . . . } for some j, and since f assumes the value
of 0 at each such points, clearly f is first-return approachable at the origin
with respect to E and x. So we have that f is not sectorially first-return
approachable at the origin with respect to T and x, but f is radially-sectorially
first-return approachable everywhere with respect to x.

Example 4.4. There is a function f : I2 → I which is radially first-return
approachable everywhere with respect to a trajectory x, but f is not first-return
approachable at least at one point with respect to x.

Proof. For each natural number n, let pn be the unique point in the first
quadrant where the circle centered at the origin with radius 1/n intersects the
graph of y = x2. Let S be any support set in I2 containing all the pn’s. Let
{tj} be an arbitrary but fixed ordering of S. We shall order S as a trajectory
{xn} inductively in stages.

Step 1: Set x1 = p1 and if t1 6= x1 and |t1| > p1, set x2 = t1 and j1 = 2.
Otherwise, leave x2 undefined at this stage and proceed to stage 2.

Step k: Assume k > 1 and that stage k − 1 has been completed. So,
x1, . . . , xjk−1 have been specified. Set xjk−1+1 = pk. If any of the points
t1, t2, . . . tk lie more than pn units from the origin and have not yet been
appended to the sequence, append them now in any order. Let jk denote
the total number of points in the partial trajectory x through this stage.
This completes stage k, and by induction completes the definition of the
sequence x.

Let f be the function defined as:

f(x) =

{
dpk,(1/3k2)(x), if x ∈ B(pk, (1/3k2));
0, otherwise.

(5)

Note that the first-return approach to the origin consists of the sequence
{pk}, implying that f is not first-return approachable with respect to x at the
origin. For every ray at the origin except the positive x-axis, we have that
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any sector A at the origin which contains that ray, but misses the positive
x-axis will have the feature that there exists an NA ∈ N such that A ∩ {pk :
k > NA} = ∅. Thus, A provides an envelope for that ray. For the ray
at the origin in the direction of the positive x-axis, we select the envelope
G ≡ {(x, y) ∈ I2 : |y| < x2}. Note that no pk ∈ G. Thus, f is radially
first-return approachable at the origin.

4.1 Negative Results Concerning Connectivity.

Now we shall investigate connectivity properties of functions which are ap-
proachable in the above senses at every point in I2. Only one has the feature
that it maps every connected set to a connected set, and this is due to the fact
that it is actually continuity in disguise. Each of the others fail to preserve
the connectedness of some fairly nice connected sets. We begin by showing
that sectorial and radial first-return approachability are too weak to preserve
the connectedness of some sets.

Example 4.5. There is a function f : I2 → I which is both radially first-return
approachable and sectorially first-return approachable with respect to the same
trajectory x, and a connected set T such that f(T ) is not connected.

Proof. Consider the set A = {(x, y) ∈ I2 : x > 0, (1/2)x2 < y < (3/2)x2}.
Let the function f : I2 → I be defined by:

f(x) =


(2y/x2)− 1, if (x, y) ∈ A and (1/2)x2 < y ≤ x2;
−(2y/x2) + 3, if (x, y) ∈ A and x2 < y < (3/2x2;
0, otherwise.

(6)

Now let S = (Q×Q) \ {(0, 0)}, and consider an initial ordering {tk}. We
shall define the trajectory x inductively in stages. We shall find it convenient
to let Cn = {(x, y) ∈ I2 : x2 + y2 = 1/n} ∩ S \A.

Step 1: Select x1 = (1, 0). Then choose four points from C1, one from
each quadrant, and append them to x as x2, x3, x4, x5. Now look at
t1. If it lies more than one unit from the origin and has not yet been
appended to the sequence, do it now as x6, set j1 = 6, and proceed to
stage 2. Otherwise, do not yet append it, set j1 = 5, and move on to
stage 2.

Step n: Assume that n > 1 and stage n − 1 has been completed. In
particular, assume that the ordering {xj}jn−1

j=1 has been defined. Append
the point ( 1

n , 0) to the sequence as xjn−1+1. Select a sufficiently large
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but finite number, say in, of points from Cn so that for every sector T
at the origin with vertex at least π/n we have that T ∩Cn 6= ∅. Starting
with xjn−1+2, append these points to {xj} in any order. If any of the
points t1, t2, . . . , tn lie more than 1/n from the origin and have not yet
been appended to the sequence, append them now in any order. Let jn

denote the total number of points in the partial trajectory x through this
stage. This completes stage n, and by induction completes the definition
of the sequence x.

