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Abstract

In the paper we present an exhaustive discussion of the relations
between Darboux-like functions within the class of additive Sierpiński-
Zygmund (SZ) functions. In particular, we give an example of an addi-
tive Sierpiński-Zygmund (SZ) injection f : R → R such that f−1 is not
an SZ function. Under the assumption that R cannot be covered by less
than c-many meager sets we give examples of an additive SZ bijection
f : R→ R such that f−1 is not SZ and of an additive injection f : R→ R
such that both f and f−1 are SZ.

A function f : R → R belongs to the class of Sierpiński-Zygmund functions
(abbr. f ∈ SZ ) if the restriction f�A is discontinuous for each A ⊂ R of size
c. This concept was introduced in [SZ]. A function f : R → R is additive if
f(x + y) = f(x) + f(y) for every x, y ∈ R.

In this paper we will construct several examples of additive SZ functions.
The paper has two main goals. The first of them is to show that almost
all inclusions from Gibson’s diagram remain strict in the class of additive SZ
functions. The second one is to examine when the inverses of additive SZ
injections are also of SZ type.

Our terminology is standard. In particular, symbols Q and R stand for
the sets of all rationals and reals, respectively. We consider only real-valued
functions of one real variable. No distinction is made between a function and
its graph. The cardinality of R is denoted by c. For a cardinal number κ the
symbol [X]κ will denote the family of all subsets Y of X with card (Y ) = κ. If

Key Words: additive function, Sierpiński-Zygmund function, Darboux like function, al-
most continuous functions, connectivity functions, functions with perfect road, peripherally
continuous functions, CIVP-functions, SCIVP-functions

Mathematical Reviews subject classification: Primary: 26A15; Secondary: 03E50
Received by the editors April 16, 2005
Communicated by: Krzysztof Chris Ciesielski

253



254 Tomasz Natkaniec and Harvey Rosen

A is a planar set, we denote its x-projection by dom (A). For x ∈ R and A ⊂ R2

we denote the x-section of A by Ax. The closure of a set A ⊂ R is denoted
by cl (A), its interior by int (A), and its boundary by bd (A). M denotes the
ideal of meager subsets of the real line and cov (M) is the minimal cardinality
of a family of meager sets which cover R. If A ⊂ R (or A ⊂ R2), then LIN (A)
denotes the linear subspace of R (R2, respectively) over Q generated by A.
(Note that if A ⊂ R2, then dom (LIN (A)) is a linear subspace of R.) In
particular, if q ∈ Q and 〈x, y〉 ∈ R2, then q〈x, y〉 = 〈qx, qy〉 and if q ∈ Q and
A ⊂ R2, then qA = {qa : a ∈ A}.

Let CGδ
be the collection of all real-valued continuous functions defined

on Gδ subsets of R, and C∗Gδ
be the family of all nowhere constant functions

g ∈ CGδ
. It is well known that f is an SZ function iff card (f ∩ g) < c for

every g ∈ CGδ
[SZ]. We will need also the following lemma. (We will use it

for one-to-one and for countable-to-one functions.)

Lemma 1. ([CN, Lemma 4.24]) Let X ∈ [R]c and f : X → R have all level
sets of size less than c. Then f ∈ SZ iff card (f ∩ g) < c for every g ∈ C∗Gδ

.

1 Additive Darboux Like Sierpiński-Zygmund Functions.

In several papers Darboux like properties in the class of SZ functions were con-
sidered. (See Section 4 in [GN].) In the first of them, [UD], Darji constructs
in ZFC an SZ function having a perfect road at each point, and in [BCN], Bal-
cerzak, Ciesielski, and Natkaniec give an additive example of such a function.
In [NR], Natkaniec and Rosen under the assumption that cov (M) = c con-
structed an example of an additive almost continuous SZ function which is PR
but not CIVP . Note that some additional set-theoretic assumptions are here
necessary, because the existence of an SZ Darboux function is independent
of ZFC axioms [BCN, Section 5]. (For example, this is one of the conse-
quences of CPA Axiom introduced by K. Ciesielski and J. Pawlikowski [CP,
Paragraph 6.2].)

Let us flash back to several definitions. All but the second definition are
given for functions f : R → R.

D – f is a Darboux function if f(C) is connected whenever C is connected in
R;

Conn – f : X → R is a connectivity function if the graph of f restricted to C
is connected in X × R whenever C is connected subset of X;
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AC – f is an almost continuous function in the sense of Stallings, if each
open subset of R2 containing the graph of f contains also the graph of
a continuous function from R to R;

Ext – f is an extendable function if there exists a connectivity function g : R×
[0, 1] → R such that f(x) = g(x, 0) for all x ∈ R;

PR – f has a perfect road if for every x ∈ R, there exists a perfect set P
having x as a bilateral limit point such that f�P is continuous at x;

CIVP – Cantor Intermediate Value Property: f ∈ CIVP if for all p, q ∈ R
with p 6= q and f(p) 6= f(q) and for every Cantor set K between f(p) and
f(q), there exists a Cantor set C between p and q such that f(C) ⊂ K;

SCIVP – Strong Cantor Intermediate Value Property: f ∈ SCIVP if for all
p, q ∈ R with p 6= q and f(p) 6= f(q) and for every Cantor set K between
f(p) and f(q), there exists a Cantor set C between p and q such that
f(C) ⊂ K and f�C is continuous;

PC – f is peripherally continuous if for every x ∈ R there exist two sequences
sn ↗ x and tn ↘ x such that limn→∞ f(sn) = f(x) = limn→∞ f(tn).

