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ON SPARSE SUBSPACES OF (0, 1]

Abstract

We prove the existence of three subspaces of C[0, 1], each homeo-
morphic to C[0, 1]; the first consists only of infinitely many times dif-
ferentiable functions, the second consists only of singular functions of
bounded variation, and the third consists only of nowhere differentiable
functions.

In this paper C[0, 1] denotes the space of continuous real valued functions on
[0,1] under the uniform metric. We seek apparently “sparse” subspaces of
C[0, 1] that are nevertheless homeomorphic to C[0,1]. We offer:

Theorem 1. There is a subspace H of C[0,1], composed exclusively of every-
where infinitely many times differentiable functions, such that for each integer
n > 0, the subspace

H,={f":feH)}

is homeomorphic to C|0, 1].

ProOOF. For 0 < x < 1, let
W(x) = exp(—x72(1 - x)72>

and for x < 0 or z > 1, let W(z) = 0. It follows easily that W is infinitely
many times differentiable on [0,1], W’ vanishes outside (0,1), and on (0,1)
W'(z) is the product of exp(—z~%(1—z)~?) and a rational function of z. For
any integer j > 1, put hj(xz) = W(2/z — 1). Then h; is infinitely many times
differentiable, h; and all its derivatives vanish outside the interval (277, 2177),
and on (277, 2177) each derivative of h; vanishes at at most finitely many
points.
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For each j > 1, let a; be the largest positive number for which

1
sup{|hl(-k)‘:i=1,...,j,k:O,l,...,j}g‘—. (1)
Jag
For each ¢ > 1, put
9i = aih; (2)
and
G- )

i>1
Then G is an infinitely many times differentiable function on (0, 1], and

GM =3 g

i>1

on (0,1].
Now let j and k be indices, j >k, let 277 < 2 <2'J and let 0 < u < 2.
Say 27 < u < 2'7% where i > j. We deduce from (1), (2) and (3) that

1G® ()| = g7 (u)| <

1
1

IN

1
7

For k = 0 we conclude that G is continuous at 0. From the Mean Value
Theorem we obtain a value u € (0, ) such that

=|¢'(w)] <

— (1)

(S

We deduce from the preceding paragraph that G is differentiable at 0, that
G'(0) = 0, and moreover that G’ is continuous at 0. In a similar way we prove
that G”(0) = 0 and that G” is continuous at 0. From an induction argument
on k, it is clear that G(*)(0) = 0 for all k > 1. Thus G is infinitely many times
differentiable on the closed interval [0, 1].

By the “Hilbert cube” we mean the cartesian product of countably in-
finitely many copies of the interval [0, 1] (consult [D, 8.4, p.193]).

Let c(cq, 2, c3, . ..) be a sequence of numbers in the interval [0, 1] regarded
as a point in the Hilbert cube. Put

G, = Zcigi (5)

i>1
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on [0,1]. By an argument analogous to the previous one, we find that G, is
infinitely many times differentiable on [0, 1]. In fact for k& > 0,

GM =3 e, (6)
i>1
Put
F :{GC : ¢ is a point in the Hilbert Cube},
F ={f®.feF}
for k > 0.

Let c¢(n) be a sequence of points in the Hilbert cube and let d be another
point in the Hilbert cube. Fix k > 0 and assume that G, converges to Gg4
in C[0,1]. Tt follows that ¢;(n)g; — d;g; in C[0,1] for each ¢ > 1, and hence
c¢i(n) — d; in R. It follows that in C]0, 1]

cin)g™® — dig® (i>1) (7)

But G is continuous at 0 and G¥)(0) = 0, so

lim G® (u) =0 (8)

u—0t

Now from (3) and (6) we easily deduce that
(G2 <16, |6 < 16™)] (9)

for all n. It follows routinely from (5), (6), (7), (8) and (9) that GE’(CBL) — Gglk)

in C[0,1]. (To see this treat the tails of the expansions for GE’EZL) and G((ik)
separately.) Thus

Ge(n) — Gg implies Gg(ci) — Gfik) in C[0,1].
By an analogous argument we see that

G(k)

on) Gglk) implies Gy — Gq in C[0, 1].

Again by essentially (part of) this argument we have that G.u,) — Gq in
C10,1] if and only if ¢(n) — d in the Hilbert cube.

All the topological spaces under consideration are second countable [D,
p. 173]. Thus we have a homeomorphism of the Hilbert cube onto F' where
¢ — G, and a homeomorphism of F onto F, where f — f(*).
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Now ([0, 1] is a separable metric space and hence C[0, 1] is a second count-
able regular Hausdorff space. By a Theorem of Uryson [D, 9.2, p. 195], C[0, 1]
is homeomorphic to a subspace of the Hilbert cube. The conclusion follows
where H is the image of C[0,1] in F. O

Note that in our proof of Theorem I each function in H can be expanded
in a power series in any open interval that contains none of the points 277,
7=0,1,2,3,....

A continuous function f on [0, 1] is said to be singular if f' = 0 almost
everywhere on [0,1]. We turn now to singular functions of bounded variation
on [0, 1].

Theorem II. There is a subspace Hy of C[0,1], composed exclusively of sin-
gular functions of bounded variation, such that Hy is homeomorphic to C[0,1].

PROOF. For 0 < z < 1/2, let W(z) = L(z) where L denotes Lebesgue’s
singular function [HS, (8.28)]. For 1/2 < z < 1, let W(x) =1 — L(z). Then
W is a singular function with total variation 1 on [0, 1]. We define h; as in the
proof of Theorem I. This time put a; = 277. We define g; and G as before, and
then G is a singular function of bounded variation on [0, 1]. The remainder of
the proof is contained in the proof of Theorem I, so we leave it. O

We note that there is an open subset U of (0, 1) of measure 1 such that in
our proof of Theorem II, f(U) is a denumerable set for each function f in Hj.

In [M], Anthony Morse constructed a continuous nowhere differentiable
function f on [0, 1] satisfying this curious property:

ft) = f(x) f@t) = f(=)
t

— t—=x

lim inf

n < limsup
t—x

t—axt

‘:oof01r0§ac<17

and

lim inf

t—x—

‘M‘ <limsup‘M‘ =ocofor0<az <1,
t—x t—z

t—x—
Let M denote the family of all functions in C[0, 1] enjoying this property.

Theorem III. There is a subset Hy of M such that the subspace Hy is home-
omorphic to C[0,1].
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PROOF. Let W denote the function constructed in [M]. By adding a linear
function to W if necessary, we assume, without loss of generality, that W (0) =
W (1) = 0. Redefine W so that W(x) =0 for z < 0 or = > 1.

We complete the argument as in the proof of Theorem II with two changes.
This time put a; = 4§27, and replace 0 < ¢; < 1 with 1 < ¢; < 2. We leave
the rest. O
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