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Abstract: On a complete non-compact Riemannian manifold M , we prove that a
so-called quasi Riesz transform is always Lp bounded for 1 < p ≤ 2. If M satisfies

the doubling volume property and the sub-Gaussian heat kernel estimate, we prove

that the quasi Riesz transform is also of weak type (1, 1).
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1. Introduction

Let M be a complete non-compact Riemannian manifold. Let d be the
geodesic distance and µ be the Riemannian measure. Denote by B(x, r)
the ball of center x and of geodesic radius r. We write V (x, r) =
µ(B(x, r)). One says that M satisfies the doubling volume property
if, there exists a constant C > 0 such that for any x ∈M and r > 0,

(D) V (x, 2r) ≤ CV (x, r).

A simple consequence of (D) is that there exist ν > 0 and C > 0 such
that

(1.1)
V (x, r)

V (x, s)
≤ C

(r
s

)ν
, ∀x ∈M, r ≥ s > 0.

Let ∇ be the Riemannian gradient and ∆ be the non-negative Lapla-
ce–Beltrami operator on M . By definition and by spectral theory, we
have∫

M

|∇f |2 dµ =

∫
M

(∆f)f dµ =

∫
M

(∆1/2f)2 dµ, ∀ f ∈ C∞0 (M).

It was asked by Strichartz [34] in 1983 on which non-compact Rie-
mannian manifold M , and for which p, 1 < p < +∞, the two semi-
norms ‖|∇f |‖p and ‖∆1/2f‖p were equivalent on C∞0 (M). That is, when
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do there exist two constants cp, Cp such that

(Ep) cp‖∆1/2f‖p ≤ ‖|∇f |‖p ≤ Cp‖∆1/2f‖p, ∀ f ∈ C∞0 (M)?

One says that the Riesz transform ∇∆−1/2 is Lp bounded on M if

(Rp) ‖|∇f |‖p ≤ C‖∆1/2f‖p, ∀ f ∈ C∞0 (M).

Ever since, a lot of work has been dedicated to address the problem,
see for example [4, 15, 16, 3, 2, 12, 11, 19, 23] and the references
therein.

Denote by (e−t∆)t>0 the heat semigroup associated with ∆ and pt(x, y)
the heat kernel, that is

e−t∆f(x) =

∫
M

pt(x, y)f(y) dµ(y), f ∈ L2(M,µ), µ-a.e. x ∈M.

Estimates of the heat kernel and its derivatives happen to be a key
ingredient for the boundedness of the Riesz transform.

Let us first recall a result of Coulhon and Duong in [15].

Theorem 1.1. Let M be a complete non-compact manifold satisfy-
ing (D). Assume that

(DUE ) pt(x, x) ≤ C

V (x,
√
t)
,

for all x ∈M , t > 0 and some C > 0. Then the Riesz transform ∇∆−1/2

is of weak type (1, 1) and (Rp) holds for 1 < p ≤ 2.

Under the doubling volume property, (DUE ) self-improves into the
Gaussian heat kernel estimate (see for example [18, 27]):

(UE ) pt(x, y) ≤ C

V (x,
√
t)

exp

(
−cd

2(x, y)

t

)
, ∀x, y ∈M, t > 0.

Note that (Rp) may be false under (D) and (DUE ) for p > 2. For
example, the connected sum of two copies of Rn, n ≥ 2, does satisfy (D)
and (DUE ), but the Riesz transform is not Lp bounded for p > n. We
refer to [15, 12, 11] for more details. However, it is not known whether
(DUE ) is necessary for the Lp boundedness of the Riesz transform for
1 < p < 2.

We are going to see that one can still obtain a weaker version of (Rp)
for 1 < p ≤ 2 without assuming any heat kernel estimates.

To this end, we first localise the Riesz transform at infinity. Then one
can consider some weaker variants of this localisation. In fact, we are
going to prove that on every complete manifold the Riesz transform is
almost bounded in the following sense:
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Theorem 1.2. Let M be a complete manifold. Then, for any α ∈
(0, 1/2), the operator ∇e−∆∆−α is bounded on Lp for all 1 < p ≤ 2.

Together with known local results, this yields:

Proposition 1.3. Let M be a complete Riemannian manifold satisfying
(Dloc) and (DUE loc), then the quasi Riesz transform ∇(I + ∆)−1/2 +
∇e−∆∆−α with α ∈ (0, 1/2) is Lp bounded for 1 < p ≤ 2. Here (Dloc)
and (DUE loc) are local versions of (D) and (DUE ) to be explained
below.

Remark 1.4. It is also equivalent to say that the operator ∇(∆α +
∆1/2)−1 is Lp bounded.

A natural question would be to ask whether (Rp) holds if we replace
(DUE ) with some other kind of heat kernel estimates, for instance, the
sub-Gaussian heat kernel upper bound introduced in [30, 28] as follows:

Definition 1.5. We say that the heat kernel on M satisfies the sub-
Gaussian upper bound with m > 2 if for any x, y ∈M ,

(UEm) pt(x, y) ≤ C

V (x, ρ−1(t))
exp(−cG(d(x, y), t)),

where

(1.2) ρ(t) =

{
t2, 0 < t < 1,

tm, t ≥ 1;

and

(1.3) G(r, t) =


r2

t
, t ≤ r,(
rm

t

)1/(m−1)

, t ≥ r.

Note that (UE 2) = (UE ). For m > 2, (UEm) is neither stronger nor
weaker than (UE ), see Subsection 3.1 below. See also Subsection 3.1 for
examples that satisfy (UEm).

Under (D) and (UEm), we are not able to show that the Riesz trans-
form is Lp bounded for 1 < p < 2. But we are able to treat the endpoint
case p = 1 of Proposition 1.3. Indeed, we have:

Theorem 1.6. Let M be a complete Riemannian manifold satisfying (D)
and (UEm). Then for any 0 < α < 1/2, the quasi Riesz transform
∇(I + ∆)−1/2 +∇e−∆∆−α is of weak type (1, 1).
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Note that one can define Hardy spaces associated with the Laplacian
via square functions, which are adapted to the heat kernel estimates,
and show that ∇e−∆∆−α is H1 − L1 bounded, see [13].