The basic relations between these classes for the functions from R to R are
given in Gibson’s diagram, in which arrows −→ denote strict inclusions, and
the symbol C denotes the class of all continuous functions. (See [GN].)

C - Ext
��* AC - Conn - D

HHj PC
SCIVP CIVP PR- -

HHj ��*

We will show that almost all inclusions from Gibson’s diagram remain strict
in the class of all additive Sierpiński-Zygmund functions. Moreover, examples
from the lower line of this diagram (SCIVP → CIVP → PR → PC ) can be
found in ZFC, in the class of one-to-one functions. In the examples from the
upper line (Ext → AC → Conn → D) we need some additional set-theoretic
assumptions, like CH or cov (M) = c. Additionally, such examples cannot be
1 − 1, because of the well known fact that a one-to-one function f : R → R
satisfying the intermediate value property must be continuous.

We start with two easy observations.

Remark 2. No SZ function has the SCIVP , and therefore there is no SZ
extendable function.
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Remark 3. Every additive SZ function f : R → R is PC .

Proof. This is a consequence of the following facts. Every SZ function is
discontinuous, each additive discontinuous function is dense in R2, and all
dense functions are PC .

Example 4. There is an additive SZ injection having a perfect road at no
x ∈ R.

Proof. Let CGδ
= {gξ : ξ < c}, and let {Iα : α < c} be the family of all

proper open intervals. Let {Hα : α < c} be a family of pairwise disjoint sets
such that H =

⋃
α<c Hα is a Hamel basis and each Hα is a Bernstein set. (See

e.g., [KC, Theorem 7.3.4, p. 113].) Let H = {hα : α < c}. First we define
inductively an injection f̃ : H → H. Suppose f̃ is defined on {hβ : β < α}.
Let Vα = LIN ({hβ : β < α}) and Wα = LIN ({f̃(hβ) : β < α}). Choose

f̃(hα) ∈ H \
(

LIN
(
Wα +

⋃
ξ≤α

gξ(Vα+1)
)
∪ Iβ

)
where hα ∈ Hβ , β < c.

Let f be an additive extension of f̃ . Then f is 1−1, and dom (f ∩gξ) ⊂ Vξ

for any ξ < c, so f ∈ SZ . To see that f has a perfect road at no x, fix x ∈ R
and ε > 0. Let β be the number of the interval (f(x)− ε, f(x) + ε). Then for
each perfect set P there is hα ∈ P ∩Hβ with f(hα) 6∈ Iβ , so P is not a perfect
road of f at x.

In the next examples we need the following lemma.

Lemma 5. ([BCN, Lemma 2]) There exists a collection {〈Hα, pα〉 : α < c}
such that:

1. Hα ∪ {pα} is a compact perfect subset of R and pα is a bilateral limit
point of Hα,

2. H =
⋃

α<c Hα is a linearly independent set,

3. Hα ∩Hβ = ∅ for all α 6= β,

4. for every x ∈ R there exists c-many γ < c such that x = pγ .

Example 6. There exists an additive SZ injection f : R → R with the CIVP .
(Note that f is not Darboux.)

Proof. Let {In : n < ω} be the family of all open intervals with rational
end-points, and let {Cβ : β < c} be the family of all Cantor sets. Fix a Hamel
basis B which is a Bernstein set (See e.g., [KC, Theorem 7.3.4], p. 113.), and
a family {Hα,n : α < c, n < ω} of pairwise disjoint perfect sets such that
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(i)
⋃

α<c

⋃
n<ω Hα,n is linearly independent;

(ii)
⋃

α<c Hα,n ⊂ In for all n < ω.

(The existence of such sets is an easy consequence of Lemma 5. Cf. [KC1,
Lemma 4.2].) Let H = {hα : α < c} be a Hamel basis containing all sets Hα,n.
Fix b ∈ B and put B0 = B \ {b}. We will define inductively a 1− 1 function
f̃ : H → B. Assume f̃ is defined on {hβ : β < α}. Put Vα = LIN ({hβ : β < α})
and Wα = LIN ({f̃(hβ) : β < α}). At the step α choose:

(1) f̃(hα) ∈ B0 ∩ Cβ \ LIN (Wα +
⋃

ξ≤α gξ(Vα+1)) if hα ∈
⋃

n<ω Hβ,n;

(2) f̃(hα) ∈ B0 \ LIN (Wα +
⋃

ξ≤α gξ(Vα+1)) if hα 6∈
⋃

n<ω

⋃
β<c Hβ,n.

Let f : R → R be the additive extension of f̃ .
First observe that the set {f̃(hα) : α < c} is linearly independent, so f is

an injection.
To verify that f ∈ SZ we will show that for a given ξ < c, dom (f∩gξ) ⊂ Vξ,

so card (f ∩ gξ) < c. In fact, fix x ∈ R with f(x) = gξ(x). Let α be the
first ordinal for which x ∈ Vα+1. Then x = v + qhα for some v ∈ Vα and
q ∈ Q \ {0}, and consequently, gξ(x) = f(x) = f(v) + qf̃(hα), so f̃(hα) =
−q−1f(v) + q−1gξ(x) ∈ Wα + gξ(Vα+1). Thus the statements (1) and (2) give
easily α < ξ.

Since dom (f ∩ gξ) ⊂ Vξ for any ξ < c, so f ∈ SZ . Next, fix x, y ∈ R and
a Cantor set C between f(x) and f(y). There are n < ω and β < c such that
In ⊂ (x, y) and C = Cβ . Then Hβ,n ⊂ (x, y) and f(Hβ,n) ⊂ C, so f has the
CIVP .

