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ON SPARSE SUBSPACES OF C[0, 1]

Abstract

We prove the existence of three subspaces of C[0, 1], each homeo-
morphic to C[0, 1]; the first consists only of infinitely many times dif-
ferentiable functions, the second consists only of singular functions of
bounded variation, and the third consists only of nowhere differentiable
functions.

In this paper C[0, 1] denotes the space of continuous real valued functions on
[0, 1] under the uniform metric. We seek apparently “sparse” subspaces of
C[0, 1] that are nevertheless homeomorphic to C[0, 1]. We offer:

Theorem I. There is a subspace H of C[0, 1], composed exclusively of every-
where infinitely many times differentiable functions, such that for each integer
n ≥ 0, the subspace

Hn =
{
f (n) : f ∈ H

}
is homeomorphic to C[0, 1].

Proof. For 0 < x < 1, let

W (x) = exp
(
−x−2(1− x)−2

)
and for x ≤ 0 or x ≥ 1, let W (x) = 0. It follows easily that W is infinitely
many times differentiable on [0, 1], W ′ vanishes outside (0, 1), and on (0, 1)
W ′(x) is the product of exp

(
−x−2(1−x)−2

)
and a rational function of x. For

any integer j ≥ 1, put hj(x) = W (2jx− 1). Then hj is infinitely many times
differentiable, hj and all its derivatives vanish outside the interval

(
2−j , 21−j

)
,

and on
(
2−j , 21−j

)
each derivative of hj vanishes at at most finitely many

points.
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For each j ≥ 1, let aj be the largest positive number for which

sup
{∣∣h(k)

i

∣∣ : i = 1, . . . , j, k = 0, 1, . . . , j
}
≤ 1

jaj
. (1)

For each i ≥ 1, put
gi = aihi (2)

and
G =

∑
i≥1

gi. (3)

Then G is an infinitely many times differentiable function on (0, 1], and

G(k) =
∑
i≥1

g
(k)
i

on (0, 1].
Now let j and k be indices, j ≥ k, let 2−j ≤ x ≤ 21−j and let 0 < u < x.

Say 2−i ≤ u ≤ 21−i where i ≥ j. We deduce from (1), (2) and (3) that

∣∣G(k)(u)
∣∣ =

∣∣g(k)
i (u)

∣∣ ≤ 1
i
≤ 1

j
.

For k = 0 we conclude that G is continuous at 0. From the Mean Value
Theorem we obtain a value u ∈ (0, x) such that∣∣∣∣G(x)−G(0)

x

∣∣∣∣ =
∣∣G′(u)

∣∣ ≤ 1
j
. (4)

We deduce from the preceding paragraph that G is differentiable at 0, that
G′(0) = 0, and moreover that G′ is continuous at 0. In a similar way we prove
that G′′(0) = 0 and that G′′ is continuous at 0. From an induction argument
on k, it is clear that G(k)(0) = 0 for all k ≥ 1. Thus G is infinitely many times
differentiable on the closed interval [0, 1].

By the “Hilbert cube” we mean the cartesian product of countably in-
finitely many copies of the interval [0, 1] (consult [D, 8.4, p.193]).

Let c(c1, c2, c3, . . .) be a sequence of numbers in the interval [0, 1] regarded
as a point in the Hilbert cube. Put

Gc =
∑
i≥1

cigi (5)
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on [0, 1]. By an argument analogous to the previous one, we find that Gc is
infinitely many times differentiable on [0, 1]. In fact for k > 0,

G(k)
c =

∑
i≥1

cig
(k)
i . (6)

Put

F =
{
Gc : c is a point in the Hilbert cube

}
,

Fk =
{
f (k) : f ∈ F

}
for k > 0.