The plan of this paper is as follows:
In Section 2, we describe the relations between Riesz transform, local

Riesz transform, Riesz transform at infinity and quasi Riesz transform,
and we prove Theorem 1.2.

In Section 3, we consider Riemannian manifolds satisfying (D) and
(UEm). We show Theorem 1.6.

Throughout this paper, we often write B for the ball B(xB , rB). For
any given λ > 0, we will write λB for the λ dilated ball, which is the
ball with the same center as B and with radius rλB = λrB . We denote
C1(B) = 4B, and Cj(B) = 2j+1B\2jB for j = 2, 3, . . .

The letters c, C denote positive constants, which can change in differ-
ent circumstances. We say that A . B if there exists a constant C > 0
such that A ≤ CB. And A ' B if there exist two positive constants c, C
with c ≤ C such that cA ≤ B ≤ CA.

2. Lp boundedness of quasi Riesz transforms

In this section, unless otherwise stated, we always consider an arbi-
trary complete Riemannian manifold M without any other assumptions.

We could as well consider a metric measure space setting associated
with a regular and strongly local Dirichlet form, which admits a “carré
du champ” (see [5, 29]).

2.1. Localisation of Riesz transforms. Write the Riesz transform

∇∆−1/2 =

∫ ∞
0

∇e−t∆ dt

t1/2
.

Alexopoulos [1] separated the integral into local and global parts as∫ 1

0
+
∫∞

1
and considered them respectively to show the Lp boundedness

of the Riesz transform.
An alternative and equivalent method given in [25] is to consider the

following local Riesz transform and Riesz transform at infinity:
For 1 < p <∞, we say that the local Riesz transform is Lp bounded

if

(Rloc
p ) ‖|∇f |‖p ≤ C‖(I + ∆)1/2f‖p, ∀ f ∈ C∞0 (M),

and the Riesz transform at infinity is Lp bounded if

(R∞p ) ‖|∇e−∆f |‖p ≤ C‖∆1/2f‖p, ∀ f ∈ C∞0 (M).
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Remark 2.1. Note that at high frequencies, (I + ∆)−1/2 ' ∆−1/2. Thus
locally∇(I+∆)−1/2 is the Riesz transform. Similarly, since e−∆∆−1/2 '
∆−1/2 when ∆� ε (i.e. at low frequencies), we can regard the operator
∇e−∆∆−1/2 as the localisation of Riesz transform at infinity.

A local version of Theorem 1.1 says:

Theorem 2.2 ([15]). Let M be a complete Riemannian manifold satis-
fying the local doubling volume property (Dloc)

(Dloc) ∀ r0 > 0, ∃Cr0 such that V (x, 2r) ≤ Cr0V (x, r),

∀x ∈M, r ∈ (0, r0),

and whose volume growth at infinity is at most exponential in the sense
that

V (x, λr) ≤ CecλV (x, r), ∀x ∈M, λ > 1, r ≤ 1.

Suppose

(DUE loc) pt(x, x) ≤ C

V (x,
√
t)
, ∀x ∈M, t ∈ (0, 1].

Then (Rloc
p ) holds for 1 < p ≤ 2.

Examples that satisfy the above assumptions include Riemannian
manifolds with Ricci curvature bounded from below.

We can characterise the Lp boundedness of Riesz transform by the
combination of (Rloc

p ) and (R∞p ). That is:

Theorem 2.3. Let M be a complete Riemannian manifold. Then, for
1 < p < ∞, the Riesz transform ∇∆−1/2 is Lp bounded on M if and
only if (Rloc

p ) and (R∞p ) hold.

The proof relies on the following multiplier theorem due to Cowling:

Theorem 2.4 ([20]). Let M be a measure space. Let L be the generator
of a bounded analytic semigroup on Lp(M) for 1 < p < ∞ such that
e−tL is positive, contractive and sub-Markovian for t > 0. Suppose that
F is a bounded holomorphic function in the sector Σπ/2 = {z ∈ C\{0} :
|arg (z)| < π/2}. Then

‖F (L)f‖p ≤ C‖f‖p, ∀ f ∈ Lp(M),

where C depends on p, σ, and F .
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Proof of Theorem 2.3: First assume (Rp). For any f ∈ C∞0 (M), on the
one hand, we have

‖|∇(I + ∆)−1/2f |‖p = ‖|∇∆−1/2∆1/2(I + ∆)−1/2f |‖p
≤ C‖∆1/2(I + ∆)−1/2f‖p ≤ C‖f‖p.

Here the last inequality follows from Theorem 2.4.
On the other hand, (R∞p ) holds obviously due to the Lp boundedness

of the heat semigroup. In fact,

‖|∇e−∆∆−1/2f |‖p ≤ C‖e−∆f‖p ≤ C‖f‖p.
Conversely, assume (Rloc

p ) and (R∞p ), then

‖|∇f |‖p ≤ ‖|∇e−∆f |‖p + ‖|∇(I − e−∆)f |‖p
. ‖∆1/2f‖p+‖|∇(I+∆)−1/2(I+∆)1/2(I−e−∆)∆−1/2∆1/2f |‖p
. ‖∆1/2f‖p + ‖(I + ∆)1/2(I − e−∆)∆−1/2∆1/2f‖p
. ‖∆1/2f‖p.

Here the last inequality is due to Theorem 2.4.

We shall now introduce a variation of the Riesz transform at infinity.
Let 0 < α < 1/2. We say that M satisfies (R∞,αp ) if

(R∞,αp ) ‖|∇e−∆f |‖p ≤ C‖∆αf‖p, ∀ f ∈ C∞0 (M).

Together with the local Riesz transform, it will give us a notion of quasi
Riesz transform.

Note that (R∞p ) implies (R∞,αp ). Indeed,

‖|∇e−∆∆−αf |‖p ≤ ‖|∇e−∆/2∆−1/2e−∆/2∆1/2−αf |‖p
≤ C‖e−∆/2∆1/2−αf‖p
≤ C‖f‖p.

