Real Analysis Exchange
Vol. 29(1), 2003/2004, pp. 257264

Janina Ewert, Institute of Mathematics, Pedagogical University, ul.
Arciszewskiego 22b, 76-200 Stupsk, Poland. email: j-ewert@pap.edu.pl

Jacek Jedrzejewski, Institute of Mathematics, Pedagogical University, ul.
Arciszewskiego 22b, 76-200 Stupsk, Poland and The College of Computer
Science, ul. Rzgowska 17a, £.6dz, Poland. email: jmj@wsinf.edu.pl

BETWEEN ARZELA AND WHITNEY
CONVERGENCE

Abstract

A stronger form of the Arzeld convergence is defined and it is com-
pared to other types of convergence.

Throughout the article, X will denote a topological space in which no sep-
aration axioms are assumed if none are explicitly stated. Thus, just as in
[3] and [10], compactness, paracompactness (also countable compactness and
countable paracompactness) are presumed without the T5 axiom and pseudo-
compact spaces need not be T51. For any subset A of the space X its closure
will be denoted by ¢l (A) . In a metric space (Y, p) the open ball with center at
y and radius r will be denoted by B(y,r). Furthermore, F(X,Y) and C(X,Y)
will denote the classes of all functions and all continuous functions from X to
Y, respectively, and R will denote the set of all positive real numbers. This
set will be endowed with the natural topology.

Definition 1. [1], [2] A net {f; : j € J} of functions f; : X — Y is said to
be convergent to a function f : X — Y in the sense of Arzela (or simply
A-convergent) if this net pointwise converges to f and for every positive ¢,
every jo in J there exists a finite subset J; of J such that j > jo for j € J;
and

min{o (f;(x), f(x)):je€ i} <e

for each z in X.
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Definition 2. [4], [7], [8], [9] A net {f; : j € J} of functions f; : X — Y is
said to be convergent to a function f : X — Y in the sense of Whitney if for
each ¢ from C(X,R") there exists jo € J such that o (f;(z), f(z)) < p(z) for
each z € X and for each j € J such that j > jo.

Definition 3. A net {f;:j € J} of functions f; : X — Y is said to be
convergent to a function f : X — Y in the sense of Arzela&-Whitney (or
simply AW-convergent) if this net pointwise converges to f and for every
¢ € C(X,RT), every jo in J there exists a finite subset J; of J such that
j > jo for j € J; and

min {o (f;j(z), f(z)) : j € J1} < p(x) if re€ X.

We have the following relations between the mentioned types of conver-
gence.

Whitney convergence ——— uniform convergence
Yy

N\

pointwise convergence

/

Arzela convergence

AW-convergence

None of the implications in this diagram is reversible. Moreover, AW-
convergence and uniform convergence are independent.

Examples.

(1) Let the functions f, for n € N and a function f be given by f,(z) = 1
and f(z) = 0 for each x € R". The sequence (f,),-, is uniformly convergent
to the function f, but it is not AW-convergent to this function. For instance,
taking positive integers n, k, a continuous function ¢ given by ¢(x) = % and

m greater than n + k we have

1
min {|foti(m) — f(m) :i € {0,1,... . k}} = nrk e(m).
(2) Let the sequence (g,),-, and a function g be defined in R* by g(z) = 0
for € RT and
0 if z e (0,n)U(n+2,00),
gn(@)=<x—n if x € [n,n+1],
—z4+n+2 ifren+1,n+2.
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It is easy to see that the sequence (g,),-, is AW-convergent to the function
g, but it is not uniformly convergent.

(3) Let the sequence (hy,),-, and a function h be defined in R* by h(z) =0
for x € R, and

0 ifze(0,n)U(n,n+2),
ho(x)=<n ifx=n,
L ifz e n+2,00).

The sequence (hy),-, is A-convergent to the function h, but it is neither
uniformly convergent nor AW-convergent.

A topological space X is called almost compact ([3]) if each open cover 4l
of X has a finite subfamily of sets Uy, ..., U, for which cl (U}_,Ux) = X. One
can easily see that for regular spaces compactness and almost compactness
coincide.

