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A SET OF MEASURE ZERO WHICH
CONTANIS A COPY OF ANY FINITE SET

Abstract
We answer a question which was stated by R. E. Svetic in [11]. The
Bergelson-Hindman-Weiss lemma, which was placed in [1], is improved.

1 On Svetic’s Question

In [11, p. 537], there was stated the following question: Is it true that if
a measurable set contains a copy of each finite set, then the set has positive
measure?

If one means that a copy [a similar copy of a subset of real numbers] of a
subset X it is a set of the form z +tX = {x +ty : y € X}, where z and ¢t # 0
are some real numbers, then the question had been stated by E. Marczewski
in [6] or [7] and was answered negatively by P. Erdos and S. Kakutani in [3].
More subtle examples which answered the question negatively one can find in
[2], too. If one assumes that a copy means a similar copy but with ¢ = 1:
aset x+X = {x+y:y € X}, where x is a real number; then the answer
is negative, also. We present an answer which improves the P. Erdds and S.
Kakutani result [3]. In [3] it was noted the followings.

= -1 1
Since for each n there holds Z m — = —» then every real z € [0,1)
m! n!
m=n+1
o0 bn
is uniquely of the form x = Z = where always b, € {0,1,...,n —2,n—1}
n!
n=2
and infinitely many times there is b, #n — 1.
The subset
b
S = {2227;: IS {O,l,...,n—3,n—2}} c[0,1)
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has Lebesgue measure zero. It is perfect and meager, too.
And some modification of the following lemma.

Lemma 1. Let n > m > 3 and {a,,b,} € {0,1,...,n—2,n — 1}. If always,
p + by #n—2 and a, +b, #n—1 and a, + b, # 2n — 2, then

Z an! :2%7

n=m-+1 n=m

where ¢, € {0,1,...,n—3,n —2}.
> a,+b = ¢
PROOF. Suppose Z % = Z ﬁ,where c, €1{0,1,...,n—2,n—1}.

n=m-+1 n=m

For the digit c3 there holds

c3 >, a, + by, oo717172
§§21 n! SQZ% nl 3

Since for infinitely many n there holds a, + b, # 2n — 2, then the second
inequality is sharp. Therefore c3 < 2.

Again use this that for infinitely many n there holds a,, + b, # 2n — 2.
So, m > 3 implies ¢, = @y + by, (mod m) or ¢, = ap, + by, + 1 (mod m).
But we assume that always holds ¢, < m. Therefore a,, + b, # m — 2 and
Qm + by, #m — 1 implies that ¢, <m — 1. O]

To answer Svetic’s question we present the following theorem.

Theorem 1. The subset of real numbers

oo oo bn
Uk.S:{kz:zn!:bne{O,l,...,n—B,n—Q} andke{1,2,...}}
k=1 n=

has Lebesque measure zero and contains a copy of any finite subsets of real

numbers.

PROOF. Since Lebesgue measure of S is zero, then any set k-S = {kz : x € S}
o0

is of Lebesgue measure zero. Also the union U k- S is of Lebesgue measure

k=1
zero, since it is an union of countably many sets of Lebesgue measure zero.

Let d be a natural number such that {z1,z2,...,24} C (0,d). Choose
natural numbers a and m such that mlz; < ad, for any i € {1,2,...,¢}, and
m + 1> 2q. Hence

o g
by, i
= Z ik where by, € {0,1,...,k—1}.
k=m+1

Lq

ad
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If n > m, then n > 2¢ and one can find natural numbers b2 € {0,1,...,n —
2,m — 1} such that b8, + b9 #n —1 and b, +bY #n — 2 and b, + b)) # 2n — 2,
for each i € {1,2,...,q}. By Lemma 1 there holds

oo - oo bg_ooczl

n=m-+1 n=m-+1 ! n=m

where ¢!, € {0,1,...,n — 3,n — 2}. Therefore
4SS s
T +a Zm—a ZHEG-.

=m+1 n=m

This shows that ad - S C |z, k- S contains a copy of {z1,22,...,2,} O

Note that the set ad-S C (g, k-5 is an union of countably many perfect
and meager sets. From the result of F. Galvin, J. Mycielski R. M. Solovay [4]
it follows the following.

Theorem 2. If a set of real numbers X is countable, then for any meager set
G there exists a real x such that (x + X) NG = 0.

A proof of the above fact one can deduce from Theorem 3.5 which was
placed in A. W. Miller, [8, p. 209]. Since a meager set can have the complement
of Lebesgue measure zero, then any such complement has to contains a similar
copy of any countable set. In other words, any dense Gs set of Lebesgue
measure zero contains a similar copy of each countable set. We have an other
answer onto Svetic’s question since a finite set is countable, too. But, no dense
G set of real numbers is an union of countably many perfect and meager sets.
By this meaning, our Theorem 2 gives a more subtle answer onto Svetic’s
question.