2.2. Equivalence of (Gp) and (MI p). For any 1 < p < ∞, let us
consider the following Lp interpolation or multiplicative inequality:

(MI p) ‖|∇f |‖2p ≤ C‖∆f‖p‖f‖p, ∀ f ∈ C∞0 (M),

as well as the following Lp estimate for the gradient of the heat semi-
group:

(Gp) ‖|∇e−t∆|‖p→p ≤
Cp√
t
, ∀ t > 0.

Recall that (Rp) implies (Gp) and (MI p). In fact, (Gp) and (MI p)
are equivalent for any 1 < p <∞.
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Proposition 2.5 ([19, 24]). Let M be a complete Riemannian manifold.
Then, for any 1 < p <∞, (Gp) is equivalent to (MI p).

See [19] for more information about the relations between (MI p), the
Riesz transforms, and estimates of the derivative of the heat kernel. For
the sake of completeness, we give a proof here.

Proof: First assume (MI p). Substituting f by e−t∆f in (MI p) yields

‖|∇e−t∆f |‖2p ≤ C‖∆e−t∆f‖p‖e−t∆f‖p.
Since the heat semigroup is analytic on Lp(M), we obtain

‖|∇e−t∆f |‖p ≤ Ct−1/2‖f‖p.
Conversely assume (Gp). For any f ∈ C∞0 (M), write the identity

f = e−t∆f +

∫ t

0

∆e−s∆f ds, ∀ t > 0.

Then (Gp) yields

‖|∇f |‖p ≤ C‖|∇e−t∆f |‖p +

∥∥∥∥∫ t

0

|∇∆e−s∆f | ds
∥∥∥∥
p

≤ Ct−1/2‖f‖p +

∫ t

0

‖|∇e−s∆∆f |‖p ds

≤ Ct−1/2‖f‖p + Ct1/2‖∆f‖p.

Taking t = ‖f‖p‖∆f‖−1
p , we get (MI p).

Under (Gp) (or equivalently (MI p)), the quasi Riesz transform at
infinity is Lp bounded:

Proposition 2.6. Let M be a complete Riemannian manifold satisfy-
ing (Gp) for some p ∈ (1,∞). Then for any α ∈ (0, 1/2), (R∞,αp ) holds.

Proof: For any f ∈ C∞0 (M), write

∇e−∆∆−αf =

∫ ∞
0

∇e−(1+t)∆f
dt

t1−α
.

Since (Gp) holds, we have

‖|∇e−∆∆−αf |‖p ≤
∫ ∞

0

‖|∇e−(1+t)∆f |‖p
dt

t1−α

≤ Cp‖f‖p
∫ ∞

0

dt

(t+ 1)1/2t1−α
,

which obviously converges for α ∈ (0, 1/2). Therefore we obtain (R∞,αp )
for α ∈ (0, 1/2).
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2.3. Lp boundedness of quasi Riesz transform for 1 < p ≤ 2.
This part is inspired by [16] and [24], where (MI p) and (Gp) for 1 <
p ≤ 2 were shown on manifolds and graphs respectively.

In the following, we will give a different proof of (MI p) and (Gp)
on Riemannian manifolds. More precisely, we will directly show (MI p)
and (Gp) by the method which is used in [33] to prove the Lp bounded-
ness of the Littlewood–Paley–Stein function (see also [17, Theorem 1.2]).
In [24, Theorem 1.3], an analogue proof was given in the discrete case.

Proposition 2.7. Let M be a complete Riemannian manifold. Then
(MI p) and (Gp) hold for 1 < p ≤ 2.

Proof: Assume that f ∈ C∞0 (M) is non-negative and not identically
zero. Set u(x, t) = e−t∆f(x). Then u is smooth and positive everywhere.
Moreover, u(·, t) and ∆u(·, t) is Lp bounded for 1 < p <∞.

For any 1 < p ≤ 2, we have(
∂

∂t
+ ∆

)
up(x, t)

= pup−1(x, t)

(
∂

∂t
+∆

)
u(x, t)−p(p− 1)up−2(x, t)|∇u(x, t)|2

= −p(p− 1)up−2(x, t)|∇u(x, t)|2.

Define J(x, t) = −
(
∂
∂t + ∆

)
up(x, t), then

(2.1) |∇u(x, t)|2 =
1

p(p− 1)
u2−p(x, t)J(x, t).

We first construct a sequence of functions {φn} as follows (see for
example [22]): let η(t), 0 ≤ t <∞ be a non-increasing smooth function
such that η(t) = 1 for 0 < t < 1 and η(t) = 0 for 2 ≤ t <∞. Define

φn(x) = η(d(x, x0)/n),

for any fixed point x0 ∈M . Then:

• 0 ≤ φn ≤ 1 and φn is a sequence of continuous functions which
converges monotonically to 1.
• φn ∈ C1

0 (M) and

|∇φn(x)| ≤ ‖η
′‖∞
n

, ∀x ∈M.
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Then it follows from the Green’s formula that∫
M

J(x, t)φ2
n(x) dµ(x)

= −
∫
M

∂

∂t
up(x, t)φ2

n(x) dµ(x)−
∫
M

∆up(x, t)φ2
n(x) dµ(x)

= −
∫
M

∂

∂t
up(x, t)φ2

n(x) dµ(x)−
∫
M

∇up(x, t) · ∇φ2
n(x) dµ(x).

Let us estimate the right hand side. The first integral converges to∫
M

∂
∂tu

p(x, t) dµ(x), which is integrable. Indeed, we get from the Hölder
inequality that

∫
M

∣∣∣∣ ∂∂tup(x, t)
∣∣∣∣ dµ(x) =

∫
M

pup−1(x, t)|∆u(x, t)| dµ(x)

≤ C‖u(·, t)‖p−1
p ‖∆u(·, t)‖p.

(2.2)

Now we move to the second integral. Note that∫
M

∇up(x, t) · ∇φ2
n(x) dµ(x) =

∫
M

2pup−1φn(x)∇u(x, t) · ∇φn(x) dµ(x).

