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LOGARITHMIC BUMP CONDITIONS FOR
CALDERON-ZYGMUND OPERATORS ON SPACES OF
HOMOGENEOUS TYPE
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AND KABE MOEN

Abstract: We establish two-weight norm inequalities for singular integral operators
defined on spaces of homogeneous type. We do so first when the weights satisfy
a double bump condition and then when the weights satisfy separated logarithmic
bump conditions. Our results generalize recent work on the Euclidean case, but our
proofs are simpler even in this setting. The other interesting feature of our approach
is that we are able to prove the separated bump results (which always imply the
corresponding double bump results) as a consequence of the double bump theorem.
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1. Introduction and main results

Given a Calderén—Zygmund singular integral T', the problem of find-
ing sufficient conditions on a pair of weights (u, o) such that the two-
weight norm inequality

) [ rUoEri@de<c [ f@lot) ds

n R‘n
holds dates back to the 1970s. Significant progress has only been made
in the past twenty years: for a brief history, see [10, Chapter 1]. One
approach to this problem is to use the so-called A,-bump conditions in-
troduced by Pérez [30, 32]. It was conjectured that a sufficient condition
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for (1.1) to hold is that the pair (u, o) satisfies

(1.2) Sup [ Plla,Qlle | 3,0 < oo,

where the supremum is taken over all cubes in R, A and B are Young
functions that satisfy the growth conditions A € B, and B € B, and
| - || is @ normalized Orlicz norm. (For precise definitions, see below.)
This problem proved quite difficult, and a number of partial results were
proved [8, 9, 12, 13] before the full result was proved by Lerner [23] and
by Nazarov, Reznikov, Treil, and Volberg [28] (when p = 2). Much of
the recent progress on this problem was due to the close connection with
the As conjecture on sharp one-weight norm inequalities for singular
integrals — see [9] for details.

Recently, it was noted [14] that while the conjecture was originally
stated in terms of the “double bump” condition (1.2), it was motivated
by the so-called Muckenhoupt—Wheeden conjectures (see [14] and [10,
Section 9.2]) and that implicit in this motivation was a weaker conjecture
in terms of a pair of “separated bump” conditions: T satisfies (1.1) if
the pair (u, o) satisfy

(1.3) Sgpl\ul/”llA,QHU”p @ < 00, Sgpllul/pllp,czlla”p 5@ < oc.

In [14] this conjecture was proved in the special case when A and B
are “log bumps”: i.e., A(t) = t*log(e + ¢)P~1+% and B(t) = t* log(e +
t)pl_“”s, 6 > 0. A simpler proof, one which also gives quantitative es-
timates on the constants for separated bumps, was found by Hytonen
and Pérez [20]. The exact value of the constants is important, since
Hytonen [16] has shown that if the sharp constants for the separated
bump condition are as conjectured, then as an immediate corollary this
result yields a new proof of the sharp Ap-A bounds for singular inte-
grals [19, 21].

Remark 1.1. Tt has generally been accepted that the separated bump
condition is weaker than the double bump condition, but no explicit
pair (u,v) that satisfies (1.3) but not (1.2) for a given pair of Young
functions A, B has appeared in the literature. We rectify this by con-
structing an example in Section 7 below.

The goal of this paper is to extend the double bump and separated
bump results discussed above to the case of singular integrals on spaces
of homogeneous type. These spaces are of interest since they often arise
in applications: see for example [5, 6, 7, 27, 39]. Many of the tools of
classical harmonic analysis on Euclidean spaces generalize to this setting;
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nevertheless there are substantive differences and some care must be
taken to insure that proofs still hold. Our arguments differ extensively
from those in [14]: they have more in common with the approach taken
n [20]. Our proof, when restricted to the Euclidean case, is somewhat
simpler than theirs, but we do not prove the same quantitative estimates
on the constants. A very interesting feature of our proof is that we are
able to prove the separated bump results as a consequence of the double
bump estimates.

Before we can state our main results we need to make a number of
definitions. By a space of homogeneous type (hereafter, SHT) we mean
an ordered triple (X, p, ), where X is a set, p is a quasimetric on X,
and p is a non-negative Borel measure on X that is doubling:

1(Bp(xo,2r)) < Cap(By(x0,7)),

where B,(xo,7) = {x € X : p(z,z0) < r}. The smallest such con-
stant Cy is called the doubling constant of u. We also assume that
p is non-trivial, i.e., for every ball, 0 < p(Z%,(xo,7)) < co. For further
details, see [5] or [6].

Remark 1.2. For brevity, hereafter we will say that a constant depends
on X and write C(X,...) if the constant depends on the triple (X, p, ).

A function K: X x X \ {(z,z)} — R is a Calder6n-Zygmund kernel
if there exist n > 0 and C' < oo such that for all zg #y € X and x € X
it satisfies the decay condition:

C
(B0, p(x0,y)))

and the smoothness condition: for p(zg,z) < np(zo,y),

|K (20,y)| <

|K(2,y) — K(z0,y)| + [K(y,z) — K(y,z0)|

p(z,z0)\" !
=¢ <P($0,y)> (B0, p(wo,)))

An operator T is associated with a Calderén—Zygmund kernel K if for
every f € C.(X),

Tf(z) = /X F@)K (@) du(y), = & supp(f).

