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PSEUDO-CHARACTERISTIC FUNCTIONS
FOR CONVEX POLYHEDRA

Abstract

An algorithm is given for constructing polynomials that determine
approximately whether a point p is inside or outside a given polyhedron
Cn in Euclidean n-dimensional space. The polynomials are of degree
2r, where r is a positive integer and the order of the approximation
can be made arbitrarily small by taking r sufficiently large. For n = 2,
the square, triangle, trapezoid, and pentagon are used as examples.
For n = 3 and n = 4, the tetrahedron and equilateral simplex are
used as examples. We conjecture that the center of mass of the region
determined by the approximating polynomial is the same for all values
of r, and hence coincides with the center of the polyhedra.

1 Introduction

It has been noted that the function

fr(x, y) = x2r + y2r

describes, in the limit r → ∞, a square with vertices (0, 0), (0, 1), (1, 0),
and (1, 1): all points inside the square have f∞(x, y) = 0, points on the
boundary have f∞(x, y) = 1 or f∞(x, y) = 2, and points outside the square
have f∞(x, y) →∞. We term such a function a pseudo-characteristic function,
and generalize this idea to arbitrary convex polyhedra in Rn. Whereas we focus
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on polynomials, similar results involving exponential functions can be found
in [4].

The problem may be stated as follows. Given a convex polyhedron P ⊂ Rn

defined by a finite set of J linear inequalities with real ai,j and ci (not all zero):

n∑
j=1

ai,jxj + ci ≤ 0, i = 1, 2, . . . , J

and a point p in Euclidean n-space En, find a polynomial f(x1, x2, . . . , xn)
whose value f(p) determines if p is inside or outside P . (For a discussion of
convex polyhedra, see [5] or [10].) The polynomial we construct is really a set
of polynomials Fr(x1, x2, . . . , xn) whose limiting values, 0 or ∞, as r → ∞
determine if the point p is inside or outside of the polyhedron P .

2 Algorithm for Two Dimensions

For clarity, we first discuss the case n = 2. Let P be a convex polygon in two
dimensions with k edges ei and k vertices vi, where i = 1, 2, . . . , k, written in
order about the polygon. Let l i : aix + biy + ci = 0 be the line containing the
pair of vertices (vi,vi+1) for i = 1, 2, . . . , k − 1 and lk be the line containing
the pair (vk,v1). Following the usual terminology, we say that li supports P
because all of P is on one side of li and li contains at least one point of P .

Consider the pairs of vertices (vi,vi+1) for i < k and (vk,v1). For i =
1, 2, . . . , k let v∗i = (x∗i , y

∗
i ) be one of the possibly several vertices P farthest

from li. Let l∗i : aix + biy + c∗i = 0 be the line through v∗i parallel to li. Then
l∗i supports P .

Put
fi(x, y) = γ(aix + biy + ci) + 1. (1)

Thus, fi(x, y) has the value 1 at any point on li, independently of γ. Now
choose γ so that at v∗i = (x∗i , y

∗
i ) and therefore on l∗i , fi(x, y) has the value -1:

fi(x∗i , y
∗
i ) = γ(aix

∗
i + biy

∗
i + ci) + 1 = −1, i = 1, 2, . . . , k.

That is, γ =
−2

aix∗i + biy∗i + ci
, so that

fi(x, y) = 1− 2(aix + biy + ci)
aix∗i + biy∗i + ci

, i = 1, 2, . . . , k.

Note that the denominator cannot be zero.
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In the strip between li and l∗i , −1 < fi(x, y) < 1 because fi is linear in x
and y and fi has the value +1 at li and -1 at l∗i . Furthermore, fi(x, y) > 1 for
(x, y) on the other side of li from l∗i and fi(x, y) < −1 for (x, y) on the other
side of l∗i from li.

We define the “pseudo-characteristic function” Fr(x, y) as

Fr(x, y) =
k∑

i=1

[fi(x, y)]2r
, (2)

where the sum is over all k vertices and r is a positive integer. The point (x, y)
is inside the polygon if and only if −1 ≤ fi(x, y) ≤ 1 for all i. Therefore the
point (x, y) is in P if and only if all the terms in the sum are no more than 1.
If any term in the sum is greater than 1, the point is not in P .

