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COVERING THE CIRCLE WITH RANDOM
OPEN SETS

Abstract

The Dvoretzky covering problem is to cover the circle with random
intervals. We consider the covering of the circle with random open sets.
We find a necessary and sufficient condition for the circle to be covered
almost surely when each open set is composed of a finite number of
intervals which are separated by a positive distance.

1 Introduction

The classical Dvoretzky problem is as follows([D]). Let T = R/Z be the circle.
We consider a decreasing sequence of positive numbers {ln}n≥1 with 0 < ln < 1
and an i.i.d. sequence of random variables {ωn}n≥1 of uniform distribution
(Lebesgue measure). We let In = ωn+(0, ln). The Dvoretzky covering problem
is to find conditions on the length sequence {ln}n≥1 of the random intervals
{In} in order to cover the whole circle T almost surely (a.s. for short); i.e.,

T =
∞⋂

N=1

∞⋃
n=N

In a.s. After several contributions due to P. Levy, J. P. Kahane,

P. Erdǒs, P. Billard (see[K1]), L. Shepp [S1, S2] gave the following necessary
and sufficient condition for covering.

∞∑
n=1

1
n2

e(l1+···+ln) = ∞. (1.1)

The reader can see the survey papers [K2, K3] for more information on the
subject and related topics.

What about covering the circle by random translates of open sets instead
of random intervals In? This problem was considered by M. Wschebor [W1].

Key Words: Dovretzky covering
Mathematical Reviews subject classification: 60D05, 52C17, 28A80
Received by the editors April 17, 2003
Communicated by: R. Daniel Mauldin

341



342 Jinghu Yu

In his paper, he pursued the extremal character of intervals among open sets
but we shall study this problem in a quite different way in our paper.

Let {On}n≥1 be a sequence of open sets in T. (On will play the role of
the interval (0, ln).) Let On = On + ωn be the translation of On by ωn. As
in the Dvoretzky model, we assume that the ω′ns are i.i.d. random variables
with Lebesgue distribution. We say that T is covered if T = lim sup

n→∞
On a.s.

We denote by ln the Lebesgue measure of On. Clearly
∞∑

n=1
ln = +∞ is

necessary for T to be covered. So, in the following, we always assume that
∞∑

n=1
ln = +∞. Furthermore, we assume that

∞∑
n=1

l2n < +∞.

Denote by χ
n the characteristic function of the open set On. Let

Φ(t) =
∞∑

n=1

ξn(t) with ξn(t) = χ
n ∗ χ

n(t). (1.2)

If we consider the T-martingale,

N∏
n=1

1− χn(t− ωn)
1− ln

,

in the same way as in [K2], we can get that

1∫
0

exp(Φ(t)) dt < ∞⇐⇒
1∫

0

exp(Φ(t))
dΦ′(t)

(Φ′(t))2
< ∞

and
1∫

0

exp(Φ(t))
dΦ′(t)

(Φ′(t))2
=

∞∑
n=1

1
n2

e(l1+···+ln−nln).

Combining (1.1) and Proposition 4 in Chapter 11 of [K1], it’s easy to see that

1∫
0

expΦ(t) dt = ∞ (1.3)

is a necessary condition for T to be covered.
In this paper, we will prove that this necessary condition is also sufficient,

when some supplement separation conditions are satisfied. Suppose that, for
any n ≥ 1, the open set On is composed of tn,k open intervals of length
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ln,k(k = 1, 2, . . . ,mn). Let tn be the number of the component intervals of On.
We have tn = tn,1+tn,2+· · ·+tn,mn . Without loss of generality, we can assume
ln,1 > ln,2 > · · · > ln,mn

. Consider the set of lengths {ln,k : n ≥ 1, 1 ≤ k ≤ mn}
and reorder them by x1 > x2 > · · · > xn > . . . . Let

pj = Card{ln,k : ln,k = xj , n ≥ 1, 1 ≤ k ≤ mn}.

Assume that On is composed of open intervals In,1, In,2, . . . , In,tn . Throughout
this paper, we make the following separation hypothesis

d := inf
n≥1

inf
1≤j,k≤tn

j 6=k

d(In,j , In,k) > 0. (1.4)

where d(I, I ′) denotes the distance between the two sets I and I ′. The main
result of this paper is the following assertion.

