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AN ESTIMATE OF THE FIRST
DERIVATIVE BY THE LAPLACIAN

Abstract

In this note a particular case of the following general problem is con-
sidered: how to control lower order derivatives by higher ones, at least
over a sequence of points. The following particular case is proved: if a
C? negative-valued function h = h(w) depends on one complex variable
in the unit disc and h(1) = h (1) = 0, then the first derivative h,, is
controlled by the Laplacian of h over a sequence of points converging to
w = 1. Such kind of estimates have applications to delicate problems of
convexity with respect to various families of functions

1 Introduction

For real functions of one real variable it is a very easy exercise to show that:
If h € C%([0,1)), k(1) = K/ (1) = 0, h(z) < 0 for z € (0,1), then there is a
sequence x, — 1 such that ' (z,) > 0, h''(z,) <0, and B (z,) < —Lh"(z,,).
The main goal of this note is to prove a corresponding property for functions
of one complex variable.

Theorem 1. Let D = {w € C;|lw| < 1}, hD — R, h € C*(D), h(w) < 0
forw € D, and h(1) = h,(1) = 0. Then there is a sequence {wy,}32, C D,
limy, oo wn, = 1, such that Ah(w,) < 0, |hy(w,)| < —LAR(w,) for n =
1,2,..., where A denotes the Laplacian.

A motivation to consider such question came from complex analysis, har-
monic analysis, and the theory of convex functions, especially dealing with
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pseudoconvexity and plurisubharmonic functions (see [1], [2], [3] where some
applications can be found). The theorem holds under weaker assumptions,
but then the formulation is more technical.

2 Notation and Formulation of a More General Theorem

Let D be the unit disc in the complex plane C; i.e., D = {w € C;|w| < 1},
and let o o
h:D—R, he C*D), h(w) <0 forw € D,

and such that
S ={w € 9D; h(w) =0} = {1}, hy(1) =0.
For convenience, we write h(r, ) = h(re*®) and we let

9, = {0 € [0,2n); h(r,0) = sup h(rt)},

0<t<2n

o(r) = h(r,9,) = sup h(r,t) for 0 <r <1,
0<t<2mw

he(r,0y) = sup{h(r,0); 0 € 0.}, he(r,0:) = [h(p,0,)],—,, if 0, € V.
Theorem II. With the above assumptions and notation, there exist a sequence
T /1 and a sequence 0, € 9, such that

1
R (T, 0r,,) < 0 and 0 < hy (10, 0r,) < ——hpy (70, 6;). (2.1)
n

We note that Theorem I immediately follows from Theorem II because at
points (r,6), 0 € ¥, we have hg(r,0) = 0, hgg(r,0) < 0, hyy(w) = e~ h,(r,0),
and (2.1) immediately yields the estimate from Theorem 1 when we rewrite
the Laplacian in the polar coordinates:

1 1
Ah(w) = Ah(r,0) = hy(r,0) + ;hr(r, 0) + ﬁh@@(r, 6).

3 Proof of Theorem I1

We divide the proof of Theorem II into four lemmas. Before we formulate and
prove the lemmas, we need more notation.

The image of D under h is an interval [—a, 0] for some a > 0. We denote
by ¢ = €" the set of critical points of h,

¢ =¢"={weD; hy(w) =0}
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By Sard’s theorem (see e.g. [4]) we have meas(h(€)) = 0. We put
B = [=a,0]\ h(€) = (=a,0) \ h(Q). (3.1)
Obviously, the sets € and h(€) are compact. Therefore B is open in R.

Remark 1. In order to apply Sard’s theorem for h, the minimum differentia-
bility assumption is class C?, which follows, for instance, from the remarks in
[4], p. 20.

Lemma 1. Let H : D — R, H € C?(D). We can define the corresponding
sets ¥, for H and also use the other notation. If H.(r,9,) <0 for0 <r <1,
then the function r — H(r,9,) decreases.

ProoOF. We put
E={w=re €D; H.(r,0)=0,V0c9,}ce F=HH),

and we have 0 < meas(H(FE)) < meas(F) = 0. We note that the function
¢(r) = H(r,9,) is continuous for r € [0,1] and its image is an interval I C R.
If the interval I is degenerate; i.e., contains only a point, then the lemma is
obvious. So we can assume that I is not just one point. Take ¢~1(I \ F),
which is open and nonempty in [0, 1]. Tt is enough to show that ¢ decreases on
this set. If r € ¢~1(I \ F), then there exists 6y € 9J,. such that H,(r,0y) < 0,
which gives the inequalities

o(p) = H(p,0,) > H(p,6p) > H(r,6p) = ¢(r) for p<r (p close tor).