Example 7. There exists an additive SZ injection f : R → R such that f ∈
PR \ CIVP .

Proof. In [BCN, Theorem 2], an additive SZ function f : R → R with a
perfect road is constructed as the additive extension of a function f̂ : Ĥ → R
where Ĥ = {hα : α < c} is a Hamel basis containing the set H =

⋃
α<c Hα of

Lemma 5. For each α < c, they chose f̂(hα) such that

(i) f̂(hα) 6= f̂(hβ) for all β < α along with other properties, and they chose a
set Ĥα = Hγ for some γ such that hα = pγ and Ĥα ∩ {hβ : β ≤ α} = ∅.

But here we also require the following.

(ii) f̂(hα) ∈ Ĥ \K, where K = Ĥ0 ∪ {h0}, and

(iii) f̂(h0) < min(K) < max(K) < f̂(h1).
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By (i) and (ii), f̂ : Ĥ → Ĥ \ K is one-to-one and so f is one-to-one. To see
f 6∈ CIVP , let C be a perfect nowhere dense subset of R between h0 and h1.
Then f(C) ⊂ f(R) = LIN (f̂(Ĥ)) ⊂ LIN (Ĥ \ K) ⊂ R \ (K \ {h0}) because
Ĥ0 = K \ {h0} ⊂ Ĥ.

Example 8. Assume cov (M) = c. There exists an additive SZ function
f : R → R which is Darboux but not connectivity.

Proof. Let R = {rα : α < c}, r0 = 0, and let H = {hα : α < c} be a Hamel
basis. Let {gα : α < c} be an enumeration of the family C∗Gδ

with g0 = id R.
We choose inductively two families of two-element sets {{aα, bα} : α < c},
{{cα, dα} : α < c} such that

(1) The set {aα, bα : α < c} is a Hamel basis.

(2) c0 = 0, and {d0} ∪ {cα, dα : 0 < α < c} = H.

(3) If f : R → R is the additive function such that f(aα) = cα and f(bα) = dα

for α < c, then

(3a) dom (f ∩ gξ) ⊂ LIN ({aα, bα : α < ξ}) for every ξ < c;

(3b) f is Darboux and all level sets of f are countably dense (Thus f
is dense in R2.);

(3c) f(x) 6= x for any x ∈ R \ {0}.

Let a0 = h0, c0 = 0, b0 = h1 and d0 = h0. Assume that α is fixed and
aβ , bβ , cβ , dβ are defined for β < α. Let Vα = LIN ({aβ , bβ : β < α}), Wα =
LIN ({cβ , dβ : β < α}), Ŵα = LIN (Wα ∪ {hα}), and fα : Vα → Wα be the
linear function defined by fα(aβ) = cβ , fα(bβ) = dβ for β < α.

Step I. Let
aα ∈ R \

(
Vα +

⋃
β≤α

Qg−1
β (Ŵα)

)
.

Such a choice is possible because the assumption cov (M) = c implies the
inequality Vα +

⋃
β≤α Qg−1(Ŵα) 6= R. Put V ′

α = LIN (Vα ∪ {aα}).
Step II. If hα 6∈ Wα, then cα = hα. Otherwise choose

cα ∈ H \
(
Wα +

⋃
β≤α

Qgβ(V ′
α)

)
.

Put W ′
α = LIN (Wα ∪ {cα}). Then

(i) fα(v) + qcα 6= gβ(v + qaα) for β ≤ α, v ∈ Vα and q ∈ Q \ {0}.
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Step III. If rα 6∈ V ′
α, then bα = rα. Otherwise pick arbitrary bα ∈ H \V ′

α.
Step IV. Choose

dα ∈ H \
(
W ′

α +
⋃

β≤α

Qgβ(Vα+1)
)
.

Then

(ii) fα(v)+q0cα+q1dα 6= gβ(v+q0aα+q1bα) for β ≤ α, v ∈ Vα, and q0, q1 ∈ Q,
q1 6= 0.

By construction, the set H1 = {aα, bα : α < c} is linearly independent and,
for each α < c, rα ∈ LIN ({aβ , bβ : β ≤ α}), so H1 is a Hamel basis and (1)
is fulfilled. Since d0 ∈ H, cα, dα ∈ H for 0 < α < c, and hα ∈ W ′

α for each
α < c, the condition (2) holds.

To see that (3a) holds fix ξ < c and assume that f(x) = gξ(x). Let α be
the first ordinal for which x ∈ Vα+1. Then there are v ∈ Vα and q0, q1 ∈ Q
with |q0|+ |q1| 6= 0 such that x = v + q0aα + q1bα. Now we have two cases to
consider.

• q1 6= 0. Then by (ii), gξ(x) = f(x) 6= gβ(x) for β ≤ α, so α < ξ.

• q1 = 0. Then q0 6= 0, and (i) implies gξ(x) = f(x) 6= gβ(x) for β ≤ α, so
α < ξ.