Theorem. Under the separation hypothesis (1.4), we have

T = lim sup
n→∞

On a.s. ⇐⇒
∞∑

n=1

pn+1

(p1 + · · ·+ pn)2
eΦ(xn+1) = ∞.

A very special case is that On is composed of two disjoint intervals of length
pα

n and (1− p)α
n with 0 < p < 1 and α > 0. If we assume that the separation

condition is satisfied, then as a consequence of the theorem, we can conclude
that T is covered iff α ≥ 1. Note that the covering condition is independent
of 0 < p < 1.

2 The Proof of Theorem

We can get our theorem after proving a series of lemmas.
Let Un = O1

⋃
O2

⋃
· · ·

⋃
On, F = T \ Un. If some of the sets of {On :

n ≥ 1} are composed of one interval exactly, we denote by h1 the length of
the longest one of those sets.

For any given n and interval [α, β], denote the Lebesgue measure of Fn

⋂
[α, β]

by µn(α, β) and µn(0, ε) by µn(ε).
Let An = {ω : Fn

⋂
[0, ε] 6= ∅}.

Let E be the expectation operator. With this notation the first lemma can
be stated.

Lemma 1. E(µn(2ε)) ≥ P (An)E(µn(ε) | 0 ∈ Fn).

Proof. Let An,N = {ω : Fn

⋂
[0, ε] contains an interval of length 1

N }.
Obviously, P (An) = lim

N→∞
P (An,N ). Choose an appropriate ε such that
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0 < 2ε < min{d, 1 − h1}. (Note that if tn ≥ 2 for all n, then we only need to
choose 0 < 2ε < d.) If the event An,N occurs, then at least one more point of
{ j

N : j = 0, 1, . . . , [Nε]} belong to Fn. Write

An,N :0 ={ω : 0 ∈ Fn}

An,N :j ={ω : 0 ∈ Un,
1
N
∈ Un, . . . ,

j − 1
N

∈ Un,
j

N
∈ Fn} (j = 1, 2, . . . , [Nε]).

Clearly, P (An,N ) ≤
[Nε]∑
j=0

P (An,N :j).

In order to prove this lemma, we only need to prove

E(µn(2ε)IAn,N:j ) ≥E(µn(
j

N
,

j

N
+ ε)IAn,N:j )

≥P (An,N :j)E(µn(ε) | 0 ∈ Fn) (j = 0, 1, . . . , [Nε]).

The first inequality of the above expression is obvious and the second one can
be rewritten as

E(µn(
j

N
,

j

N
+ ε) | An,N :j) ≥ E(µn([

j

N
,

j

N
+ ε]) | j

n
∈ Fn). (2.1)

Therefore, if

P (x ∈ Fn | Aj) ≥ P (x ∈ Fn |
j

N
∈ Fn) (2.2)

holds for all x ∈ ( j
N , j

N + ε), we can easily get this lemma.
We rewrite inequality (2.2) as P (x ∈ Un | Aj) ≤ P (x ∈ Un | j

N ∈ Fn),
which is equivalent to

P (0 ∈ Un, . . . ,
j − 1
N

∈ Un |
j

N
∈ Fn, x ∈ Un)

≤P (0 ∈ Un, . . . ,
j − 1
N

∈ Un |
j

N
∈ Fn).

(2.3)

Thus if

P (0 ∈ Un, . . . ,
j − 1
N

∈ Un |
j

N
∈ Fn, x ∈ Un)

≤P (0 ∈ Un, . . . ,
j − 1
N

∈ Un |
j

N
∈ Fn, x ∈ Fn),

(2.4)

holds, then inequality (2.3) follows immediately.
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Now we proceed to prove that for ∀ k = 1, 2, . . . , n

P (0 ∈ Un, . . . ,
j − 1
N

∈ Un |
j

N
∈ Fn, x 6∈ O1

⋃
· · ·

⋃
Ok−1, x ∈ Ok)

≤P (0 ∈ Un, . . . ,
j − 1
N

∈ Un |
j

N
∈ Fn, x ∈ Fn).