First note that f is continuous everywhere except at the origin, which
implies that it is both sectorially and radially first-return approachable at
least at every point other than the origin. Clearly, x is an ordering of S
and thus is a trajectory. Let −→g denote the positive x-axis. Now, consider
any sector E with vertex at the origin. If E is not an envelope for −→g , then,
by construction of x, f is first-return approachable inside E because by the
construction of f , E ∩ A ∩ B(0, δ) = ∅ for δ small enough. If E is an envelope
for −→g , then the first-return approach to the origin is {( 1

n , 0) : n ∈ N}. Since
f = 0 at each such point, clearly f is first-return approachable at the origin
with respect to any such sector. Thus, we have shown that f is sectorially
first-return approachable everywhere.

To see that f is radially first-return approachable at the origin, we employ
a similar argument. If the determining ray

−→
` 6= −→g , then given any envelope

G, there exists a subenvelope G−→
`

such that G−→
`
∩A ∩B(0, δ) = ∅ for δ small

enough. If
−→
` = −→g , then again the first-return approach to the origin with

respect to any envelope is {( 1
n , 0) : n ∈ N}, and since f = 0 at each such point,

clearly f is first-return approachable at the origin with respect to any such
envelope. So we have that f is radially first-return approachable everywhere.

Now, note that f disconnects the connected set {(x, y) : y = x2, x ≥ 0}.
Yet f is radially and sectorially first-return approachable everywhere with
respect to x, thus completing our proof.

Note that the connected set T in the previous example is not convex.
One might hope that one of our notions of approachability might at least
preserve the connectivity of convex connected sets. Our next example shows
that sectorial first-return approachability will not even do that.

Example 4.6. There is a function f : I2 → I which is sectorially first-return
approachable and a convex, connected set T such that f(T ) is not connected.

Proof. Consider the set A = {(x, y) ∈ I2 : x > 0, 0 < |y| < x2}. Let the
function f : I2 → I be defined by:
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f(x, y) =

{
1− |y|/x2, if (x, y) ∈ A;
0, otherwise.

(7)

Now let S = (Q×Q) \ {(0, 0)}, and consider an initial ordering {tk}. We
shall define the trajectory x inductively in stages. Note that for each n there
exists a unique point an in the first quadrant where the parabola y = x2

intersects the circle x2 + y2 = 1/n2. Likewise, for each n, we let bn denote
the unique point in the fourth quadrant where y = −x2 intersects the circle
x2 + y2 = 1/n2. Let S be a support set of I2 which contains all an and bn and
is dense in each Cn = {(x, y) ∈ I2 : x2 + y2 = 1/n} ∩ S \A.

Step 1: Select x1 = a1 and x2 = b1. Then choose four points from C1,
one from each quadrant, and append them to x as x3, x4, x5, x6. Now
look at t1. If it lies more than one unit from the origin and has not yet
been appended to the sequence, do it now as x7, set j1 = 7, and proceed
to stage 2. Otherwise, do not yet append it, set j1 = 6 and move on to
stage 2.

Step n: Assume that n > 1 and stage n − 1 has been completed. In
particular, assume that the ordering {xj}jn−1

j=1 has been defined. Append
the points an and bn to the sequence as xjn−1+1 and xjn−1+2, respectively.
Select a sufficiently large but finite number, say in, of points from Cn

so that for every sector T at the origin with vertex at least π/n, we
have that T ∩ Cn 6= ∅. Starting with xjn−1+3, append these points to
{xj} in any order. If any of the points t1, t2, . . . , tn lie more than 1/n
from the origin and have not yet been appended to the sequence, append
them now in any order. Let jn denote the total number of points in the
partial trajectory x through this stage. This completes stage n, and by
induction completes the definition of the sequence x.

First note that f is continuous everywhere except at the origin, and there-
fore it is sectorially first-return approachable everywhere but the origin. To
see that f is sectorially first-return approachable at the origin, consider any
sector T . If T is not an envelope for the positive x-axis, then by construction
of x, clearly f is first-return approachable at the origin with respect to T . If
T is an envelope for the positive x-axis, then the first-return approach to the
origin with respect to T has the tail sequence {aj , aj+1, aj+3, . . . } for some
j, and since f has the value of 0 at each such point, it is clearly first-return
approachable at the origin with respect to any such sector.
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Thus, we have that f is sectorially first-return approachable everywhere
with respect to x. However, f clearly disconnects the convex connected set
{(x, y) : y = 0, x ≥ 0}, thus completing our proof.