In both cases x ∈ Vξ. Now we will verify that (3b) holds. Since the range
of f is a linear subspace of R and, by (2), H ⊂ f(R), so f(R) = R. Hence
to prove that f is Darboux it is enough to observe the kernel of f , f−1(0),
is dense in R. This is because Qh0 ⊂ f−1(0). To see that level sets of f
are countable it is enough to prove that the kernel of f is countable. (Recall
that any level set of an additive function f is a translation of the kernel
of f . See e.g., [MK, Theorem 1], p. 295.) So, fix x ∈ f−1(0). There are
t0, . . . , tn ∈ H1 \ {h0} such that ti 6= tj whenever i 6= j, and q, q0, . . . , qn ∈ Q
such that x = qh0 + q0t0 + · · ·+ qntn. Then 0 = f(x) = q0f(t0) + · · ·+ qnf(tn)
is a linear combination of the vectors f(t0), . . . , f(tn) from the Hamel basis H.
Since f is 1−1 on H1, so f(ti)’s are pairwise different. Thus q0 = · · · = qn = 0.
Therefore x = qh0 and consequently, f−1(0) = Qh0.

The conditions (3b) and (3a) together with Lemma 1 imply f ∈ SZ . Fi-
nally observe that the condition (3a) implies dom (f ∩ id R) = dom (f ∩ g0) ⊂
LIN (∅) = {0}. This and (3b) give f 6∈ Conn .

Example 9. Assume the Continuum Hypothesis CH. Then there exists an
additive SZ function which is Conn but not AC .
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Proof. Let CGδ
= {gα : α < c}, g0 = ∅, K = {Kβ : β < c} be the family

of all continua K ⊂ R2 with card (dom (K)) = c, K0 = [0, 1]2, and let R =
{rγ : γ < c} be an enumeration of all reals such that the set X = {rn : n < ω}
is linearly independent and dense in the interval (−1, 1). We will adapt the
proof of [CR, Theorem 2.3], where an example of an additive function f ∈
Conn \ AC was constructed. Let F , M and Z be as in [CR, Lemma 2.1];
i.e., F : R → (−1, 1) × R is a continuous embedding; M = F (R) is closed in
R2; Z is a closed subset of M and g ∩ Z 6= ∅ for every continuous function
g : [−1, 1] → R; Zx = Mx is a singleton for all x ∈ (−1, 1) \ X; for each
x ∈ X the section Mx is a non-trivial closed interval and Zx consists of the
two endpoints of that interval.

We will define inductively a ⊂-increasing sequence fξ, ξ < c, of additive
functions defined on subspaces of R such that

(i) dom f0 = LIN (X);

(ii) rξ ∈ dom fξ;

(iii) gα ∩ fξ ⊂ fα for α < ξ;

(iv) Kξ ∩ fξ 6= ∅;

(v) Z ∩ fξ = ∅.

Simultaneously we will choose a sequence {g′ξ : ξ < c} ⊂ CGδ
with g′ξ ⊂ Kξ \

QZ.
Let f =

⋃
β<c fβ . Notice that f is an additive function. By (ii), f is

defined on all of R. By (iii), f is SZ . By (iv), f is Conn , and by (v), it is not
AC .

The function f0 is defined inductively, similarly to fn’s, n < ω, in [CR,
Theorem 2.3], such that 〈rn, f0(rn)〉 ∈ M and the condition (v) holds; i.e.,
〈rn, f0(rn)〉 6∈ Wrn

= QZ + LIN ({〈ri, f0(ri)〉 : i < n}), so f0(rn) ∈ Mrn
\Wrn

.
It is possible because for each n < ω we have an entire interval of possible
choices for f0(rn) (the set Mrn

), while there is only a countable number of
exceptional points we have to avoid, (the set Wrn). Let g′0 = ∅. Assume that
ξ < c and the sequences {fβ : β < ξ}, {g′β : β < ξ} are constructed. We will
construct fξ and g′ξ in 3 steps.

Step I. If rξ ∈ dom (
⋃

β<ξ fβ), then f ′ξ = fξ. Otherwise choose y ∈ R such
that

1. 〈rξ, y〉 6∈ QZ +
⋃

β<ξ fβ ;

2. qy + v2 6= gβ(qrξ + v1) for 〈v1, v2〉 ∈
⋃

β<ξ fβ , β ≤ ξ, and q ∈ Q \ {0};
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3. qy + v2 6= g′β(qrξ + v1) for 〈v1, v2〉 ∈
⋃

β<ξ fβ , β < ξ, and q ∈ Q \ {0},

and set f ′ξ = LIN (
⋃

β<ξ fβ ∪ {〈rξ, y〉}).
Step II. Let {In : n < ω} be a sequence of all intervals with rational

end-points. For each n < ω choose dξ,n such that

1. either dξ,n ∈ In or dξ,n = 0;

2. the set Dξ = {dξ,n : n < ω} \ {0} is linearly independent;

3. Dξ ∩ dom f ′ξ = ∅;

4. LIN (gξ�Dξ ∪ f ′ξ) ∩
( ⋃

β<ξ gβ ∪
⋃

β<ξ g′β

)
⊂ f ′ξ;

5. LIN (gξ�Dξ ∪ f ′ξ) ∩ Z = ∅.

Points dξ,n’s are defined inductively. Assume dξ,i are defined for i < n. Let
Dξ,n = {dξ,i : i < n} \ {0} and fξ,n = LIN (f ′ξ ∪ gξ�Dξ,n). If dom (gξ \ (QZ +
fξ,n)) is residual in In and all sets In ∩ dom ([gξ \ (QZ + fξ,n)] ∩ [qgβ + w]),
In∩dom ([gξ \ (QZ + fξ,n)]∩ [qg′β +w]) are nowhere dense for all β < ξ, q ∈ Q
and w ∈ fξ,n, then choose dξ,n ∈ In ∩ dom (gξ \ (QZ + fξ,n)) \ dom fξ,n such
that

• LIN
(
{〈dξ,n, gξ(dξ,n)〉} ∪ fξ,n

)
∩

( ⋃
β≤ξ gβ ∪

⋃
β<ξ g′β

)
⊂ fξ,n;

• LIN
(
{〈dξ,n, gξ(dξ,n)〉} ∪ fξ,n

)
∩ Z = ∅.