Still from the Hölder inequality, it holds∣∣∣∣∫
M

∇up(x, t) · ∇φ2
n(x) dµ(x)

∣∣∣∣
≤ 2p‖|∇φn|‖∞

∫
M

up−1(x, t)(φn|∇u(x, t)|) dµ(x)

≤ C

n
‖φn|∇u(·, t)|‖p‖u‖p−1

p .

(2.3)

By using the above two estimates (2.2) and (2.3), we get

∫
M

J(x, t)φ2
n(x) dµ(x) ≤ C‖u(·, t)‖p−1

p ‖∆u(·, t)‖p

+
C

n
‖φn|∇u(·, t)|‖p‖u‖p−1

p .

(2.4)
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Note also that from (2.1), (2.4), and the Hölder inequality,

‖φn|∇u(·, t)|‖pp = C

∫
M

(u2−p(x, t)J(x, t)φ2
n(x))p/2 dµ

≤ C‖u‖p(2−p)/2p

(∫
M

J(x, t)φ2
n(x) dµ(x)

)p/2
. ‖u‖p(2−p)/2p

(
‖u(·, t)‖p−1

p ‖∆u(·, t)‖p

+
1

n
‖φn|∇u(·, t)|‖p‖u‖p−1

p

)p/2
. ‖u‖p(2−p)/2p

(
‖u(·, t)‖p(p−1)/2

p ‖∆u(·, t)‖p/2p

+
1

np/2
‖φn|∇u(·, t)|‖p/2p ‖u‖p(p−1)/2

p

)
. ‖u(·, t)‖p/2p

(
‖∆u(·, t)‖p/2p +

1

np/2
‖φn|∇u(·, t)|‖p/2p

)
.

Therefore, we have

‖φn|∇u(·, t)|‖pp .
1

np
‖u(·, t)‖pp + ‖u(·, t)‖p/2p ‖∆u(·, t)‖p/2p .

As n goes to infinity, the left hand side converges to
∫
M
|∇u|p dµ from

Lebesgue’s monotone convergence theorem. Finally we obtain

(2.5) ‖|∇u(·, t)|‖pp . ‖u(·, t)‖p/2p ‖∆u(·, t)‖p/2p .

On the one hand, as t goes to zero, we get the multiplicative inequality
from (2.5) that

‖|∇f |‖pp ≤ C‖f‖p/2p ‖∆f‖p/2p .

On the other hand, by the analyticity of the heat semigroup, (2.5)
yields

‖|∇u(·, t)|‖pp ≤ Ct−p/2‖f‖pp,
which is exactly (Gp).

Remark 2.8. Note that Proposition 2.7 can not be extended to the
case p > 2 without additional assumptions. Indeed (Gp) for p > 2
has consequences that are not always true, see [3].

Combining Proposition 2.6 and Proposition 2.7, we get:

Corollary 2.9. Let M be a complete Riemannian manifold. Then for
any fixed α∈(0, 1/2), the operator ∇e−∆∆−α is Lp bounded for 1<p≤2.
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3. Sub-Gaussian heat kernel estimates
and quasi Riesz transforms

Remember that with local assumptions on the manifold, we get the
Lp (1 < p ≤ 2) boundedness of quasi Riesz transforms ∇(I + ∆)−1/2 +
∇e−∆∆−α, where 0 < α < 1/2. If we assume in addition a global Gauss-
ian heat kernel upper bound, the Riesz transform itself is Lp bounded
for 1 < p ≤ 2 and weak (1, 1) bounded. What happens if we suppose
globally another heat kernel upper bound, the so-called sub-Gaussian
upper bound (UEm)?

In the case of Riemannian manifolds satisfying (D) and (UEm),
Proposition 1.3 tells us that the quasi Riesz transform is Lp bounded
for 1 < p ≤ 2. Yet we don’t know whether the Riesz transform, which
corresponds to α = 1/2, is Lp bounded or not for 1 < p ≤ 2. Instead,
we will study the endpoint case for the quasi Riesz transform, that is,
what happens for p = 1? In the following, we will prove the weak (1, 1)
boundedness of the quasi Riesz transform.

3.1. More about sub-Gaussian heat kernel estimate. One can
rewrite (UEm) as follows:

pt(x, y)≤



C

V (x, t1/2)
exp

(
−cd

2(x, y)

t

)
, t<min{1, d(x, y)},

C

V (x, t1/2)
exp

(
−c
(
dm(x, y)

t

)1/(m−1)
)
, d(x, y)≤ t<1,

C

V (x, t1/m)
exp

(
−cd

2(x, y)

t

)
, 1≤ t<d(x, y),

C

V (x, t1/m)
exp

(
−c
(
dm(x, y)

t

)1/(m−1)
)
, t≥max{1, d(x, y)}.

Note that for d(x, y) ≤ t, one has d2(x,y)
t ≤

(
dm(x,y)

t

)1/(m−1)

. And

for t ≤ d(x, y), one has d2(x,y)
t ≥

(
dm(x,y)

t

)1/(m−1)

. Thus we have the

following estimate:

(3.1) pt(x, y)≤


C

V (x, t1/2)
exp

(
−cd

2(x, y)

t

)
, 0<t<1,

C

V (x, t1/m)
exp

(
−c
(
dm(x, y)

t

)1/(m−1)
)
, t≥1.
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That is, the small time behaviour of the heat kernel is Gaussian as
in Euclidean spaces while the heat kernel has a sub-Gaussian decay for
large time.

There exist such manifolds for all m≥ 2. One can choose any D≥ 1
and any 2≤m≤D+1 such that V (x, r) ' rD for r ≥ 1 and (UEm) holds.
Indeed, fractal manifolds, which are built from graphs with a fractal
structure at infinity, provide examples satisfying (UEm) with some m >
2 (in fact, two-sided sub-Gaussian heat kernel estimates). We refer to [6]
for the construction of suitable graphs. For a concrete example, Barlow,
Coulhon, and Grigor’yan in [10] constructed such a manifold whose dis-
cretisation is the Vicsek graph. For more examples, see the work of
Barlow and Bass [7, 8, 9]. We also refer to [28, 30] for more general
non-classical heat kernel estimates on metric measure spaces.