We next show that arcwise first-return connectivity is too strong for our
purposes in the sense that the concept is equivalent to continuity.

Theorem 4.2. Let x be a trajectory and f : I2 → R. Then f is arcwise
first-return approachable with respect to x if and only if f is continuous.

Proof. Clearly, a continuous function must be arcwise first-return approach-
able. Next, let f be arcwise first-return approachable with respect to the
trajectory x = {xn}∞n=1 and suppose that f is discontinuous at some point
z ∈ I2. Then there exist an ε > 0 and a sequence {zk}∞k=1 converging to z
such that for each k, ‖zk+1 − z‖ < ‖zk − z‖ and |f(zk)− f(z)| > 2ε.

For each k = 0, 1, 2, . . . , we shall define δk, nk, gk, and Ggk
(zk).

Step 0: To initialize the inductive process, we set z0 = (0, 0), δ0 = 1,
n0 = 1, g0(t) = (0, 1− t) for t ∈ [0, 1], and Gg0(z0) = I2.

Step k: Assume k > 1 and steps 1 through k − 1 have been completed.
Let gk : I → I2 denote the linear function from z to zk, and let Ggk

(zk)
denote an envelope of gk relative to which f is first-return approachable
at zk via the trajectory x. Let δk > 0 be chosen so small that B(zk, δk)∩
{xn : n ≤ nk−1} = ∅, and for each x in the first return approach to zk

relative to Ggk
(zk), we have |f(x)− f(zk)| < ε. Then choose nk so that

xnk
= r(x,Ggk

(zk) ∩B(zk, δk)).

Now, for each k ∈ N, let hk be an arc from xnk−1 to xnk
which misses

the set {xn : n < nk, n 6= nk−1}∪B(z, |z − xnk
|). Then cover hk with an

open set Kk such that Kk∩
(
{xn : n < nk, n 6= nk−1}∪B(z, |z − xnk

|)
)

=
∅, Kk ∩B(zk−1, δk−1) ⊆ Ggk−1(zk−1), and Kk ∩B(zk, δk) ⊆ Ggk

(zk).

Then there is an arc h at z for which h(1) = z and {h(t) : t ∈ [0, 1) =⋃∞
k=1{hk(t) : t ∈ [0, 1]}.

The open set Gh(z) ≡
⋃∞

k=1 Kk forms an envelope for h. If G is any
envelope of h at z, then the first-return approach to z relative to G ∩ Gh(z)
via the trajectory x contains the sequence xnk

. Furthermore, since for each
k ∈ N we have |f(xnk

)− f(z)| > ε, f is not arcwise first-return approachable
at z, and this contradiction completes our proof.
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4.2 A Positive Connectivity Result and Recent Contributions of
Evans and Humke.

In the previous section, we saw that a radially first-return approachable func-
tion need not take connected sets to connected sets. We close by noting that
such a function will take a polygonally connected set to a connected set, how-
ever. Recall the following definition.

Definition 4.9. We say that a set H ⊆ R2 is polygonally connected if for each
x and y in H, there is a polygonal arc g from y to x such that g([0, 1]) ⊆ H.

A proof for the following theorem is given in [12].

Theorem 4.3. Let f : I2 → R be radially first-return approachable and first-
return recoverable on I2 with respect to a trajectory x. Then, if H ⊆ I2 is
polygonally connected, f(H) is connected.

We shall not present the proof of this result since it has recently been
shown by Evans and Humke [5] that the assumption that f be first-return
recoverable on I2 with respect to the trajectory x can be dropped. Specifically,
the following theorem is proved in [5].

Theorem 4.4. If f : I2 → R is radially first-return approachable, then f is of
Baire class one and if H ⊆ I is polygonally connected, then f(H) is connected.

In the same paper [5], Evans and Humke show that although sectorially
first-return approachable functions need not preserve the connectedness of
a line segment (Example 4.6), they do preserve the connectedness of closed,
convex sets having nonempty interior, a type of Darboux property which Malý
showed to be possessed by derivatives (gradients) [9].
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