In fact, if 0 < 2ε < min{d, 1 − h1} and Ok contains x but does not contains
j
N , then under the separation hypothesis (1.4), Ok

⋂
[0, j−1

N ] = ∅. Moreover,
On (n ≥ 1) are i.i.d. Thus

P (0 ∈ Un, . . . ,
j − 1
N

∈ Un |
j

N
∈ Fn, x 6∈ O1

⋃
· · ·

⋃
Ok−1, x ∈ Ok)

=P (0 ∈ Uk−1, . . . ,
j − 1
N

∈ Uk−1, 0 ∈ Ok+1

⋃
· · ·

⋃
On, . . . ,

j − 1
N

∈ Ok+1

⋃
· · ·

⋃
On |

j

N
∈ Fk−1,

j

N
6∈ Ok,

j

N
6∈ Ok+1

⋃
· · ·

⋃
On, x 6∈ O1

⋃
· · ·

⋃
Ok−1, x ∈ Ok)

≤P (0 ∈ Uk−1, . . . ,
j − 1
N

∈ Uk−1 |
j

N
∈ Fk−1, x ∈ Fk−1)

and

P (0 ∈ Un, . . . ,
j − 1
N

∈ Un |
j

N
∈ Fn, x ∈ Fn)

≥P (0 ∈ Un−1, . . . ,
j

N
∈ Un−1 |

j

N
∈ Fn−1,

j

N
6∈ On, x 6∈ O1

⋃
. . .⋃

On−1, x 6∈ On)

=P (0 ∈ Un−1, . . . ,
j

N
∈ Un−1 |

j

N
∈ Fn−1, x 6∈ O1

⋃
· · ·

⋃
On−1)

≥P (0 ∈ Uk−1, . . . ,
j

N
∈ Uk−1 |

j

N
∈ Fk−1, x 6∈ O1

⋃
· · ·

⋃
Ok−1)

for all k ≥ 1, which implies that the inequality (2.3) holds.

Lemma 2. Under the separation hypothesis (1.4), if
ε∫
0

exp(Φ(t)) dt = ∞ (0 <

ε < d), then T = lim sup
n→∞

On a.s.
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Proof. Firstly, we will show that P (An) → 0(n →∞). In fact

Eµn(2ε) =

2ε∫
0

E
n∏

j=1

(1− χj(t− ωj)) dt

=

2ε∫
0

n∏
j=1

E(1− χj(t− ωj)) dt = 2ε
n∏

j=1

(1− lj).

E(µn(ε)|0 ∈ Fn) =

ε∫
0

E
n∏

j=1

(1− χj(t− ωj))×

n∏
j=1

(1− χj(−ωj))

n∏
j=1

(1− lj)
dt

=(
n∏

j=1

(1− lj))−1

ε∫
0

n∏
j=1

(1− 2lj + ξj(t)) dt.

Yy applying lemma 1 we can get

2ε ≥P (An)(
n∏

j=1

(1− lj))−2

ε∫
0

n∏
j=1

(1− 2lj + ξj(t)) dt

=P (An)

ε∫
0

n∏
j=1

(1 +
ξj(t)− l2j
(1− lj)2

) dt.

(2.5)

Under the separation hypothesis, 0 ≤ ξj(t) ≤ lj , combining with the assump-

tion that
∞∑

n=1
l2n < ∞, we have

n∑
j=1

ξj(t)− l2j
(1− lj)2

=
n∑

j=1

ξj(t) + O(1) and
n∑

j=1

(
ξj(t)− l2j
(1− lj)2

)2 = O(1).

Hence from (2.5) we can get P (An)
ε∫
0

exp
n∑

j=1

ξj(t) dt ≤ Cε, where C depends

only on l1, l2, . . . , ln. Obviously, if
ε∫
0

exp(Φ(t)) dt = ∞ (0 < ε < d), then

P (An) → 0(n →∞).
By substituting any interval [α, β] for [0, ε], it’s easy to get the this lemma.



Covering the Circle with Random Open Sets 347

Lemma 3. Under the separation hypothesis (1.4), if
ε∫
0

exp(Φ(t)) dt < ∞ (0 <

ε < d), then T 6= lim sup
n→∞

On a.s.

The proof of this lemma is very similar to that of proposition 3 in chapter
11 of [K1]. Consequently we omit it here.