Let c(n) be a sequence of points in the Hilbert cube and let d be another
point in the Hilbert cube. Fix k > 0 and assume that Gc(n) converges to Gd

in C[0, 1]. It follows that ci(n)gi → digi in C[0, 1] for each i ≥ 1, and hence
ci(n)→ di in R. It follows that in C[0, 1]

ci(n)g(k)
i → dig

(k)
i (i ≥ 1) (7)

But G(k) is continuous at 0 and G(k)(0) = 0, so

lim
u→0+

G(k)(u) = 0 (8)

Now from (3) and (6) we easily deduce that∣∣G(k)
d

∣∣ ≤ ∣∣G(k)
∣∣, ∣∣G(k)

c(n)

∣∣ ≤ ∣∣G(k)
∣∣ (9)

for all n. It follows routinely from (5), (6), (7), (8) and (9) that G
(k)
c(n) → G

(k)
d

in C[0, 1]. (To see this treat the tails of the expansions for G
(k)
c(n) and G

(k)
d

separately.) Thus

Gc(n) → Gd implies G
(k)
c(n) → G

(k)
d in C[0, 1].

By an analogous argument we see that

G
(k)
c(n) → G

(k)
d implies Gc(n) → Gd in C[0, 1].

Again by essentially (part of) this argument we have that Gc(n) → Gd in
C[0, 1] if and only if c(n)→ d in the Hilbert cube.

All the topological spaces under consideration are second countable [D,
p. 173]. Thus we have a homeomorphism of the Hilbert cube onto F where
c→ Gc, and a homeomorphism of F onto Fk where f → f (k).
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Now C[0, 1] is a separable metric space and hence C[0, 1] is a second count-
able regular Hausdorff space. By a Theorem of Uryson [D, 9.2, p. 195], C[0, 1]
is homeomorphic to a subspace of the Hilbert cube. The conclusion follows
where H is the image of C[0, 1] in F .

Note that in our proof of Theorem I each function in H can be expanded
in a power series in any open interval that contains none of the points 2−j ,
j = 0, 1, 2, 3, . . . .

A continuous function f on [0, 1] is said to be singular if f ′ = 0 almost
everywhere on [0, 1]. We turn now to singular functions of bounded variation
on [0, 1].

Theorem II. There is a subspace H1 of C[0, 1], composed exclusively of sin-
gular functions of bounded variation, such that H1 is homeomorphic to C[0, 1].

Proof. For 0 ≤ x ≤ 1/2, let W (x) = L(x) where L denotes Lebesgue’s
singular function [HS, (8.28)]. For 1/2 ≤ x ≤ 1, let W (x) = 1 − L(x). Then
W is a singular function with total variation 1 on [0, 1]. We define hi as in the
proof of Theorem I. This time put aj = 2−j . We define gi and G as before, and
then G is a singular function of bounded variation on [0, 1]. The remainder of
the proof is contained in the proof of Theorem I, so we leave it.

We note that there is an open subset U of (0, 1) of measure 1 such that in
our proof of Theorem II, f(U) is a denumerable set for each function f in H1.

In [M], Anthony Morse constructed a continuous nowhere differentiable
function f on [0, 1] satisfying this curious property:

lim inf
t→x+

∣∣∣f(t)− f(x)
t− x

∣∣∣ < lim sup
t→x+

∣∣∣f(t)− f(x)
t− x

∣∣∣ =∞ for 0 ≤ x < 1,

and

lim inf
t→x−

∣∣∣f(t)− f(x)
t− x

∣∣∣ < lim sup
t→x−

∣∣∣f(t)− f(x)
t− x

∣∣∣ =∞ for 0 < x ≤ 1,

Let M denote the family of all functions in C[0, 1] enjoying this property.

Theorem III. There is a subset H2 of M such that the subspace H2 is home-
omorphic to C[0, 1].
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Proof. Let W denote the function constructed in [M]. By adding a linear
function to W if necessary, we assume, without loss of generality, that W (0) =
W (1) = 0. Redefine W so that W (x) = 0 for x < 0 or x > 1.

We complete the argument as in the proof of Theorem II with two changes.
This time put aj = j2−j , and replace 0 ≤ ci ≤ 1 with 1 ≤ ci ≤ 2. We leave
the rest.
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