A more qualitative method is to take r large. If the sum is small, the point
is inside P . If the sum is large, the point is outside P . These qualitative
statements can be made more precise. For example, if the value of Fr is
moderate, increase r until a decision can be made. Of course, one could test
all k inequalities. If any fail, the point is outside P . Otherwise the point is
inside P .

3 Examples of Application of the Algorithm in 2 Dimen-
sions

Example A: Square. Let P be defined as the intersection of the four half-
planes:

H1 :x− 1 ≤ 0,

H2 : y − 1 ≤ 0,

H3 : − x− 1 ≤ 0,

H4 : − y − 1 ≤ 0.

These four closed half-planes describe a 2 × 2 square centered at the origin,
with sides parallel to the coordinate axes. The four vertices are: v1 : (1,−1),
v2 : (1, 1), v3 : (−1, 1), v4 : (−1,−1). For the line through v1 and v2, we have
l1 : x − 1 = 0. A farthest vertex from l1 is v3 : (−1, 1). So x∗1 = −1, y∗1 = 1,
and c1 = −1. For i = 1, (1) becomes

f1(x, y) = 1− 2(x− 1)
−1− 1

= 1 + (x− 1) = x
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Likewise l2 : y − 1 = 0 and f2(x, y) = y. Lines l3 and l4 yield f3 = −x
and f4 = −y. Thus we have Fr(x, y) = x2r + y2r, where we have omitted an
unnecessary factor of 2.

Example B: Triangle. Consider the triangle defined by the inequalities:

H1 :x ≥ 0,

H2 : y ≥ 0,

H3 :x + y − 1 ≤ 0.

Application of the algorithm gives the pseudo-characteristic function

Fr(x, y) = [2(x + y)− 1]2r + [1− 2x]2r + [1− 2y]2r.

Example C: Trapezoid. Consider the trapezoid defined by the inequalities:

H1 :x + y − 2 ≤ 0,

H2 : − x− y + 1 ≤ 0,

H3 : y ≥ 0,

H4 :x ≥ 0.

Application of the algorithm gives

Fr(x, y) = 2[2(x + y)− 3]2r + [1− x]2r + [1− y]2r.

For r = 1 we have F1 = 8(x2 + xy + y2 − x− y) + 3.

Example D: Equilateral Pentagon. It is convenient to discuss the closed
pentagon in terms of its bounding lines in place of half planes. These five
bounding lines are:

l1 : y = 0

l2 : −y +
(

x− 1
2

)
sec

(
2π

5

)
= 0,

l3 : −y −
(

x +
1
2

)
sec

(
2π

5

)
= 0,

l4 : y − 1
2

[
csc

(π

5

)
+ cot

(π

5

)]
+ x tan

(π

5

)
= 0,

l5 : y − 1
2

[
csc

(π

5

)
+ cot

(π

5

)]
− x tan

(π

5

)
= 0.
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These five lines describe an equilateral pentagon of unit edge being the x axis
from -.5 to .5, with the pentagon bisected by the y axis. The vertex v∗i farthest
from li is v∗i = {x∗i , y∗i }, where

v∗1 =
{

0,
1
2

[
csc

(π

5

)
+ cot

(π

5

)]}
' {0, 1.53884 . . . },

v∗2 =

{
−1

2

[
cot

(
π
5

)
+ csc

(
π
5

)
+ sec

(
2π
5

)
sec

(
2π
5

)
+ tan

(
π
5

) ]
,

1
2

sec
(

2π

5

) [
cot

(
π
5

)
+ csc

(
π
5

)
+ sec

(
2π
5

)
sec

(
2π
5

)
+ tan

(
π
5

) − 1

]}
' {−.796666 . . . , .96003 . . . },

v∗3 =

{
1
2

[
cot

(
π
5

)
+ csc

(
π
5

)
+ sec

(
2π
5

)
sec

(
2π
5

)
+ tan

(
π
5

) ]
,

1
2

sec
(

2π

5

) [
cot

(
π
5

)
+ csc

(
π
5

)
+ sec

(
2π
5

)
sec

(
2π
5

)
+ tan

(
π
5

) − 1

]}
' {.796666 . . . , .96003 . . . },

v∗4 =
{
−1

2
, 0

}
,

v∗5 =
{

1
2
, 0

}
.