Otherwise, dξ,n = 0. Put f ′′ξ = LIN (gξ�Dξ ∪ f ′ξ).
Step III. If Kξ ∩ f ′′ξ 6= ∅, then fξ = f ′′ξ and g′ξ = ∅. Otherwise, choose

〈x, y〉 ∈ Kξ \
(

(dom f ′′ξ ×R) ∪ (QZ + f ′′ξ ) ∪ (
⋃
β≤ξ

Qgβ + f ′′ξ ) ∪ (
⋃
β<ξ

Qg′β + f ′′ξ )
)

To argue for this, we will consider 3 cases.
Case 1. If ∅ 6= (I ×R)∩ (qM + v) ⊂ Kξ for some v ∈ f ′′ξ , q ∈ Q \ {0} and

an open interval I, then Kξ ∩ f ′′ξ 6= ∅. (Cf. the proof of [CR, Theorem 2.3].)
Moreover, let g′ξ = ∅.

Case 2. Let A = {z ∈ R : card ((Kξ)z) = c} be uncountable. Then note
that A is analytic (cf Mazurkiewicz-Sierpiński Theorem, [AK, Theorem 29.19,
p.231]), so it has cardinality c, and we can choose x ∈ A \ dom f ′′ξ and y such
that

〈x, y〉 ∈ Kξ \
(

(QZ + f ′′ξ ) ∪
⋃
β≤ξ

(Qgβ + f ′′ξ ) ∪
⋃
β<ξ

(Qg′β + f ′′ξ )
)
.
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In this case also g′ξ = ∅.
Case 3. Neither Case 1 nor Case 2 hold. Then A = {z ∈ R : card ((Kξ)z) =

c} is countable. Put Y = Kξ\(A×R). Then Y is a Baire space, f ′′ξ is countable,
and for each q ∈ Q and v ∈ f ′′ξ the set qZ + v is nowhere dense in Y . (Cf. the
proof of Case 3 in [CR, Theorem 2.3].) We claim that dom (Y \ (QZ + f ′′ξ ))
is residual in dom Kξ. Let V be a non-empty open subset of dom Kξ. Fix
q ∈ Q and v ∈ f ′′ξ . Pick w ∈ [(V × R) ∩ Y ] \ (qZ + v). Let U ⊂ V × R
be a Kξ-open neighborhood of w such that cl (U) ⊂ (V × R) \ (qZ + v). By
the boundary bumping theorem (cf. [CR, Proposition 1.1]), there is a con-
tinuum L such that w ∈ L ⊂ cl (U) ⊂ (V × R) \ (qZ + v) and L ∩ bd (U) 6=
∅. Since dom (w) 6∈ A, L 6⊂ dom (w) × R. Thus, int (dom (L)) 6= ∅ and
dom (L) ⊂ V ∩ dom (Kξ \ (qZ + v)). Thus, dom (Kξ \ (qZ + v)) contains
a dense open subset of dom (Kξ). Since A and f ′′ξ are countable, we have
dom (Y \ (QZ + f ′′ξ )) = [

⋂
v∈f ′′

ξ ,q∈Q dom (Kξ \ (QZ + f ′′ξ ))] \ A is residual in
dom (Kξ). Since the set Y \ (QZ + f ′′ξ ) is Borel (Here we use the CH) with
all sections countable, the Lusin-Novikow Theorem (See e.g., [AK, Theorem
18.10, p. 123].) implies that there is a Borel function g defined on a set
dom (Y \ (QZ + f ′′ξ )). Consequently there is a continuous function g′ξ de-
fined on a Gδ subset of R which is residual in some interval I, and such that
g′ξ ⊂ Y \ (QZ + f ′′ξ )) ⊂ Kξ. Again, let {In : n < ω} be a sequence of all
open intervals with rational end-points. Define inductively a sequence d′ξ,n

(similarly to dξ,n’s from the second step) such that

1. either d′ξ,n ∈ In or d′ξ,n = 0;

2. the set D′
ξ = {d′ξ,n : n < ω} \ {0} is linearly independent;

3. D′
ξ ∩ dom f ′′ξ = ∅;

4. LIN (g′ξ�D
′
ξ ∪ f ′′ξ ) ∩

( ⋃
β≤ξ gβ ∪

⋃
β<ξ g′β

)
⊂ f ′′ξ ;

5. LIN (g′ξ�D
′
ξ ∪ f ′′ξ ) ∩ Z = ∅.

Let fξ = LIN (f ′′ξ ∪g′ξ�D
′
ξ). Then fξ satisfies the conditions (iv) and (v). First

we will verify that fξ ∩ Z = ∅. Since fξ =
⋃

n<ω f ′ξ,n (where f ′ξ,n = LIN (f ′′ξ ∪
g′ξ�{d′ξ,i 6= 0: i < n}), it is enough to show that f ′ξ,n ∩ Z = ∅ for each n < ω.
We work inductively. Assume f ′ξ,n ∩Z = ∅. Since 〈d′ξ,n, g′ξ(d′ξ,n)〉 6∈ QZ + f ′ξ,n,
we have f ′ξ,n+1 ∩QZ = ∅.