Comparison with the Gaussian heat kernel estimate (UE ):

pt(x, y) ≤ C

V (x,
√
t)

exp

(
−cd

2(x, y)

t

)
, ∀x, y ∈M, t > 0.

Since m > 2, pt(x, x) decays with t more slowly in the sub-Gaussian case
than in the Gaussian case. Also for t ≥ max{1, d(x, y)}, pt(x, y) decays
with d(x, y) faster in the sub-Gaussian case than in the Gaussian case.
Therefore the two kinds of pointwise estimates are not comparable.

3.2. Weighted estimates of the heat kernel. Let (M,d, µ) be a non-
compact complete manifold satisfying the doubling volume property (D)
and the sub-Gaussian estimate (UEm). In the following, we aim to
get the integral estimates for the heat kernel and its time and space
derivatives. The method we use here is similar as in [15, Section 2.3].

First, we have the pointwise estimate of the time derivative of heat
kernel:

Lemma 3.1. Let M be as above, then we have

(3.2)

∣∣∣∣ ∂∂tpt(x, y)

∣∣∣∣≤


C

tV (y, t1/2)
exp
(
−cd

2(x,y)
t

)
, t<1,

C

tV (y, t1/m)
exp

(
−c
(
dm(x, y)

t

)1/(m−1)
)
, t≥1.

Proof: We see from [21, Theorem 4 and Corollary 5] that there exists
an a ∈ (0, 1) such that, for 0 < t < a∣∣∣∣ ∂∂tpt(x, y)

∣∣∣∣ ≤ C

tV (y, t1/2)
exp

(
−cd

2(x, y)

t

)
,
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and for t > a−1

∣∣∣∣ ∂∂tpt(x, y)

∣∣∣∣ ≤ C

tV (y, t1/m)
exp

(
−c
(
dm(x, y)

t

)1/(m−1)
)
.

For t ∈ (a, 1), according to [21, Corollary 5], it suffices to show that
there exists a constant δ ∈ (0, 1) such that for all s ∈ [(1− δ)t, (1 + δ)t]

ps(x, y) ≤ C

V (y, s1/2)
exp

(
−cd

2(x, y)

s

)
.

This is obvious since V (x, s1/2)'V (x, s1/m) and d2(x,y)
t ≤

(
d(x,y)
t

)m/(m−1)

for t ≥ d(x, y).
The case for t ∈ [1, a−1) is similar. Due to the facts V (x, s1/2) '

V (x, s1/m) and d2(x,y)
t ≥

(
d(x,y)
t

)m/(m−1)

for t ≤ d(x, y), there exists a

constant δ ∈ (0, 1) such that for all s ∈ [(1− δ)t, (1 + δ)t],

ps(x, y) ≤ C

V (y, s1/m)
exp

(
−c
(
dm(x, y)

s

)1/(m−1)
)
.

Therefore, we obtain (3.2).

Now we intend to estimate
∫
B(x,r)c

|∇pt(x, y)| dµ(x) for any t > 0 and

r ≥ 0.

Lemma 3.2. For any α∈(1/m, 1/2), we have for any y∈M and r≥0,

(3.3)

∫
M\B(y,r)

|∇pt(x, y)| dµ(x) ≤

Ct
− 1

2 e−c
r2

t , 0 < t < 1,

Ct−αe−c(
rm

t )
1

m−1
, t ≥ 1.

Remark 3.3. Note that the estimate (3.3) holds for any 0 < α < 1/2.
But in the proof below, α can not achieve 1/2 unless m = 2. This allows
us to obtain the weak (1, 1) boundedness of ∇e−∆∆−α, not the Riesz
transform. If one could get (3.3) with α = 1/2, the proof of Theorem 3.5
below would yield the boundedness of the Riesz transform.

Proof: For 0 < t < 1, the above estimate is proved in [15].
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Now for t ≥ 1. Comparing with the proof of the Gaussian case in [15],

we need to replace the weight exp
(
−cd

2(x,y)
t

)
by exp

(
−c
(
dm(x,y)

t

)1/(m−1)
)

(c is chosen appropriately).

Step 1: For any c > 0,

(3.4)

∫
M\B(y,r)

exp

(
−c
(
dm(x, y)

t

)1/(m−1)
)
dµ(x)

. e−
c
2 ( r

m

t )
1/(m−1)

V (y, t1/m).

Indeed,∫
M\B(y,r)

exp

(
−c
(
dm(x, y)

t

)1/(m−1)
)
dµ(x)

≤ e−
c
2 ( r

m

t )
1/(m−1)

∫
M

exp

(
− c

2

(
dm(x, y)

t

)1/(m−1)
)
dµ(x)

≤ e−
c
2 ( r

m

t )
1/(m−1)

×
∞∑
i=0

∫
B(y,(i+1)t1/m)\B(y,it1/m)

exp

(
− c

2

(
dm(x, y)

t

)1/(m−1)
)
dµ(x)

≤ e−
c
2 ( r

m

t )
1/(m−1)

V (y, t1/m)

∞∑
i=0

(i+ 1)νe−
c
2 i

1/(m−1)

≤ Ce−
c
2 ( r

m

t )
1/(m−1)

V (y, t1/m).

Step 2: For 0 < γ < 2c (c is the constant in (UEm)), we have∫
M

pt(x, y)2 exp

(
γ

(
dm(x, y)

t

)1/(m−1)
)
dµ(x)

≤ C

V 2(y, t1/m)

∫
M

exp

(
(γ − 2c)

(
dm(x, y)

t

)1/(m−1)
)
dµ(x)

≤ Cγ
V (y, t1/m)

.

This is a consequence of (UEm) and Step 1 with r = 0.
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Step 3: Denote

I(t, y) =

∫
M

|∇xpt(x, y)|2 exp

(
γ

(
dm(x, y)

t

)1/(m−1)
)
dµ(x),

with γ small enough. Using integration by parts,

I(t, y) =

∫
M

pt(x, y)∆pt(x, y) exp

(
γ

(
dm(x, y)

t

)1/(m−1)
)
dµ(x)

−
∫
M

pt(x, y)∇xpt(x, y) · ∇x exp

(
γ

(
dm(x, y)

t

)1/(m−1)
)
dµ(x)

= −
∫
M

pt(x, y)
∂

∂t
pt(x, y) exp

(
γ

(
dm(x, y)

t

)1/(m−1)
)
dµ(x)

− γm

m− 1

∫
M

pt(x, y)∇xpt(x, y)

(
d(x, y)

t

)1/(m−1)

· ∇xd(x, y) exp

(
γ

(
dm(x, y)

t

)1/(m−1)
)
dµ(x)

= I1(t, y) + I2(t, y).