A sketch of lines and vertices of the pentagon is shown in Fig. 1. The lines
forming the pentagon may be written as li : aix + biy + ci = 0, where

{ai} =
{

0, sec
(

2π

5

)
,− sec

(
2π

5

)
, tan

(π

5

)
,− tan

(π

5

)}
= {0, 3.23606 . . . ,−3.23606 . . . , .726542 . . . ,−.726542 . . . } ,

{bi} = {−1,−1,−1, 1, 1} ,

{ci} =
{

0,−1
2

sec
(

2π

5

)
,−1

2
sec

(
2π

5

)
,−1

2

[
csc

(π

5

)
+ cot

(π

5

)]
,

− 1
2

[
csc

(π

5

)
+ cot

(π

5

)]}
= {0,−1.61803 . . . ,−1.61803 . . . ,−1.53884 . . . ,−1.53884 . . . } ,
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Figure 1: Bounding lines and vertices of the pentagon of section 3.
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where {ai} denotes a1, a2, . . . , a5 etc. The exact values in algebraic form of
the secant, cosecant, tangent, and cotangent functions are given in Spanier
and Olham [8]. The following table gives their values.

function value

sec( 2π
5 )

√
8

3−
√

5

csc(π
5 )

√
8

40−
√

5

tan(π
5 )

√
40−

√
5

3+
√

5

cot(π
5 )

√
3+
√

5
40−

√
5

Now the functions

fi(x, y) = 1− 2(aix + biy + ci)
aix∗i + biy∗i + ci

, i = 1, 2, 3, 4, 5

evaluate to

f1(x, y) =1− 4y

cot(π
5 ) + csc(π

5 )
,

f2(x, y) =1− 2
α

[
−y −

(1
2
− x

)
sec

(2π

5

)]
,

f3(x, y) =1− 2
α

[
−y −

(1
2

+ x
)
sec

(2π

5

)]
,

f4(x, y) =1− 1
β

[
2y − cot

(π

5

)
− csc

(π

5

)
+ 2x tan

(π

5

)]
,

f5(x, y) =1− 1
β

[
2y − cot

(π

5

)
− csc

(π

5

)
− 2x tan

(π

5

)]
,

where

α = − sec
(2π

5

) cot
(

π
5

)
+ csc

(
π
5

)
+ sec

(
2π
5

)
sec

(
2π
5

)
+ tan

(
π
5

)


and

β = −1
2

(
cot

(π

5

)
+ csc

(π

5

)
+ tan

(π

5

))
.

Maps of the summation Fr(x, y) =
∑5

i=1[fi(x, y)]2r ≤ 1 are shown in Fig. 2

for various r.
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Figure 2: Plots of the pseudo-characteristic function Fr(x, y) for different
values of r for the pentagon of section 3. The boundary of Fr “balloons
out” to fill the polygon P ; we note that it is possible to construct a modi-
fied function F

′

r(x, y) = ηFr(x, y) which “shrink-wraps” onto P by choosing
η = 1/maxj (F1(vj)) where the vj are the polyhedron vertices.
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4 N Dimensions

The method for N > 2 dimensions is similar to that of two dimensions. De-
termine the bounding (hyper) planes, followed by a set of polynomials fj(x)
which has magnitude less than one between pairs of parallel bounding (hyper)
planes, where x ∈ RN . The pseudo-characteristic polynomials are then given
by

Fr(x) =
k∑

i=1

[fi(x)]2r
,

similar to equation (2).
In N dimensions, each face of a polyhedron contains a set of vertices vi

which lie in a plane of dimension N − 1. The equation of a plane in RN is

w · x + a = 0, (3)

where x ∈ RN and w ∈ RN is a constant vector. The dot · represents inner
product.