2 A Uniform Density Theorem

Let E be an Euclidean space with a metric o. For the Lebesgue measure A on
E and a compact set X C E consider the following principle, where B(X, h) =
{z € E: inf{o(z,y) : y € X} < h}. In [5], H. Hadwiger defined and used a
principle we find useful in our context. Below, we state this principle and give
a short proof.

Theorem 3 (Hadwiger Principle). For every € > 0 there exists h > 0 such
that for any t € B({0}, h) it follows that

AX) = AMX N (X +1) <e.
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PRrROOF. For any ¢ > 0 let h > 0 be such that A\(B(X,h)) < A(X) +¢. So, for
any t € B({0}, h) there holds X + ¢ C B(X,h), and hence

MX) = AMX N(X+1) <ANB(X,h) = MX) <e.

In the literature one can find this principle introduced as the sentence: If a
set X C FE is compact, then lim; o A(X N (X +t)) = A(X).

A set X C Eis called measurably large if X is measurable, and for every real
number A > 0 there holds A(X N B({0}, h)) > 0. This notion was introduced
by V. Bergelson, N. Hindman and B. Weiss in [1, p. 63]. In fact, one can find
it in Sz. Plewik and B. Voigt, [9, p. 138], where it was used in Theorem 1.

If X is a Lebesgue measurable set and X™* denotes its density points, then
there holds the following. If t € X* and t 4+ p € X*, then for any real number
h > 0 the intersection B({t}, h) N (X —p) N X has positive Lebesgue measure.
Since almost all points of X belong to X* one has the following:

For any measurable set X there exists a measurable subset X* C X
(*)  such that A\(X) = A(X™) and if p € X* and t +p € X™, then the
intersection (X —t —p) N (X — p) is measurably large.

The following lemma can be found in [1, Lemma 2.2].

Lemma 2 (Bergelson-Hindman-Weiss). Let A C (0,1] be measurably large.
There exist (many) t € A such that AN (A —t) is measurably large.

We shall improve it. The word many is replaced by words for almost all.
The next theorem was announced in Sz. Plewik, [10]

Theorem 4. If X is measurably large, then for almost allt € X the intersec-
tion X N (X —t) is measurably large.

PROOF. Fix a measurably large set D C X* such that D; = {0}UD C X is a
compact set. Let aq,as,... be a sequence of positive real numbers such that
>0 L an < A(D). By the Hadwiger argument there is a real number hy > 0
such that for any t € B({0}, h1) there holds A(D1) < A(D1 N (D1 —t)) + as.
Fix t; € DN B({0}, h1) and put Dy = Dy N (D1 —t1). The set Dy is compact
and /\(Dl) < /\(DQ) “+ aq.

Suppose there have been defined compact sets Dy, D, ..., D, and points
{t1,t2,...,tn—1} € D suchthat Dyt1 = DpN(Dy—ty) and \M(Dg) < AM(Dyy1)+
ag, for 0 < k < n. By the Hadwiger argument there is a positive real
number h, > 0 such that for any ¢ € B({0},h,) there holds \(D,) <
A DN (Dy,—t))+ay,. Fix t, € DNB({0}, hy,) and put D, 11 = D,N(Dy, —1ty).
The set D41 is compact and A(D,,) < AM(Dp41) + o



A SET OF MEASURE ZERO CONTAINING A CoPY OF ANY FINITE SET 417

So, there have been defined compact sets Dy, Ds, ... such that
AD) <AD1NDyN )+ an.
n=1

We have assumed A\(D) > >~ | a,, thus one infers that there exists a point
p € DiNDyN..., where p# 0. Since

pe{D,:n=12..} =n{D,N(Dyp —t,):n=1,2,...}

there always holds p € D,, — t,,. Sop+t, € D, C D C X*. By (%), because
of t, € D C X*, the intersection (X —t,)N (X —p—t,) is always measurably
large. Therefore (X N (X — p)) — t,, is always measurably large, too. For a
real number h > 0 take a set A C B({0}, 2) N ((X N (X —p)) — t,) such that
A(A) > 0. If t, € B({0}, %), then A\(A +t,) >0 and

A+t, C XN (X —p)nBH0},h).

Since h > 0 could be arbitrary one infers that X N(X — p) is measurably large.

For every number p € Dy N Dy N ... the above argument works. Since the
number Y | a, < A(D) could be arbitrarily small and A\(X) = A(X*), then
sets D,, could be chosen such that A\(X \ (D; N Dy N...)) is arbitrary small,
whenever A(X) < co. This follows the finish conclusion. O
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