According to Lemma 3.1 and Step 1,

|I1(t, y)| ≤
C ′γ

tV (y, t1/m)
.

For I2, since |∇xd(x, y)|≤1 and
(
d(x,y)
t

)1/(m−1)

=
(
dm(x,y)

t

)1/m(m−1)

t−1/m,

then from Step 2 and Cauchy–Schwartz inequality,

|I2(t, y)| ≤ C ′′γ t−1/m(I(t, y))1/2

(
Cγ

V (y, t1/m)

)1/2

.

We get

I(t, y) ≤
C ′γ

tV (y, t1/m)
+ t−1/m(I(t, y))

1
2

(
C ′′γ

V (y, t1/m)

)1/2

≤
C ′γ

t2/mV (y, t1/m)
+ (I(t, y))1/2

(
C ′′γ

t2/mV (y, t1/m)

)1/2

.
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Therefore

(3.5) I(t, y) ≤ C

t2/mV (y, t1/m)
.

Step 4: We divide the integral
∫
M\B(y,r)

|∇pt(x, y)| dµ(x) as follows∫
M\B(y,r)

|∇pt(x, y)| dµ(x)

=

∞∑
i=0

∫
2ir<d(x,y)≤2i+1r

|∇pt(x, y)| dµ(x)

≤
∞∑
i=0

V 1/2(y, 2i+1r)

(∫
2ir<d(x,y)≤2i+1r

|∇pt(x, y)|2 dµ(x)

)1/2

.

For each i ≥ 0, it follows from (3.5) that(∫
2ir<d(x,y)≤2i+1r

|∇pt(x, y)|2 dµ(x)

)1/2

≤

(∫
2ir<d(x,y)≤2i+1r

|∇pt(x, y)|2exp

(
c

(
dm(x, y)

t

)1/(m−1)
)
dµ(x)

)1/2

× e−c
(

2imrm

t

)1/(m−1)

≤ C

t1/mV 1/2(y, t1/m)
e
−c

(
2imrm

t

)1/(m−1)

.

(3.6)

On the other hand, applying (3.4) with r = 0 (as well as the corre-
sponding estimate for t/2 < 1),(∫

2ir<d(x,y)≤2i+1r

|∇pt(x, y)|2 dµ(x)

)1/2

≤ ‖|∇e− t2 ∆|‖2→2‖p t
2
(·, y)‖2

≤ Ct−1/2p
1/2
t (y, y)

≤ C

t1/2V 1/2(y, t1/m)
.

(3.7)

The second inequality follows from the fact ‖p t
2
(·, y)‖22 = pt(y, y).
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Thus taking θ =
1
2−α
1
2−

1
m

, we get from (3.6) and (3.7) that(∫
2ir<d(x,y)≤2i+1r

|∇pt(x, y)|2 dµ(x)

)1/2

≤
(

C

t1/mV 1/2(y, t1/m)
e
−c

(
2imrm

t

)1/(m−1)
)θ(

C

t1/2V 1/2(y, t1/m)

)1−θ
≤ C

tαV 1/2(y, t1/m)
e
−c

(
2imrm

t

)1/(m−1)

,

(3.8)

where c depends on α.
Finally (1.1) and (3.8) yield∫
M\B(y,r)

|∇pt(x, y)| dµ(x)

≤
∞∑
i=0

V 1/2(y, 2i+1r)
C

tαV 1/2(y, t1/m)
e
−c

(
2imrm

t

)1/(m−1)

≤ Ct−αe−c(
rm

t )
1/(m−1)

.

3.3. Weak (1, 1) boundedness of quasi Riesz transforms. In or-
der to show the weak (1, 1) boundedness of quasi Riesz transform, we
will use the Calderón–Zygmund decomposition. Let us recall the result:

Theorem 3.4. Let (M,d, µ) be a metric measured space satisfying the
doubling volume property. Then for any given function f ∈ L1(M) ∩
L2(M) and λ > 0, there exists a decomposition of f , f = g+b = g+

∑
i bi

so that

(1) |g(x)| ≤ Cλ for almost all x ∈M ;

(2) there exists a sequence of balls Bi = B(xi, ri) so that each bi is
supported in Bi,∫

|bi(x)| dµ(x) ≤ Cλµ(Bi) and

∫
bi(x) dµ(x) = 0;

(3)
∑
i µ(Bi) ≤ C

λ

∫
|f(x)| dµ(x);

(4) ‖b‖1 ≤ C‖f‖1 and ‖g‖1 ≤ (1 + C)‖f‖1;

(5) there exists k ∈ N∗ such that each x ∈ M is contained in at most
k balls Bi.

We refer to [14] and [32] for the proof.
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Our result is:

Theorem 3.5. Let M be a complete Riemannian manifold satisfying (D)
and (UEm). Then for any 0 < α < 1/2, the quasi Riesz transform
∇(I + ∆)−1/2 +∇e−∆∆−α is of weak type (1, 1).

Remark 3.6. By Marcinkiewicz interpolation theorem, this gives back
Theorem 1.2, but under much stronger assumptions.

Remark 3.7. In the following proof, we will adopt the singular integral
technique used by Coulhon and Duong in [15], which was first developed
by Duong and McIntosh in [26].

Proof: Note that the local Riesz transform ∇(I + ∆)−1/2 is of weak
type (1, 1) (see Theorem 2.2). Denote T = ∇e−∆∆−α, it remains to
show that

µ({x : |Tf(x)| > λ}) ≤ Cλ−1‖f‖1.
Fix f ∈ L1(M) ∩ L2(M), we take the Calderón–Zygmund decompo-

sition of f at the level of λ, i.e., f = g + b = g +
∑
i bi, then

µ({x : |Tf(x)| > λ}) ≤ µ({x : |Tg(x)| > λ/2}) + µ({x : |Tb(x)| > λ/2}).