Note that
ε∫
0

exp(Φ(t)) dt < ∞ (0 < ε < d) is a necessary and sufficient

condition for T to be covered under the separation hypothesis (1.4). So now

we proceed to give a concrete expression of
ε∫
0

exp(Φ(t)) dt. A useful lemma

must be inserted here.

Lemma 4. [K1] If Φ(t) is convex and decreasing on (0, ε), then
ε∫

0

exp(Φ(t)) dt < ∞⇐⇒
ε∫

0

exp(Φ(t))
dΦ′(t)

(Φ′(t))2
< ∞.

We will use Lemma 4 to calculate
ε∫
0

exp(Φ(t)) dt. First of all, there exist

δ > 0 such that Φ(t) is convex and decreasing on (0, δ). In fact, for any n ≥ 1
and k ≥ 1, there exists jk(n) ≥ 0 such that

lk,1, . . . , lk,jk(n) ≥ xn, lk,jk(n)+1, . . . , lk,mk
≤ xn+1

and ∀ t ∈ (0, d) we have

ξn(t) =
mn∑
i=1

tn,i · sup{0, ln,i − t}.

Write n0 = inf{n : xn ≤ min{d,1−h1}
2 }. Then for any n ≥ n0 and t ∈ [xn+1, xn)

as well as k ≥ 1, ξk(t) =
jk(n)∑
i=1

tk,i(lk,i − t). Thus ∀ n ≥ n0 and ∀ t ∈ [xn+1, xn)

we have Φ(t) =
∞∑

k=1

jk(n)∑
i=1

tk,i(lk,i − t), where
∞∑

k=1

jk(n)∑
i=1

tk,i = p1 + · · · + pn.

Furthermore, we can get that

Φ(xn+1) =
∞∑

k=1

jk(n)∑
i=1

tk,i(lk,i − xn+1) =
∞∑

k=1

jk(n)∑
i=1

tk,ilk,i − (p1 + · · ·+ pn)xn+1,

Φ′(t) = −
∞∑

k=1

jk(n)∑
i=1

t∗k,i = −(p1 + · · ·+ pn), ∀ t ∈ [xn+1, xn).
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Similarly, for any n ≥ n0 and ∀t ∈ [xn+2, xn+1) we have

Φ(t) =
∞∑

k=1

jk(n+1)∑
i=1

tk,i(lk,i − t).

However, for any k ≥ 1 and n ≥ 1

jk(n + 1) =

{
jk(n), if lk,jk(n)+1 < xn+1

jk(n) + 1, if lk,jk(n)+1 = xn+1;

so it’s easy to prove that Φ(t) → Φ(xn+1) (t → xn+1).
Take δ = xn0 . Then the above facts show that Φ(t) is convex and decreas-

ing on (0, δ]. For any n ≤ n0 define

Φ(x1) =0

Φ(xn) =
∞∑

k=1

jk(n−1)∑
i=1

tk,i(lk,i − xn)(n0 ≥ n ≥ 2).

Note that dΦ′(xn+1) = pn+1 and Φ′(t) = −(p1+· · ·+pn) for any t ∈ [xn+1, xn).
Then it’s easy to check that

δ∫
0

exp(Φ(t))
dΦ′(t)

(Φ′(t))2
=

∞∑
n=n0+1

exp[Φ(xn)]pn

(p1 + · · ·+ pn−1)2
.

Combining all the above conclusions, we can get our Theorem.
Notation. If tn = 1 (n ≥ 1), then our covering problem becomes the
classical Dvoretzky covering problem and in this case, xn = ln, pn = 1 and
Φ(xn) = l1 + l2 + · · ·+ ln − nln.

3 Examples

Example 1. Suppose On is composed of two disjoint intervals of lengths pα
n

and (1 − p)α
n respectively, where 0 < p < 1 and α > 0. We assume that the

separation condition is satisfied. Without loss of generality, we suppose p < 1
2 .

Corollary. For this special case, T is covered iff α ≥ 1. The covering is
independent of 0 < p ≤ 1.

Proof. We need to sort the lengths of all intervals into x1, . . . , xn, . . . by
their sizes and to calculate Φ(t).
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For any positive number y, denote by [y] the integer part of y. Write
zp = [1−p

p ] and yp = 1−p
p − zp.

