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CONDITIONS WHICH IMPLY
CONTINUITY

Abstract

In this paper we look at various generalizations of continuity for a
function and determine necessary additional conditions which result in
continuity in the ordinary sense.

1 Introduction and Definitions

There are many notions in the literature which are generalizations of continu-
ity. For each of them, there are examples showing that a function can have
this property without being continuous in the ordinary sense. The natural
question to follow then is, “What conditions can be added to this form of con-
tinuity to make a function continuous in the usual sense?” That is precisely
the question we wish to look at in this paper. We start by defining some of
the generalizations of continuity we shall deal with.

Definition 1. Let X, Y , and Z be topological spaces and f : X × Y → Z.
We say that

1. f is quasi-continuous at (x, y) if for open sets U ⊂ X and V ⊂ Y with
(x, y) ∈ U × V and open set W ⊂ Z where f (x, y) ∈ W , there is a
nonempty open set U ′ ⊂ U and a nonempty open set V ′ ⊂ V such that
f (U ′ × V ′) ⊂W.

Key Words: continuous, nearly continuous, quasi-continuous, and separately continuous
functions

Mathematical Reviews subject classification: MSC2000: 26B05, 54C05, 54C30
Received by the editors December 12, 2002
Communicated by: B. S. Thomson

∗This author was supported by a 2001-2002 Research Professorship Grant from
Youngstown State University.

†This paper was written while this author was on sabbatical at Youngstown State Uni-
versity.

211



212 Zbigniew Piotrowski and Robert W. Vallin

2. f is quasi-continuous at (x, y) with respect to x (alternatively y) if we
also insist x ∈ U ′ (y ∈ V ′).

3. f is symmetrically quasi-continuous at (x, y) if it is quasi-continuous
with respect to x and with respect to y.

An example to show how all of these differ from ordinary continuity is the
function f : R2 → R given by

f (x, y)

{
1 if x = y, (x, y) 6= (0, 0)
0 otherwise.

A related, but stronger, idea is separate continuity. Here a function defined
on a product space is refined by holding one of the arguments constant.

Definition 2. Let X, Y , and Z be topological spaces and let f : X×Y → Z.
For every fixed x ∈ X, the function fx : Y → Z defined by fx (y) = f (x, y) is
called an x-section of f. The y-section is similarly defined. We say f : X×Y →
Z is separately continuous if each x-section and each y-section is a continuous
function.

The standard example of a separately continuous function which is not
continuous at the origin is

f (x, y) =

{
2xy

x2+y2 if (x, y) 6= (0, 0)
0 if (x, y) = (0, 0) .

The relationships between these various notions are summarized in the
following diagram where C represents the continuous functions, SC the sepa-
rately continuous functions, QC the quasi-continuous functions, SQC the sep-
arately quasi-continuous functions (for all (x, y) each x-section and y-section is
a quasi-continuous function), and SymQC the symmetrically quasi-continuous
functions.

C
↙ ↓ ↘

SymQC ← SC → QC
↘ ↓ ↗

SQC

There are an abundance of examples to show that none of these arrows may
be reversed.

For this paper we shall restrict ourselves to X = Y = Z = R. Under this
circumstance we can add a fourth to our list of quasi-continuities. We begin
with the single variable definition found in Grande and Natkaniec [7].
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Definition 3. A function f : R→ R is bilaterally quasi-continuous at a point
x if for every positive η there are non-empty open sets V ⊂ (x− η, x) and
W ⊂ (x, x + η) such that

f (V ∪W ) ⊂ (f (x)− η, f (x) + η) .

While the idea of bilateral does not easily generalize into all topological
spaces we can expand this idea to functions whose domain is Rn.

Definition 4. Let f : Rn → R and x = (x1, x2, . . . , xn). We say f is quasi-
continuous from the right with respect to xi if for every positive η there are
non-empty open sets Uj in R where Uj contains xj if j 6= i and Ui = (a, b) ⊆
(xi, xi + η) and both

n∏
j=1

Uj ⊆ B (x, η)

and

f

 n∏
j=1

Uj

 ⊂ (f (x)− η, f (x) + η) .

Similarly, there is quasi-continuous from the left (b < xi) with respect to
xi. Finally, f is bilaterally quasi-continuous with respect to xi, if it is quasi-
continuous from both directions at xi and f is bilaterally quasi-continuous at
x if it is bilaterally quasi-continuous at every xi.

Bilaterally quasi-continuous functions fit between continuous functions and
symmetrically quasi-continuous functions in the chart.

Our last type of function to be defined is the nearly continuous function.
The concept of nearly continuous at a point was introduced by V. Pták in [12].

Definition 5. Let X and Y be topological spaces. A function f : X → Y is
nearly continuous at x ∈ X if, for each neighborhood V of f (x), int(cl(f−1(V )))
is a neighborhood of x.

In our situation, where we’ll have X = R2 and Y = R. It can be shown
that (see [8]) a function f : R2 → R is nearly continuous at a point x if there
exists D, a set dense in a neighborhood of x, such that the restriction, f |D,
is continuous at x.

The classic salt and pepper function

f (x) =

{
0 if x ∈ Q
1 if x /∈ Q

is a nearly continuous function which is not continuous at any point.



214 Zbigniew Piotrowski and Robert W. Vallin

2 Results

The motivation for this paper were the following results. C E. Burgess in [1]
gives a condition on locally bounded functions which implies ordinary conti-
nuity.

Lemma 6. If f : R→ R is locally bounded and the graph of f is closed in R2,
then f is continuous.

In addition, Z. Piotrowski and E. Wingler in [11] showed the following.

Theorem 7. Let X and Y be topological spaces with Y locally connected. Let
Z be locally compact and suppose f : X × Y → Z has continuous y-sections
and connected x-sections. If f has a closed graph, then f is continuous.