This means that ¢ strictly decreases on each component of ¢~1(I \ F), and
consequently, decreases on [0, 1]. O

Remark 2. We use Lemma 1 several times later in this section. Each time
we need a slightly different version of the lemma, which follows easily from
the version given above. Adjusting Lemma 1 to each individual case is left to
the reader.

Lemma 2. With the notation from §2, there ezist 0 < r < 1 and 0, € ¥, such
that h,.(r,0,) > 0.

PROOF. Assume to the contrary that Yo<,<1Vp,.co, hr(r,60;) < 0. Then, by
Lemma 1, the function r — h(r,9,) decreases, and we get a contradiction
—a=h(0) > h(1,91) =0,0<a <0. O
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Up to the end of this section, we fix ro € ¢~ 1(B) (¢ is defined in Section
2 and B is defined in (3.1)) such that h,(rg,9,,) > 0, and define

0 = inf{p > ro; h,(p,¥,) <0} = inf{p > ro; h.(p,9,) = 0}.
Since the set under inf is nonempty, r° < 1.
Lemma 3. With the above notation, we have ro < 1°.

PROOF. Assume to the contrary that ro = r°. The point ry belongs to

¢~ Y(B). Therefore for 7 from a small neighborhood of ro we have h,.(r,6) # 0,
0 € 9,.. Consequently,

ro =1 = inf{p > ro; h,(p,9,) < 0}. (3.2)
Since h,(rg,0r,) > 0 for some 0,, € ¥,,, ©(r) > @(rg) for r > 7y close to
ro. From (3.2) and the last argument, we get that there exist points r, > 7o,
arbitrarily close to rg, where the function ¢ attains local maxima. But at
these points we have h,.(r,,0) =0, 8 € 9, , which contradicts the choice of rg
and, consequently, proves the lemma. O
Lemma 4. The function h(r,0) has the property

vC’>0 EI7‘0§7'<7'0 Hereﬂr hrr(rv Gr) <0 and 0 < hr(’f’, 07") S _Chrr(’ra 07”)

BEGINNING OF THE PROOF LEMMA 4. Assume to the contrary that

o0 Veg<r<ro Vo,.c0, Rrr(r,07) >0 or hy(r,6,) > —Chyp(r,6,). (3.3)

Condition (3.3) implies one of the following three cases:

hyr (1, 0,) > 0 for some 0, € ¥,., (3.4)
hy(r,0,) > —Chy.(1,0,) and h,..(r,0,) < 0 for some 6,. € 9, (3.5)
hyr(r,0;) = 0 for some 6, € 9,. (3.6)

O

Now we consider these three cases in the subsequent three sublemmas.

Sub Lemma 4-1. If (3.4) is satisfied, then

Ves0 E|r<p<r+e 36,,6199 hr(pv Hp) > hr(r» er)'
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PROOF OF SUBLEMMA 4-1. Assume to the contrary that there exists g such
that for any r < p < r 4+ ¢9 we have h,(p,0,) < h,(r,6,) for any 6, € J,. We
define the function H(p,0) = h(p,0) — ph,(r,0,). Obviously

vepeﬂp Hr(pa ep) = hr(p7 0,0) - hT(T, 97“) <0.

We can apply Lemma 1 to the function H(p,0), r < p < r + &g, 8 € [0, 27],
and obtain that the function (r,r4+¢9) 3 p — H(p,9,) decreases, which gives

R(p,9,) < h(r,0) + (p — 1)he (1, 6,). (3.7)
On the other hand, by (3.4), we have
h(p,9,) > h(p,0r) = h(r,0.) + (p —7)[he(r,0,) + ],
where 6 = 6(r, p) > 0, and hence
h(p;0p) = h(r;0r) + (p = r)he(r, 0r) + 6(p — 1),
which contradicts (3.7). O

Sub Lemma 4-2. If (3.5) holds, then

2
v€>O E|7“<p<7"—‘,-€ 39,)619,) In h?"(pv 01)) >1In hr(’/‘, 97”) - a(p - T)' (38)

PROOF OF SUBLEMMA 4-2. By the assumptions of the sublemma we have
1 Ry (7, 0;)

—_— < —_—
C hr(r, 0;)
close to r. After integration with respect to p, we obtain

< 0, and from this we get —& < [Inh,(p, 67,)};) < 0 for p

1
—5(p —r)+Inh.(r,0,) <lnh.(p,0,) <Ilnh.(r0,) for p>r, p close to r.