Theorem 1. Let X be an almost compact space. If a net {f;:j e J} of
continuous functions f; : X — Y is pointwise convergent to a continuous
function f: X — Y, then this net is AW-convergent to the function f.

ProoF. Fix jo € J and ¢ € C(X,RT). For each point p € X we can choose
a neighborhood U, of p such that 2p(p) < ¢(z) for z € U,. We put W, =

B (f(p), 5 ¢(p)) . Thus
A={U, 0 fT W) N f7H (W) ip € XA > o)
is an open cover of X. By assumptions, we can select a finite subfamily
{Upe N f7H(Wp) 0 fj_kl (Wy,) i ke{l,...,n}}
such that

cl (U (Upk nf! (Wp) N fjjcl (ka))> =X

k=1
Let x be in X. Then

x€cl (Upk N f_l (ka) N fj_kl (ka))
for some k in {1,...,n}. Hence

3

la) € (A (0) € el (U)) € 30 (m) . 0).
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Consequently 2 - ¢ (py) < ¢(z). Furthermore,

e = (B (5005 00)) <8 (100 o)

and analogously, f;, (z) € B (f (px). % - ¢ (px)) . Thus we infer that

0 (@), F5(2)) < 3 - olpi) < p(a).

Finally, letting J; = {j1,...,Jn} we conclude that the net {f; : j € J} is AW-
convergent. O

Theorem 2. If X is a paracompact Hausdorff space, then the following con-
ditions are equivalent:

1. X is a compact space,

2. for each metric space (Y, p) AW-convergence and pointwise convergence
coincide in the class C(X,Y),

3. AW-convergence and pointwise convergence coincide in C(X,[0,1]).

Proor. The implication (1) = (2) is a consequence of Theorem 1. The
implication (2) = (3) is evident.

To prove the implication (3) = (1), suppose that the space X is not
compact. There exists an open cover 4 = {U, : s € S}, which has no finite
subcover. Since X is a paracompact Hausdorff space, there exists a locally
finite closed cover U = {M; : s € S}, for which My C Us if s € S (see [6] Lem.
5.1.6). Let < be a well order in the set S and « be the order type of (S5, <).
Thus the cover U can be taken as a transfinite sequence

Mgy, Mg, ..., Ms.,..., &<a.
Now let

Do = M,,, D¢ = U M,,, Eg=X\Us, and Fe = X \ U Us,
B=<g B<E

when ¢ < a. Then ® = {D¢ : £ < a} is a cover of X and the sets D¢ and E
are closed and disjoint for each & < o. Moreover, if § < £, then Dg C D¢
and E¢ C Ejg. The space X is normal. Thus for each { less than « there
exists a continuous function f¢ : X — [0,1] such that f¢(D¢) = {1} and
fe(Ee) = {0}. It is easy to see that the net { f¢ : £ < a} is pointwise convergent
to the function f defined by f(z) =1if z € X.
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Take a finite sequence {f¢,, fe,, ..., fe, }, where & < & < -+ <&, < a

and a continuous function ¢ given by ¢(z) = 1, z € X. Since E¢, C Eg,, if

ke {1,2,...,n}, then fe () =0if 2 € E¢, and k < n. From this we infer
that

min {|fe, — f(@)] : k < n} > p(x) if o € B,

In this way we have proved that the net {f¢ : { < o} is not AW-convergent to
the function f. O

Theorem 3. If X is pseudocompact, then for every metric space (Y,p) the
AW-convergence in the class F(X,Y) is equivalent to A-convergence.

PRrROOF. Let {f;:j € J} be a net of functions from X into ¥ which is A-
convergent to a function f: X — Y and let ¢ be a function from the class
C(X,RT). From the pseudocompactness of the space X we infer that

inf{p(z):x € X} =r>0.
It follows from A-convergence, that for any jo from J there exists a finite
subset J; of J such that j > jo for any j € J; and
. . 1
inf {p (f; (@), f(@) :j € N} <5 -7 < p(2)
for each z € X. O

In the sequel we will apply the following result.