Now observe that fξ∩Kξ 6= ∅. In fact, if all the sets I∩dom [(qgβ +w)∩g′ξ]
for β ≤ ξ and w ∈ f ′′ξ , and I ∩ dom [(qg′β + w) ∩ g′ξ] for β < ξ and w ∈ f ′′ξ are
nowhere dense, then 〈d′ξ,0, g

′
ξ(d′ξ,0)〉 ∈ fξ ∩Kξ. Otherwise, there is β ≤ ξ such

that either
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• there are q ∈ Q\{0} and w ∈ f ′′ξ such that dom [(qgβ +w)∩g′ξ] is residual
in some interval J , or

• β < ξ, and there are q ∈ Q\{0} and w ∈ f ′′ξ such that dom [(qg′β +w)∩g′ξ]
is residual in some interval J .

Let α be the first ordinal with this property, and pick a q ∈ Q \ {0}
and a w = 〈w1, w2〉 ∈ f ′′ξ for which dom [(qgα + w) ∩ g′ξ] is residual in some
interval J . First of all, observe that (qgα + w) ∩ (J × R) ⊂ Kξ, because
qgα + w, g′ξ are continuous, g′ξ ⊂ Kξ, and Kξ is closed. Moreover, for each
β < α, q′ ∈ Q \ {0} and v ∈ f ′′ξ the sets J ∩ dom [(q′gβ + v) ∩ (qgα + w)],
J∩dom [(q′g′β+v)∩(qgα+w)] are nowhere dense. Let m be the first integer such
that Im ⊂ q−1(J − w1) and there are q′ ∈ Q and v ∈ fα,m such that at least
one of the sets Im ∩ dom (q′gβ + v), Im ∩ dom (q′g′β + v) is not nowhere dense.
(Hence it is residual in some non-degenerate interval.) Then dom gα is residual
in Im and for each β ≤ α, q′ ∈ Q and v ∈ fα,m the sets Im ∩ dom (q′gβ + v),
Im∩dom (q′g′β +v) are nowhere dense. Thus 〈dα,m, gα(dα,m)〉 ∈ gα∩(Im×R),
and q〈dα,m, gα(dα,m)〉+ w ∈ fξ ∩ [qgα + w] ∩ (J × R) ⊂ fξ ∩Kξ.

Problem 1. Can the example above be constructed under a weaker assumption
cov (M) = c?

Example 10. Assume cov (M) = c. There exists an additive SZ function
which is AC and CIVP .

Proof. Let {In : n < ω} be a sequence of all open intervals with rational
end-points, CGδ

= {gα : α < c}, {Kα : α < c} be the family of all closed sets
K ⊂ R2 with dom (K) having non-empty interior, {Cα : α < c} be a sequence
of all perfect subsets of R, and let H = {Hα : α < c} be a sequence of pairwise
disjoint sets such that:

• the set
⋃

α<c Hα is linearly independent;

• for each non-empty open interval I and α < c the set Hα ∩ I contains a
perfect set.

Such a sequence can be obtained as an easy consequence of Lemma 5. (Cf.
[KC1, Lemma 3.3].) Let H = {hα : α < c} be a Hamel basis that contains all
Hα.

We will define a sequence fα, α < c, of additive functions and a sequence
Pα ∈ H, α < c, with the following properties:

(i) hα ∈ dom (fα) and card (dom (fα)) < c;
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(ii) if α 6= β, then Pα 6= Pβ ;

(iii) fβ ⊂ fα if β < α;

(iv) fα ∩ gβ ⊂ fβ for β < α;

(v) fα(x) ∈ Cα for x ∈ Pα and α < c;

(vi) fα ∩Kα 6= ∅.

Functions fα are constructed by induction. Suppose α is fixed and all fβ ,
Pβ are defined for β < α.

Step I. Let f̄α = LIN (
⋃

β<α fβ). We define inductively a sequence dα,n,
n < ω, in the following way. Let Dα,n = {dα,i : i < n} \ {0} and fα,n =
LIN (f̄α ∪ (gα|Dα,n)). If

(∗) dom (gα) is residual in In, and for all β < α, q ∈ Q and w ∈ fα,n the set
In ∩ dom [(qgβ + w) ∩ gα] is nowhere dense,

then pick dα,n ∈ In ∩ dom (gα) \ dom (fα,n) such that

LIN
(
{〈dα,n, gα(dα,n)〉} ∪ fα,n

)
∩

⋃
β<α

gβ ⊂ fα,n. (1)

Otherwise dα,n = 0.
Step II. Let f̃α =

⋃
n<ω fα,n. Let β(α) be the first ordinal β < c for

which Hβ ∩ dom (f̃α) = ∅. (Such β exist because card (dom (f̃α)) < c.) Put
Pα = Hβ(α). Now choose a number yα such that yα = f̃(hα) whenever hα ∈
dom f̃α. Otherwise, choose

yα ∈ R \
{

gβ(v + qhα)− q−1f̃α(v) : β ≤ α, q ∈ Q \ {0}, v ∈ dom (f̃α)
}

Moreover, if hα ∈ Pξ for some ξ ≤ α, then we may pick yα ∈ Cξ. This will
give (v).

Put fα = LIN (f̃α ∪ {〈hα, yα〉}) and define f as the union of all fα. As in
[NR, Theorem 1] we can verify that f has the property (vi), so f ∈ AC , and
(iv), so f ∈ SZ . Finally, the property (v) guarantees that f ∈ CIVP .