Now we take the exponential of the expressions at the left inequality, and we

1 . . .
get h,.(p,0,) > el=c="1h (r 6,) for p > 7, p close to 7. Again integrating
with respect to p, we obtain

h(p,6,) — h(r,0,) > C |1 — =& =11 p (r,6,),

and from this

h(p,9,) > h(p,6:) > h(r,0,) — Chy(r,8,) =@~ 4 Ch,.(r,6,). (3.9)
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Assume that (3.8) does not hold; i.e.,

2
Jes0 Vrcparte Vo,c0, Inh.(p,0,) <Inh.(r,0,) — a(p -r),

which gives h,(p,0,) < el=& =1 b, (r,8,) for p close to r. As in the previous
sublemma, we introduce the function

Hip,0) = h(p,0) + 5 =26 (r,0,).

Since H,(p,?Y,) < 0, by Lemma 1, the function p — H(p,?,) decreases on the
interval [r,r + €], which yields

h(p,9,) < h(r,9,) + % hy-(r,6,) [1 - e[_%(”_r)q for pe (r,r+¢). (3.10)

Comparing (3.9) and (3.10) we get a contradiction. O

The last case (3.6) can be easily reduced to Sublemma 4-2; so we leave the
proof to the reader. We only formulate the following.

Sub Lemma 4-3. If (3.6) is satisfied, then

Ves0 Jr<p<rte Jo,ev9, In b (p, ep) > Inh(r,0;) — (p—r).

We need one more sublemma before finishing the proof of Lemma 4.

Sub Lemma 4-4. Let a sequence (ry,,0, ), n =1,2,..., be given such that
rn — 1 and 6,, € 9, . Then limsup h,(ry, 0y, ) < he(r*, J,+).

PROOF OF SUBLEMMA 4-4. Without loss of generality we can assume that
r, — r* and 6, — 6*. Since

lim h(rp,0,,) = h(r*,0") = sup h(r*,0),

n—00 0<6<2m

0* € Y,~. By smoothness of h we obtain lim,, o h-(7y, 0, ) = h.(r*,0%) <

n

h.(r*,9.+), and consequently, limsup,,_, . b (7n, 0y, ) < by (r*, 9,+). O

END OF THE PROOF OF LEMMA 4. In the beginning of the proof of this lemma,
we assumed (3.3). As we already mentioned, (3.3) implies (3.4)—(3.6). Now
we shall get a contradiction to the definition of 7°.

Without loss of generality, we can assume that the constant C' in (3.5) is
smaller than 1/2. We let

2
R =sup{p € (r0,7°); mh.(p,9,) > Inh,(ro,0sy) — 5(0— 7o)}
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From Sublemmas 4-1-4-3 we have that R > r9. Assume that R < r?. Then
there exist sequences r,, — R~ and 6, € ¥, such that

2
Inh,.(rp,0r,) > Inh,(ro,0r) — 5(1"” —r9).
By Sublemma 4-4 we get
2
Inh.(R,9gr) > Inh,.(ro,9r,) — 6(R —1p).

Again applying Sublemmas 4-1-4-3, we obtain that there exists r*, r* > R,
close to R such that

2
Inh,.(r*,9,+) >Inh,.(R,9g) — =(r* — R)

C
2 2 .
>Inh,(ro,9ry) — 5(R —1p) — 5(7‘ —R)
=Inh,(ro, V) — %(7’* — 7).

But the above contradicts the definition of R. Therefore R = r%. Conse-
quently, there exist sequences r,, — %~ and 6,, € ¥, such that

2
lim Inh;(ry, 0r,) 2 Inhy (1o, 9r,) — E(TO —70).

From Sublemma 4-4 we get
By (10, 0,0) > el= & =m0l by (g, 9,.) > 0.

On the other hand h,.(r",9,0) = 0, which contradicts the above inequality.
This completes the proof of Lemma, 4. O

Proor oF THEOREM II. We have two cases:
1% There exists € > 0 such that h,.(r,9,) >0, for 1 —e <r < 1,
20 There exists a sequence r,, /' 1 such that h,(r,,9,, ) <0.

In the first case, we immediately apply Lemma 4, where 7 = 1, and we get
the theorem. In the second case, it is very easy to construct a sequence of
intervals (o, 7), on < Tn, 0 — 1, 7, — 1, such that

he(on,95,) >0, hp(Th,97,) =0, he(r,9,) >0 foro, <r < 7,.

We apply Lemma 4 to each interval (o, 7,), and again the theorem follows.

O
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