The vector w is perpendicular to the plane, which may be seen by trans-
lating the plane to the origin. Let x0 be some point in the plane, i.e. a point
which satisfies (3). Points in the translated plane are given by x′ = x − x0,
and hence satisfy the equation w ·x′ = 0. Since the translated plane is parallel
to the original plane, w is perpendicular to the plane.

This also gives an easy method for determining w if the vertices of the face
are known. In three dimensions, the cross-product may be used to determine
a vector perpendicular to each face, but a more general method is needed for
N > 4. Without loss of generality, let v1, v2, . . . , vk be the vertices of a face;
for the face to lie in an (N − 1)-dimensional plane, we require that k > N − 1.
Since each point satisfies (3) we may translate by one of the vertices, say vk,
giving a system of equations

w · (v1 − vk) = 0,

w · (v2 − vk) = 0,

. . .

w · (vk−1 − vk) = 0,

which may be written in matrix form as
v1 − vk

v2 − vk

· · ·
vk−1 − vk

 wT = 0. (4)



830 W. A. Beyer, Stephen L. Judd and Johndale C. Solem

Since the translated plane is a vector subspace of dimension N − 1, there is
a set of N − 1 basis vectors which span the subspace, and the Gauss-Jordan
method may be used to reduce (4) to a row echelon form matrix.This gives a
k − 1 ×N matrix of rank N − 1, which in turn determines the null vector w
up to an arbitrary constant. Finally, the choice of w determines the value of
the constant a in (3).

As in the two-dimensional case, the next step is to determine the polyno-
mials fj(x) = 1+γj(aj +wj ·x) for each face j of the object, where γj is again
given by

γj =
−2

aj + wj · v∗j
,

where v∗j is a vertex farthest away from the face, so that fj(x) = 1 for points
in the jth face and fj(x) = −1 for points in the opposing bounding plane
(centered on v∗j ). The vertex v∗j is simply the vertex which maximizes |aj +
w · vj |, since fj(x) = −1 at this maximum (and fj(x) = 1 at the minimum).
Thus, once wj , aj , and v∗j are known for each face, the pseudo-characteristic
polynomial is known for the polyhedron.

4.1 Example: Tetrahedron in 3 Dimensions

As a simple example, consider a tetrahedron in R3 whose vertices are given
by v1 = (1,−1, 1), v2 = (−1, 1, 1), v3 = (1, 1,−1), and v4 = (−1,−1,−1). Let
face 1 be given by (v1, v2, v3), face 2 by (v1, v3, v4), face 3 by (v1, v2, v4), and
face 4 by (v2, v3, v4). This in turn determines the various values as

face aj wj v∗j γj

1 -1 (1, 1, 1) v4 1/2
2 -1 (1,−1,−1) v2 1/2
3 1 (1, 1,−1) v3 −1/2
4 1 (1,−1, 1) v1 −1/2

The pseudo-characteristic polynomials for the tetrahedron in 3 dimensions
are therefore

Fr(x1, x2, x3) =
4∑

i=1

[fi(x1, x2, x3)]2r, r = 1, 2, . . . (5)
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where

f1(x1, x2, x3) = 1− (1− x1 − x2 − x3)/2,

f2(x1, x2, x3) = 1− (1− x1 + x2 + x3)/2,

f3(x1, x2, x3) = 1− (1 + x1 + x2 − x3)/2,

f4(x1, x2, x3) = 1− (1 + x1 − x2 + x3)/2.

Plots of the boundary of Fr are given in Fig. 3 for r = 2 and r = 16.
Examples of values for Fr are given by

F1(x1, x2, x3) =x2
1 + x2

2 + x2
3,

F2(x1, x2, x3) =
1
4
(x4

1 + x4
2 + x4) +

3
2
(x2

1x
2
2 + x2

1x
2
3 + x2

2x
2
3)

+ 6x1x2x3 +
3
2
(x2

1 + x2
2 + x2

3) +
1
4
.