2 Additive Sierpiński-Zygmund Bijections and Their In-
verses.

In this section we examine when the inverses of additive one-to-one SZ func-
tions defined on subspaces of R are also of SZ type. (Note that the inverse
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of an additive function is additive again.) Recall that in ZFC there exists a
one-to-one SZ function f : R → R with f−1 6∈ SZ [CN1], which we make ad-
ditive in Example 11, however the existence of an SZ bijection f : R → R is
not provable in ZFC [BCN] unless one makes an extra assumption like R is
not the union of less than c-many meager subsets [CN1]. Recall also that it is
consistent with ZFC that there is no bijection f from a set X ∈ [R]c onto a
set Y ∈ [R]c with f, f−1 ∈ SZ [CN1, Corollary 9].

Example 11. There exists an additive injection f : R → R such that f ∈ SZ
and f−1 6∈ SZ .

Proof. To see this, let H = {hα : α < c} be a Hamel basis which meets
every perfect set in R. (See e.g., [KC, Theorem 7.3.4].) For α < c set Vα =
LIN ({hβ : β < α}). Let g : R → R be a continuous nowhere constant function
such that card (g−1(y)) = c for every y ∈ R. (See e.g., [AB], p.222, for an
example of such a function.) Let C∗Gδ

= {gξ : ξ < c}. Since the perfect set
g−1(hα) meets H in c-many points, then by transfinite induction, for each
α < c we can choose f̂(hα) = yα such that

1. yα ∈ g−1(hα) ∩H;

2. yα 6= yβ for β < α;

3. yα 6= pgβ(x) − fα(t) for β ≤ α, p ∈ Q, t ∈ Vα, x ∈ Vα+1, and fα being
the additive extension of f̂�{hβ : β < α}.

Let f : R → R be the additive extension of f̂ . By the condition (2), f is
one-to-one. To verify that f ∈ SZ use Lemma 1 and observe that for a given
ξ < c, dom (f ∩ gξ) ⊂ Vξ, so card (f ∩ gξ) < c. Fix x ∈ R with f(x) = gξ(x).
Let α be the first ordinal for which x ∈ Vα+1. Then x = v + qhα for some
v ∈ Vα and q ∈ Q \ {0}. Thus gξ(x) = f(x) = fα(v) + qyα, and the condition
(3) gives α < ξ. Let A = f(H). Since f�H is one-to-one, card (A) = c, and
f−1�A ⊂ g because f−1(yα) = hα = g(yα) for every α < c. Therefore f−1�A
is continuous, so f−1 6∈ SZ .

Example 12. Assume cov (M) = c. There exists an additive bijection f : R →
R such that f ∈ SZ and f−1 6∈ SZ .

Proof. Let C∗Gδ
= {gα : α < c}, R = {rα : α < c}, and let g : R → R

be a continuous nowhere constant function with card (g−1(y)) = c for every
y ∈ R. We will construct inductively two families {{aα, bα} ∈ [R]2 : α < c},
{{cα, dα} ∈ [R]2 : α < c} such that {aα, bα : α < c}, {cα, dα : α < c} are Hamel
bases. Then define f : R → R as the additive extension of the set of all pairs
〈aα, cα〉, 〈bα, dα〉 for α < c.
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Thus assume that aβ , bβ , cβ and dβ are chosen for β < α. Let Vα =
LIN ({aβ , bβ : β < α}), Wα = LIN ({cβ , dβ : β < α}). We choose aα, bα, cα,
dα.

(i) If rα 6∈ Vα, then aα = rα. Otherwise pick arbitrary aα ∈ R \ Vα. Set
V ′

α = LIN (Vα ∪ {aα}).

(ii) If rα 6∈ Wα, then dα = rα. Otherwise pick arbitrary dα ∈ R \ Wα. Set
W ′

α = LIN (Wα ∪ {dα}).

(iii) cα ∈ g−1(aα) \ (W ′
α +

⋃
ξ≤α Qgξ(V ′

α)).

(iv) bα ∈ R \ (V ′
α +

⋃
ξ≤α Qg−1

ξ (Wα+1)).

Such a choice is possible because the set V ′
α +

⋃
ξ≤α Qg−1

ξ (Wα+1) is the union
of less than ω · α < c many of meager sets.

First observe that the sets {aα, bα : α < c} and {cα, dα : α < c} are Hamel
bases. In fact, they are linearly independent, and for each α < c, rα ∈
LIN ({aβ , bβ : β ≤ α})∩LIN ({cβ , dβ : β ≤ α}). Let f̃ be defined on {aα, bα : α <

c} by the equations f̃(aα) = cα, f̃(bα) = dα for α < c, and let f be the additive
extension of f̃ . Then f is an additive bijection on R.

To verify that f ∈ SZ fix ξ < c. We will show that dom (f ∩ gξ) ⊂ Vξ, so
card (f ∩ gξ) < c. Fix x ∈ R with f(x) = gξ(x). Let α be the first ordinal for
which x ∈ Vα+1. Then x = v + q0aα + q1bα for some v ∈ Vα and q0, q1 ∈ Q
with |q0|+ |q1| 6= 0. Two cases are possible.

(a) q1 = 0. Then x = v +q0aα, q0 6= 0, and gξ(x) = f(x) = f(v)+q0cα. Thus
cα = −q−1

0 f(v) + q−1
0 gξ(x) ∈ Wα + Qgξ(V ′

α), and by (iii), α < ξ.