Since T is L2 bounded, by using Theorem 3.4 we get

µ({x : |Tg(x)| > λ/2}) ≤ Cλ−2‖g‖22 ≤ Cλ−1‖g‖1 ≤ Cλ−1‖f‖1.

As for the second term, we divide {Bi} into two classes: the one in
which the balls have radius no less than 1 and the one in which the balls
have radius smaller than 1. Denote by

C1 = {i : Bi = B(xi, ri) with ri ≥ 1};
C2 = {i : Bi = B(xi, ri) with ri < 1}.

Then we have

µ

({
x :

∣∣∣∣∣T∑
i

bi(x)

∣∣∣∣∣ > λ/2

})
≤ µ

({
x :

∣∣∣∣∣T ∑
i∈C1

bi(x)

∣∣∣∣∣ > λ/4

})

+ µ

({
x :

∣∣∣∣∣T ∑
i∈C2

bi(x)

∣∣∣∣∣ > λ/4

})
.

Write

(3.9) Tbi = Te−ti∆bi + T (I − e−ti∆)bi,

where ti = ρ(ri) with ρ defined in (1.2). In the following, we will consider
the two cases of balls separately.
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Case 1: For balls with radius no less than 1, our aim here is to prove

µ

({
x :

∣∣∣∣∣T ∑
i∈C1

bi(x)

∣∣∣∣∣ > λ/4

})
≤ Cλ−1‖f‖1.

Using (3.9), we have

µ

({
x :

∣∣∣∣∣T∑
i∈C1

bi(x)

∣∣∣∣∣>λ/4
})
≤µ

({
x :

∣∣∣∣∣T∑
i∈C1

e−ti∆bi(x)

∣∣∣∣∣>λ/8
})

+µ

({
x :

∣∣∣∣∣T∑
i∈C1

(I−e−ti∆)bi(x)

∣∣∣∣∣>λ/8
})

.

We begin to estimate the first term. Since T is L2 bounded, then

µ

({
x :

∣∣∣∣∣T ∑
i∈C1

e−ti∆bi(x)

∣∣∣∣∣ > λ/8

})
≤ C

λ2

∥∥∥∥∥∑
i∈C1

e−ti∆bi

∥∥∥∥∥
2

2

.

By a duality argument,∥∥∥∥∥∑
i∈C1

e−ti∆bi

∥∥∥∥∥
2

= sup
‖φ‖2=1

∣∣∣∣∣
〈∑
i∈C1

e−ti∆bi, φ

〉∣∣∣∣∣ .
It holds that for t ≥ 1 and φ ≥ 0

sup
y∈B(x,t1/m)

e−t∆φ(y) ≤ C inf
y∈B(x,t1/m)

M(φ)(y),

where M denotes the Littlewood–Paley maximal operator:

Mf(x) = sup
B3x

1

µ(B)

∫
B

|f(y)| dµ(y).

Indeed, for any y ∈ B(x, t1/m), we have

e−t∆φ(y) =

∫
M

pt(y, z)φ(z) dµ(z) =

∞∑
j=1

∫
Cj(B(x,t1/m))

pt(y, z)φ(z) dµ(z)

≤ C
∞∑
j=1

V (x, 2j+1t1/m)

V (y, t1/m)
e−c2

jm/(m−1)

× 1

V (x, 2j+1t1/m)

∫
B(x,2j+1t1/m)

φ(z) dµ(z)

≤ inf
y∈B(x,t1/m)

M(φ)(y).
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Then∣∣∣∣∣
〈∑
i∈C1

e−ti∆bi, φ

〉∣∣∣∣∣ =

∣∣∣∣∣∑
i∈C1

〈bi, e−ti∆φ〉

∣∣∣∣∣ ≤∑
i∈C1

∫
M

|bi| dµ sup
Bi

e−ti∆|φ|

≤ C
∑
i∈C1

∫
M

|bi| dµ inf
Bi
M(|φ|)

≤ Cλ
∑
i∈C1

∫
Bi

(M(|φ|2)(y))1/2 dµ(y)

≤ Cλ
∫
M

∑
i∈C1

1Bi(y)(M(|φ|2)(y))1/2 dµ(y)

≤ Cλ
∫
∪i∈C1Bi

(M(|φ|2)(y))1/2 dµ(y)

≤ Cλµ1/2(∪i∈C1Bi) ≤ Cλ1/2‖f‖1/21 .

The inequality in the fourth line is due to the finite overlapping of the
Calderón–Zygmund decomposition. In the first inequality of the last
line, we use Kolmogorov’s lemma and weak type (1, 1) of the Hardy–
Littlewood maximal function, as in [31].

Therefore, we obtain

µ

({
x :

∣∣∣∣∣T ∑
i∈C1

e−ti∆bi(x)

∣∣∣∣∣ > λ/8

})
≤ Cλ−1‖f‖1.

It remains to show µ({x : |T
∑
i∈C1(I−e

−ti∆)bi(x)|>λ/8})≤Cλ−1‖f‖1.
We have

µ

({
x :

∣∣∣∣∣T ∑
i∈C1

(I − e−ti∆)bi(x)

∣∣∣∣∣ > λ/8

})

≤ µ

({
x ∈

⋃
i∈C1

2Bi :

∣∣∣∣∣T ∑
i∈C1

(I − e−ti∆)bi(x)

∣∣∣∣∣ > λ/8

})

+ µ

({
x ∈M\

⋃
i∈C1

2Bi :

∣∣∣∣∣T ∑
i∈C1

(I − e−ti∆)bi(x)

∣∣∣∣∣ > λ/8

})

≤
∑
i∈C1

µ(2Bi) +
8

λ

∑
i∈C1

∫
M\2Bi

|T (I − e−ti∆)bi(x)| dµ(x).
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We claim: ∀ t ≥ 1, ∀ b with support in B, then

∫
M\2B

|T (I − e−t∆)b(x)| dµ(x) ≤ C‖b‖1.