4.2 Example: Tetrahedron in 4 Dimensions

Next, consider a tetrahedron in R4 whose vertices are given by

v1 =(1, 1, 1, 0),
v2 =(1,−1,−1, 0),
v3 =(−1, 1,−1, 0),
v4 =(−1,−1, 1, 0),

and whose faces (3 dimensional tetrahedra) are given in terms of the vertices
of the face by:

face 1 : v1, v2, v3, v4,
face 2 : v1, v2, v3, v5,
face 3 : v1, v2, v4, v5,
face 4 : v1, v3, v4, v5,
face 5 : v2, v3, v4, v5.

To compute w1, we use the matrix formed from v1 − v2, v2 − v3, and v3 − v4: 0 2 2 0
2 −2 0 0
0 2 −2 0


which upon row-reduction becomes
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Figure 3: Plots of the pseudo-characteristic function Fr for the tetrahedron in
three dimensions. The first figure is for r = 2; the second is for r = 16.
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 0 2 −2 0
0 0 2 2
0 0 0 −4


giving

w1 =


0,
0,
0,
1


and hence a1 = −1. Note that this is the expected result, since if we consider
the coordinate system to be x = (x1, x2, x3, x4), face 1 is an R3 tetrahedron at
x1 = 1. Note also that a different choice of w1 would force a different choice
of a1. Vertices v5, v6, v7, and v8 are equidistant from face 1, and choosing v∗1
to be any of these gives γ1 = −2/

√
5 and hence

f1(x) = 1 + (−1 + w1 · x) = 1− 2√
5
x4.

Similar analysis of the other four faces gives the following summary.

face aj wj v∗j γj

1 0 (0, 0, 0, 1) v5 −2/
√

5
2 -1 (1, 1,−1, 1/

√
5 ) v4 1/2

3 -1 (1,−1, 1, 1/
√

5 ) v3 1/2
4 -1 (−1, 1, 1, 1/

√
5 ) v2 1/2

5 -1 (−1,−1,−1, 1/
√

5 ) v1 1/2

Thus the pseudo-characteristic functions for the four-dimensional tetrahe-
dron are Fr(x1, x2, x3, x4) =

∑5
i=1, [fi(x1, x2, x3, x4)]2r, where

f1(x1, x2, x3, x4) =1− 2
√

5x4/5,

f2(x1, x2, x3, x4) =1 +
1
2
(−1 + x1 + x2 − x3 +

√
5x4/5),

f3(x1, x2, x3, x4) =1 +
1
2
(−1 + x1 − x2 + x3 +

√
5x4/5),

f4(x1, x2, x3, x4) =1 +
1
2
(−1− x1 + x2 + x3 +

√
5x4/5),

f5(x1, x2, x3, x4) =1 +
1
2
(−1− x1 − x2 − x3 +

√
5x4/5).
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For r = 1, we have

F1 = x2
1 + x2

2 + x2
3 + x2

4 + 2
√

5x4 −
2
5
x4

√
5 + 1.

5 Conjectures and Remarks

We conjecture that the region determined by the pseudo-characteristic poly-
nomial of a convex polyhedron is convex.

We conjecture that for r = 1, the set where the pseudo-characteristic
function is less than 1 is a sphere and the center of the sphere is the center of
mass of the polyhedron.

Another way of constructing a pseudo characteristic function for polygons
is to use scaled and translated box functions arising in the theory of wavelets.
See page 13 of [9]. If one used a finite number of such boxes, the bound-
aries would be less smooth than with the methods used in this paper and the
calculations would be longer.

Reference [6] discusses the problem of determining if a point in the plane
or in higher dimensions is inside a given polygon or polyhedron. These figures
need not be convex.

To apply the results of this paper to nonconvex polytopes, one could divide
the nonconvex polytopes into a finite number of convex polytopes and apply
the method of this paper to each of the convex polytopes.

We acknowledge a letter from Michael Hawrylycz to David Torney that
gives an algorithm for determining whether a given plane point is inside a
given convex polygon.

What do the polynomials that are developed in this paper tell us about
the convex polytopes that produce the polynomials?
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