(b) q1 6= 0. Then f(x) ∈ Wα+1 and gξ(x) = f(x) = f(v) + q0cα + q1dα. Thus
v + q0aα + q1bα ∈ g−1

ξ (f(x)) ⊂ g−1
ξ (Wα+1), so bα ∈ V ′

α + Qg−1
ξ (Wα+1),

and (iv) implies α < ξ.

To see f−1 6∈ SZ , notice that by (iii), f−1(cα) = aα = g(cα) for every α < c,
so f−1�{cα : α < c} is continuous.

Example 13. Assume cov (M) = c. There exists an additive bijection f : R →
R such that f, f−1 ∈ SZ .

Proof. Let C∗Gδ
= {gα : α < c} and R = {rα : α < c}.We will construct two

families of two-element sets {{aα, bα} ∈ [R]2 : α < c}, {{cα, dα} ∈ [R]2 : α <
c}, aiming for defining f on {aα, bα : α < c} by f(aα) = cα and f(bα) =
dα. We work inductively. Assume that for a given α < c the sequences
{{aβ , bβ} ∈ [R]2 : β < α} and {{cβ , dβ} ∈ [R]2 : β < α} are defined, and
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the sets {aβ , bβ : β < α}, {cβ , dβ : β < α} are linearly independent. Put
fα = LIN ({〈aβ , cβ〉, 〈bβ , dβ〉 : β < α}), Vα = LIN ({aβ , bβ : β < α}), Wα =
LIN ({cβ , dβ : β < α}), and notice that fα is a linear bijection between Vα and
Wα. We will choose aα, bα, cα, dα in 4 steps.

Step I. If rα 6∈ Vα, then aα = rα. Otherwise pick arbitrary aα ∈ R \ Vα.
Set V ′

α = LIN (Vα ∪ {aα}).
Step II. If rα 6∈ Wα, then dα = rα. Otherwise pick arbitrary dα ∈ R\Wα.

Set W ′
α = LIN (Wα ∪ {dα}).

Step III. Choose

cα ∈ R \
(
W ′

α +
⋃
ξ≤α

Qgξ(V ′
α) +

⋃
ξ≤α

Qg−1
ξ (V ′

α)
)
.

Observe that this guarantees that the set {cβ , dβ : β ≤ α} is linearly indepen-
dent and moreover,

(1) fα(v) + qcα 6= gξ(v + qaα) for ξ ≤ α, v ∈ Vα and q ∈ Q \ {0}.

Step IV. Finally choose

bα ∈ R \
(
V ′

α +
⋃
ξ≤α

Qgξ(Wα+1) +
⋃
ξ≤α

Qg−1
ξ (Wα+1)

)
.

Such a choice is possible because each set g−1
ξ (Wα+1) is the union of less

than c-many meager sets, and V ′
α +

⋃
ξ≤α Qgξ(Wα+1) has cardinality less than

c, so V ′
α +

⋃
ξ≤α Qgξ(Wα+1) +

⋃
ξ≤α Qg−1

ξ (Wα+1) is the union of less than c
many meager sets and does not cover R. Observe that {aβ , bβ : β ≤ α} is
linearly independent and the following conditions hold:

(2) q0cα + q1dα + fα(v) 6= gξ(q0aα + q1bα + v) for v ∈ Vα, q0, q1 ∈ Q with
q1 6= 0, ξ ≤ α;

(3) q0aα + q1bα + f−1
α (w) 6= gξ(q0cα + q1dα + w) for w ∈ Wα, q0, q1 ∈ Q with

q0 6= 0, ξ ≤ α;

(4) f−1
α (w) + qbα 6= gξ(w + qdα) for w ∈ Wα, q ∈ Q \ {0}, ξ ≤ α.

First observe that sets {aα, bα : α < c} and {cα, dα : α < c} are Hamel bases.
In fact, they are linearly independent, and for each α < c,

rα ∈ LIN ({aβ , bβ : β ≤ α}) ∩ LIN ({cβ , dβ : β ≤ α}).

Let f̃ be the function defined on {aα, bα : α < c} by the equations f̃(aα) = cα,
f̃(bα) = dα for α < c, and let f be the additive extension of f̃ . Then f is an
additive bijection on R.
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To verify that f ∈ SZ we will show that for a given ξ < c, dom (f∩gξ) ⊂ Vξ,
so card (f ∩ gξ) < c. Fix x ∈ R with f(x) = gξ(x). Let α be the first ordinal
for which x ∈ Vα+1. Then x = v + q0aα + q1bα for some v ∈ Vα and q0, q1 ∈ Q
with |q0|+ |q1| 6= 0. Two cases are possible.

(a) q1 = 0. Then x = v+q0aα, q0 6= 0 and, by (1), f(x) = fα(v)+q0cα 6= gξ(x)
for ξ ≤ α. Thus α < ξ.

(b) q1 6= 0. Then (2) yields f(x) 6= gξ(x) for ξ ≤ α, so α < ξ.

In an analogous way we verify that f−1 ∈ SZ . Fix ξ < c and x ∈ R with
f−1(x) = gξ(x). Let α be the first ordinal for which x ∈ Wα+1. Then
x = w + q0cα + q1dα for w ∈ Wα and q0, q1 ∈ Q with |q0|+ |q1| 6= 0. Consider
two cases.

(a’) q0 = 0. Then (4) implies f−1(x) 6= gξ(x) for ξ ≤ α.

(b’) q0 6= 0. Then (3) gives f−1(x) 6= gξ(x) for ξ ≤ α.

Therefore α < ξ, so x ∈ Vξ.
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