Therefore, by using Theorem 3.4, we obtain

µ

({
x :

∣∣∣∣∣T ∑
i∈C1

(I − e−ti∆)bi(x)

∣∣∣∣∣ > λ/8

})
≤
∑
i∈C1

µ(2Bi) +
C

λ

∑
i∈C1

‖bi‖1

≤ Cλ−1‖f‖1.

Denote by kt(x, y) the kernel of the operator T (I − e−ti∆), then

∫
M\2B

|T (I−e−t∆)b(x)| dµ(x)≤
∫
M\2B

∫
B

|kt(x, y)||b(y)| dµ(y) dµ(x)

≤
∫
M

|b(y)|
∫
d(x,y)≥t1/m

|kt(x, y)| dµ(x) dµ(y).

It is enough to show that
∫
d(x,y)≥t1/m |kt(x, y)| dµ(x) is uniformly

bounded for t ≥ 1.
The identity ∆−α =

∫∞
0
e−s∆ ds

s1−α (we ignore the constant here) gives
us

T (I − e−t∆) =

∫ ∞
0

∇e−(s+1)∆(I − e−t∆)
ds

s1−α ,

that is,

kt(x, y) =

∫ ∞
0

(∇ps+1(x, y)−∇ps+t+1(x, y))
ds

s1−α

=

∫ ∞
0

(
1

s1−α −
1{s>t}

(s− t)1−α

)
∇ps+1(x, y) ds.
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Thus by using the estimate (3.3), we have∫
d(x,y)≥t1/m

|kt(x, y)| dµ(x)

=

∫
d(x,y)≥t1/m

∣∣∣∣∫ ∞
0

(
1

s1−α −
1{s>t}

(s− t)1−α

)
∇ps+1(x, y) ds

∣∣∣∣ dµ(x)

≤
∫ ∞

0

∣∣∣∣ 1

s1−α −
1{s>t}

(s− t)1−α

∣∣∣∣ ∫
d(x,y)≥t1/m

|∇ps+1(x, y)| dµ(x) ds

.
∫ ∞

0

∣∣∣∣ 1

s1−α −
1{s>t}

(s− t)1−α

∣∣∣∣ (s+ 1)−αe−c(
t
s+1 )

1/(m−1)

ds

=

(∫ 1

0

+

∫ t

1

)
1

s1−α(s+ 1)α
e−c(

t
s+1 )

1/(m−1)

ds

+

∫ ∞
t

∣∣∣∣ 1

s1−α −
1

(s− t)1−α

∣∣∣∣ (s+ 1)−αe−c(
t
s+1 )

1/(m−1)

ds

= K1 +K2 +K3.

In fact, K1, K2, K3 are uniformly bounded:

K1 ≤
∫ 1

0

sα−1 ds <∞.

Since s + 1 ' s for s > 1 and we can dominate the e−x by Cx−c for
any fixed c > 0, we have

K2 ≤
∫ t

1

e−c
′( ts )

1/(m−1) ds

s
≤ C

∫ t

1

(s
t

)c ds
s
<∞.

For K3,

K3 ≤
∫ ∞
t

∣∣∣∣ 1

s1−α −
1

(s− t)1−α

∣∣∣∣ s−α ds
=

∫ ∞
0

∣∣∣∣ 1

(u+ 1)1−α −
1

u1−α

∣∣∣∣ (u+ 1)−α du

≤
∫ 1

0

(
1

(u+ 1)
+

1

u1−α

)
(u+ 1)−α du+

∫ ∞
1

1

(u+ 1)u1−α du

≤
∫ 1

0

2

u1−α du+

∫ ∞
1

1

u2−α du <∞.

Note that we get the second line by changing variable with u = s
t − 1.
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Case 2: It remains to show

µ

({
x :

∣∣∣∣∣T ∑
i∈C2

bi(x)

∣∣∣∣∣ > λ/4

})
≤ Cλ−1‖f‖1.

We repeat the argument as Case 1. Still from (3.9), we have

µ

({
x :

∣∣∣∣∣T∑
i∈C2

bi(x)

∣∣∣∣∣>λ/4
})
≤µ

({
x :

∣∣∣∣∣T∑
i∈C2

e−ti∆bi(x)

∣∣∣∣∣>λ/8
})

+µ

({
x :

∣∣∣∣∣T∑
i∈C2

(I−e−ti∆)bi(x)

∣∣∣∣∣>λ/8
})

.

By using the L2 boundedness of T , the same duality argument in
Case 1 yields

µ

({
x :

∣∣∣∣∣T ∑
i∈C2

e−ti∆bi(x)

∣∣∣∣∣ > λ/8

})
≤ Cλ−1‖f‖1.

For the estimate of µ({x : |T
∑
i∈C2

(I − e−ti∆)bi(x)| > λ/8}), it suffices

to show that
∫
d(x,y)≥t1/2 |kt(x, y)| dµ(x) is finite and does not depend

on t < 1. In fact,∫
d(x,y)≥t1/2

|kt(x, y)| dµ(x)

≤
∫ ∞

0

∣∣∣∣ 1

s1−α −
1{s>t}

(s− t)1−α

∣∣∣∣ ∫
d(x,y)≥t1/2

|∇ps+1(x, y)| dµ(x) ds

.
∫ ∞

0

∣∣∣∣ 1

s1−α −
1{s>t}

(s− t)1−α

∣∣∣∣ (s+ 1)−αe
−c

(
tm/2

s+1

)1/(m−1)

ds

=

∫ t

0

1

s1−α(s+ 1)α
e
−c

(
tm/2

s+1

)1/(m−1)

ds

+

∫ ∞
t

∣∣∣∣ 1

s1−α −
1

(s− t)1−α

∣∣∣∣ (s+ 1)−αe
−c

(
tm/2

s+1

)1/(m−1)

ds

:= K ′1 +K ′2.

Because t < 1, thus K ′1 < K1 converges.
We can estimate K ′2 in the same way as for K3 and get a bound that

does not depend on t.
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manniennes à courbure de Ricci minorée, in: “Séminaire de Proba-
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