Lemma 1. [2; Th. 4] For a topological space X the following conditions are
equivalent:

1. every sequence (f,),.,, where f, € C(X,R) which is pointwise conver-
gent to a function from the class C(X,R) is also A-convergent;

2. X is pseudocompact.

As an immediate consequence of Theorem 3 and Lemma 1 we get the
following.

Corollary 1. For a topological space X the following conditions are equiva-
lent:

1. X is pseudocompact;

2. every sequence (fy),—, , where f, € C(X,R) which is pointwise conver-

gent to a continuous function f : X — R is also AW-convergent to the
function f.
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Applying the above corollary and Theorem 1, we obtain this consequence.
Corollary 2. Every almost compact space is pseudocompact.

Theorem 4. If X is a countably paracompact Ty space, then the following
conditions are equivalent:

1. X is countably compact;

2. for any metric space (Y,p), every sequence (f,),—, of functions from
the class C(X,Y), which is pointwise convergent to a function f from
the class C(X,Y), is also AW-convergent to the function f.

3. every sequence (f,),—, of continuous functions, where f, : X — [0,1],
which is pointwise convergent to a continuous function, is also AW-
convergent.

PRrROOF. First we will prove the implication (1) = (2). Assume that X is
countably compact. Let (f,);—, be a sequence of functions from the class
C(X,Y), which is pointwise convergent to a function f from the same class.
For any positive integer n and any function ¢ from the class C(X,R™) we put

Vi ={z € X :p(fu(2), f(z)) < p(z)}.
The family {Vj : kK > n} forms an open cover of X. Thus sets
Vna Vn+17 e th+m

can be chosen in such a way that | J!" , V,4; = X, from whence AW-convergence
followed.

The implication (2) = (3) is evident.

Finally, suppose that X is not countably compact. Then there is an open
cover {U, : n € N} of X which has no finite subcover. Without loss of general-
ity we can assume that U,, ¢ Uy, if n # k. Since X is a paracompact Ty space,
there exists a locally finite open cover {V;, : n € N} such that cl(V,) C U,
if n € N. Now let D,, = cl(U,V;) and M,, = X \ U™ ,U; for each positive
integer n. Then the sets D,, and M,, are closed and satisfy

D, N M, =@, D, C Dpyy ifneNand U2, D, = X.

The normality of the space X implies that for each positive integer n there
exists a continuous function f, : X — [0,1] such that f,(D,) = {1} and
fa(M,,) = {0}. Let f be defined by f(z) = 1if x € X. It is not difficult
(applying arguments similar to those in the proof of the implication (3) = (1)
in Theorem 2) to prove that the sequence (f,).., is pointwise convergent to
f, but it is not AW-convergent to f. O
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Definition 4. [5] A sequence (f,),-, of functions from F(X,Y) is said to
be locally A-convergent to a function f : X — Y at a point 29 € X if
fn(xo) — f(x0) and for each positive € and positive integer m there exist a
neighborhood U of xy and a positive integer n such that

min {p (fm+r(x), f(2)) : k € {0,1,...,n}} <e

for each z in U.

A sequence (f,),—, of functions from F(X,Y) is said to be locally A-
convergent to a function f: X — Y if it is A-convergent to f at each point
x from the set X.

Evidently, every A-convergent sequence is also locally A-convergent, but
the converse is false. For instance, let the functions f,, : (0,1) — (0,1) and a
function f : (0,1) — (0,1) be given by f,(z) = 2™ and f(z) = 0. Then the
sequence (fy,) -, is locally A-convergent to f but it is not A-convergent.

Using Corollary 1 we obtain the following.

Corollary 3. Let X be a pseudocompact space and f € C(X,R), f, € C(X,R)
for any positive integer n. Then the following conditions are equivalent:

1. the sequence (fn)ff:l s pointwise convergent to f;

the sequence (fy), ., is locally A-convergent to f;

oo
n
oo

T

(fn)
the sequence (fy,),_, is A-convergent to f;
(fn)

the sequence (f,),—, is AW-convergent to f.
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