The authors have been working with quasi-continuous functions and de-
cided, in a similar vein, to look for a condition on quasi-continuity which would
imply ordinary continuity. That result is the following theorem.

Theorem 8. If f : R2 → R is bilaterally quasi-continuous and has a closed
graph, then f is continuous.

Proof. Assume not. Say there exists a point (x0, y0) where f is not con-
tinuous. So there exists an ε > 0 and (xn, yn) converging to (x0, y0) such
that

|f (xn, yn)− f (x0, y0)| > ε

for all n. Let B be the open ball about (x0, y0) of radius one. Look at f (B).
From Corollary 1 in [9] f (B) is connected, so there exists a point at least
ε away from the triple (x0, y0, f (x0, y0)) on the line parallel to the z-axis
through this triple which is a limit point of the graph. This contradicts the
graph being closed.

Let us give some examples regarding this result. The first shows that
we cannot replace bilaterally quasi-continuous with the weaker symmetrically
quasi-continuous. The second shows that this is different than the result of
Burgess by exhibiting a bilaterally quasi-continuous function which is not lo-
cally bounded. Lastly, we show that being bilaterally quasi-continuous every-
where is necessary to have f (B) be connected.

Example 9. Let f : R2 → R be given by

f (x, y) =

{
1

x−y if x < y

0 if x ≥ y.
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This function is symmetrically quasi-continuous and has a closed graph, but
is not continuous.

Example 10. Let g : R2 → R be given by

g(x, y) =

 1√
x2+y2

sin
(

1√
x2+y2

)
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

This g is bilaterally quasi-continuous, but not bounded at the origin.

Example 11. Let A be the set of points (x, y) in the interior of the first
quadrant such that y < x/5 and let L1 = {(x, y) : x > 0 and y = x/5} . Let B
be the set of points (x, y) in the interior of the fourth quadrant such that y >
−x/5 and let L2 = {(x, y) : x > 0 and y = −x/5} . Let C = {(x, 0) : x > 0} .
Let dist ((x, y) , A) denote the distance from a point (x, y) to the set A. Finally
we define h : R2 → R by

h (x) =


1/ dist ((x, y) , L1) if (x, y) ∈ A

1/ dist ((x, y) , L2) if (x, y) ∈ B

1/ dist ((x, y) , L1) if (x, y) ∈ C

0 otherwise.

Now h has closed graph and is bilaterally quasi-continuous at the origin, but
h (B), the image of the unit ball, it not connected.

Let C be a class of functions from a space X into a space Y . We say that
the class C has the unique determination property on dense sets, for f, g from
C, if f agrees with g on any dense subset of X, then f and g agree throughout
X.

It is well-known that the class of all continuous functions f : X → Y from
any topological space X into any Hausdorff space Y does have the unique
determination property on dense sets (see [3]). W. Sierpinski showed that ev-
ery separately continuous function f : Rn → R has this unique determination
property. From now on, if a class C of functions from a given space X into a
given space Y has the unique determination property, we will simply say that
C has the Sierpinski property. We will (informally) say f has the Sierpinski
property if X, Y, and C were specified.

Our result deals with nearly continuous functions and the Sierpinski prop-
erty.

Theorem 12. If f : R2 → R is nearly continuous and has the Sierpinski
property, then f is continuous.
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Proof. Suppose that f is not continuous at some (x0, y0). So there exists an
ε > 0 and (xn, yn) converging to (x0, y0) such that

|f (xn, yn)− f (x0, y0)| > ε

for all n. Since f is nearly continuous at (x0, y0) , there exists a dense neighbor-
hood D such that f |D is continuous at (x0, y0). Choose an (xn, yn) ∈ cl (D),
the closure of D. Since f is nearly continuous at (xn, yn), there exists a dense
neighborhood D̃ of (xn, yn) such that f | eD is continuous at (xn, yn).

Now pick a region where D and D̃ are co-dense. Define a new function f̂
by

f̂ (x, y) =

{
f (x, y) if (x, y) ∈ D̃

f (x, y) + 1 elsewhere.

Then f = f̂ on D̃, f 6= f̂ which contradicts the Sierpinski property.

Since all separately continuous functions f : R2 → R have the Sierpinski
property, we have the following Corollary. It should be noted that C. Goffman
and C. J. Neugebauer (in [5]) have given a separately continuous function
f : Q×Q→ R for which the Sierpinski property fails.

Corollary 13. If f : R2 → R is nearly continuous and separately continuous,
then f is continuous.

This is related to results by T. Neubrunn and J. Ewert. In [10] Neubrunn
showed that if f : R2 → R is quasi-continuous and nearly continuous, then
f is continuous. Because the separately continuous functions are a proper
subset of the quasi-continuous functions Neubrunn’s paper contains the pre-
vious corollary. Our result differs from Neubrunn’s because quasi-continuous
functions do not have the Sierpinski property as the following example shows.

Example 14. Let f, g : R2 → R be given by

f (x, y) =

{
sin 1

x2+y2 if (x, y) 6= (0, 0)
0 if (x, y) = (0, 0)

g (x, y) =

{
sin 1

x2+y2 if (x, y) 6= (0, 0)
1 if (x, y) = (0, 0) .

Obviously, f and g agree on a dense set, but are not equal.

In [4] Ewert has the following corollary where (X, TX) is a topological space
and (Z, q) is a metric space.
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Corollary 15. If f : X → Z is a cliquish and almost continuous (in the sense
of Husain) function, then f is a continuous function.

Let us close our article with an open problem that is closely related to our
findings. The question is attributed to Prof. Cz. Ryll-Nardzewski.

Problem 16. Assume f : R2 → R has a closed and connected graph. Must
f be continuous?
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