(I) p is irrational. Then p
m 6= 1−p

n for all n and m, which implies that the
lengths of all intervals are different and hence pn = 1(n ≥ 1).

Note that for any p
n , 1−p

k > p
n for k ≤ [n · 1−p

p ] and 1−p
k < p

n for k ≥
[n · 1−p

p ] + 1. Let km = [m · 1−p
p ](m ≥ 1). Then

km+1 =

{
km + zp if [myp + yp] = [myp]
km + zp + 1 otherwise

and

x1 = (1− p)α,

x2 =
1− p

2
α, . . . , xk1 =

1− p

k1
α,

xk1+1 = pα,

xk1+2 =
1− p

k1 + 1
α, xk1+3 =

1− p

k1 + 2
α, . . . , xk2+1 =

1− p

k2
α,

xk2+2 =
p

2
α,

xk2+3 =
1− p

k2 + 1
α, xk2+4 =

1− p

k2 + 2
α, . . . , xk3+2 =

1− p

k3
α,

xk3+3 =
p

3
α,

...

xkn+n−1 =
1− p

kn
α,

xkn+n =
p

n
α,

xkn+n+1 =
1− p

kn + 1
α, xkn+n+2 =

1− p

kn + 2
α, . . . , xkn+1+n =

1− p

kn+1
α,

...

Now we want to compute Φ(xn).
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(1) If n = km + m for some m, then xn = pα 1
m and

km+1 =

{
(m + 1)zp if [myp + yp] = [myp]
(m + 1)zp + m otherwise

n =

{
(zp + 1)m if [myp + yp] = [myp]
(zp + 2)m− 1 otherwise.

Which leads to

km =

{
zp

zp+1 · n if [myp + yp] = [myp]
zp+1
zp+2 (n + 1)− 1 otherwise

m =

{
n

zp+1 if [myp + yp] = [myp]
n+1
zp+2 otherwise.

In addition, we have

Φ(xn) =(1 +
1
2

+ · · ·+ 1
m

)pα + (1 +
1
2

+ · · ·+ 1
km

)(1− p)α− n · 1
m

pα

=pα lnm + (1− p)α ln km − n

m
pα− a1,

where a1 is independent of n.
(2) If km + m < n < km+1 + m + 1, that means that n = km + m + j for

some 1 ≤ j ≤ km+1 − km ≤ zp + 1. In this case, xn = 1−p
km+j α and

km =

{
zp

zp+1 · (n− j) if [myp + yp] = [myp]
zp+1
zp+2 (n + 1− j)− 1 otherwise

m =

{
n−j
zp+1 if [myp + yp] = [myp]
n+1−j
zp+2 otherwise.

Meanwhile, we have

Φ(xn) =(1 +
1
2

+ · · ·+ 1
m

)pα + (1 +
1
2

+ · · ·+ 1
km + j

)(1− p)α− n · 1− p

km + j
α

=pα lnm + (1− p)α ln(km + j)− n

km + j
(1− p)α− a2,

where a2 is independent of n.
According to our theorem, it’s not difficult to check if α ≥ 1, then T =

lim sup
n→∞

On a.s. otherwise, if α < 1 then T 6= lim sup
n→∞

On a.s.
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(II) p is rational.
(1) If 1−p

p = zp,;i.e., 1−p
p is an integer, then for [n 1−p

p ] = n · zp ∀ n and
1−p
n·zp

α = p
nα. In this case, xn = 1−p

n α. If n = m · zp for some m, then

xn = 1−p
mzp

α and

Φ(xn) =(1 + · · ·+ 1
mzp

)(1− p)α + (1 + · · ·+ 1
m

)pα− (n + m)xn

=(1− p)α lg n + pα lg m− n + m

n
(1− p)α− a1

=(1− p)α lg n + pα lg
n

zp
− n + m

n
(1− p)− a1.

Otherwise, if n = mzp + j for some m and j ≤ zp − 1, then

Φ(xn) =(1 + · · ·+ 1
n

)(1− p)α + (1 + · · ·+ 1
m

)pα− (n + m)xn

=(1− p)α lg n + pα lg m− n + m

n
(1− p)α− a1

=(1− p)α lg n + pα lg
n− j

zp
− n + m

n
(1− p)− a1.

It’s clear that T = lim sup
n→∞

On a.s iff α ≥ 1.

(2) If 1−p
p isn’t an integer, let 1−p

p = y1
z1

, where y1 and z1 are irreducible.
In this case, only when m = k · z1(k ≥ 1) and n = 1−p

p m = ky1, we have
1−p

n = p
m . Repeating the above procedure, we can get the same conclusion as

before.

Example 2. Suppose On is divided into m disjoint intervals of the same
length α

n·m and assume that the separation condition is satisfied. Then by the
way Corollary 3 was proved, we can also verify the fact that T = lim sup

n→∞
On

a.s. iff α ≥ 1.

4 Remark

If we remove the separation hypothesis (1.4), we can get a sufficient condition
for T to be covered a.s. Let sn,k(k = 1, . . . , tn) be the smallest integers z
satisfied ln,k ≥ ln

z and sn be the biggest one of {sm,km
: m = 1, . . . , n, km =

1, . . . , tm} . Obviously, sn,k ≥ 1 and
tn∑

k=1

1
sn,k

≤ 1.
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Proposition. If lim sup
n→∞

1
nsn

exp(l1 + l2 + · · ·+ ln) = ∞, then T = lim sup
n→∞

On

a.s. Specially, if
∞∑

n=1
l2n = ∞ and sn = O(nα) for some α > 0, then T =

lim sup
n→∞

On a.s.

Proof. Write un = 1
n exp(l1 + · · ·+ ln). If un ≥ sup

m<n
um, then we say n ∈ Λ.

From the condition of this proposition, we know Λ is infinite and lim
n→∞

un = ∞.

For any n ∈ Λ, we have un ≥ un−1 and ln ≥ lg n
n−1 ≥

1
2n , which implies that

for any given n ∈ Λ and m ≤ n, we have lm ≥ 1
2n .

For convenience, denote the interval of center x and radius l by I(x, l). Let
m ∈ Λ be a given but arbitrary. For any n ≤ m, let Ĩn,k(k = 1, . . . , tn) be the
intervals with the same centers as In,k and the length of ln,k − 1

2n·sn,k
. Write

Õn =
tn⋃

k=1

Ĩn,k. Let xj = j
2m·sm

(j = 0, . . . , 2m ·sm) be those points on T which

divide T into 2msm parts; that is, T is covered by
2m·sm⋃

j=0

I(xj ,
1

4msm
); so it’s

easy to get that

{ω : T 6= Um} ⊆
2msm⋃
j=0

{ω : I(xj ,
1

4msm
) 6⊂ Um

⊆
2msm⋃
j=0

{ω : xj 6∈
m⋃

n=1

Õn} =
2msm⋃
j=0

{ω : xj 6∈
m⋃

n=1

tn⋃
k=1

Ĩn,k}.

Otherwise, if ∃ j such that xj ∈
m⋃

n=1
Õn, then ∃ n0 and k0 ∈ {1, . . . , tn0}

such that xj ∈ Ĩn0,k0 . Then

I(xj ,
1

4msm
) ⊂ I(xj ,

1
4msn0,k0

) ⊂ In0,k0 ⊂ On0 ⊂ Um.

However, since Õn =
tn⋃

k=1

Ĩn,k, we have

P (xj 6∈
m⋃

n=1

Õn) =
m∏

n=1

P (xj 6∈ Õn) =
m∏

n=1

[1−
tn∑

k=1

(ln,k −
1

2msn,k
)].
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It follows that

P (T 6= Um) ≤2msm

m∏
n=1

[1−
tn∑

k=1

(ln,k −
1

2msn,k
)]

=2msm

m∏
n=1

[1− ln +
1

2m

tn∑
k=1

1
sn,k

]

≤2msm exp[−
m∑

n=1

(ln −
1

2m

tn∑
k=1

1
sn,k

]

≤2msm exp[−
m∑

n=1

(ln −
1

2m
)].

For the next to the last inequality, we have use the fact
tn∑

k=1

1
sn,k

≤ 1. Let

m → ∞ (m ∈ Λ). We get P (T 6=
∞∑

n=1
On) = 0. If

∞∑
n=1

l2n = ∞, then there

exists infinite ln such that ln > n−
2
3 , this implies that l1 + · · ·+ ln > n

1
3 when

n is large enough.
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