If T is bounded on L?(X,p), then T is referred to as a Calderén—Zyg-
mund operator.
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The bump conditions discussed above are given in terms of Orlicz
norms. Here we summarize some of the basic properties we need; for the
general theory of Orlicz spaces, see [35] or [10, Chapter 5]. A Young
function is a continuous, convex, increasing function A: [0, 00) — [0, c0)
such that A(0) = 0 and A(t)/t — oo as t — oco. It is often convenient
to assume that A(1) = 1 but this is not strictly necessary. Note that
A(t) = t is not a Young function though t? is for p > 1. However,
in many cases results for Young functions hold in this limiting case.
The Young functions we are interested in are referred to as log bumps:
A(t) = tPlog(e + t)P~119, 6 > 0.

Given two Young functions A and B, we write that A < B if there
exists constants ¢, tg > 0 such that A(t) < B(ct) for all ¢t > ¢y. Note that
given any Young function A, ¢t < A(t). We will write A ~ B if there
exists ¢1, ¢, to > 0 such that ¢1 A(t) < B(t) < c2A(t) for all t > tg.

Given a Young function A and a set F such that 0 < u(E) < oo,
define the Orlicz space norm

o], = inf {A >0 ][EA<'”(;)|) du(z) < 1} :

where f, = p(E)~" [L. If A(t) =7, 1 < p < oo, then

1/p
lollag = (]i Ivl”du> = ol

If A< B, then there exists a constant C' such that || f|la.z < C||f| B,
Given a Young function A, define A, the complementary function, by

A(t) = sup{st — A(s)}.

s>0

It can be shown that A is also a Young function. Given A, we have the
generalized Holder’s inequality: for any set E, 0 < p(E) < oo,

]é F(@)g(@)] dpu(z) < 2 fllaellgll 1.5

Denote the inverse of a Young function by A~!. More generally, given
three Young functions A, B, C' such that

BN ()0 () < A7\ (1),
then there exists a constant K such that

1follae < Kl flz2l9l

C.E-
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Given 1 < p < oo we define the class By: a Young function A € B, if

[A]BPZ/loolélt(;)C?<oo

In the special case of log bumps, if A(t) = t?log(e+t)P~'+% then A(t) ~
" log(e +1)~1=@' =13 and so A € By

We can now define our bump condltlons. Given Young functions A
and B, and a pair of weights (u, o), define

[, 4,8, = sup [t 4,2, ||| 5,25,
'%P
and )
[u,0]ap = Sup [u!?|| 4,2, 07 [l 22,
P
where the suprema are taken over all balls %, in X. Note that by
symmetry we have that if B is another Young function, then

1/p’ 5.3,

[0, u]p = sup [[u
'@ﬁ

By weights u and o we always mean non-negative measurable func-

tions on X that are finite almost everywhere and positive on sets of pos-

itive measure. Many authors assume that weights are locally integrable;

however, when working with bump conditions this assumption can be

avoided by an approximation argument. As was shown in [10, Sec-

tion 7.2], we can always assume that « and o are bounded and bounded

away from 0 on X, provided that in the norm inequality being proved

we are working with a function f € N,>1LP(X, p): for example, f is a
bounded function of compact support.

Remark 1.3. Since bounded functions of compact support are dense in
any weighted space LP(X, u), we will hereafter assume that u, o, and f
satisfy these conditions. Moreover, since T is linear we will also assume
without loss of generality that f is non-negative.

We can now state our main results. The first generalizes the double
bump condition to SHT.

Theorem 1.4. Given an SHT (X, p, i), suppose the pair of weights (u, o)
satisfies [u,0)a,Bp < 00, where A € By and B € B,. Then a Calderdn—
Zygmund operator T satisfies the strong type inequality

IT(fo)llLew) < C(T, X)[u,0]a, B,p[A]l/p (B ]1B/pp||f||LP(o)-

The next two results give separated bump conditions for weak and
strong type inequalities.
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Theorem 1.5. Given an SHT (X, p, 1), suppose the pair of weights (u, o)
is such that [u,0]a, < 0o, where A(t) = tPlog(e + t)P~19. Then a
Calderon—Zygmund operator T satisfies the weak type inequality

IT(fo)llLp.oeuy < C(T, X, p,0)[u, 0] apllfllLe (o)
Theorem 1.6. Given an SHT (X, p, pt), suppose the pair of weights (u, o)
is such that [u,0la, < 00 and [o,u]p,y < 0o, where A(t) = t¥log(e +
HP=149 and B(t) = ¥ log(e + t)?' =9, Then a Calderén-Zygmund
operator T satisfies the strong type inequality

IT(fo)lLew) < C(T,X,p,6)([u,0)ap + [0, ulp ) | fll Lo (o)-

The remainder of this paper is organized as follows. In Section 2 we
introduce the powerful notion of dyadic grids on spaces of homogeneous
type. These were first constructed by Christ [5], but we will follow the
more recent work of Hytoénen and Kairema [17]. These grids let us nat-
urally extend the Calderén—Zygmund decomposition and the techniques
of the so-called sparse operators to an SHT. In Section 3 we will reduce
the proof of our main theorems to proving estimates for sparse opera-
tors. The proof depends on results that in the Euclidean case are due
to Lerner [23] and Lacey, Sawyer, and Uriarte-Tuero [22]. We give the
corresponding results for an SHT. In Section 4 we prove Theorem 1.4
by proving the corresponding result for sparse operators. The proof
is nearly identical to the proof given in [9] in the Euclidean case, so we
only sketch the details. In Section 5 we prove a weak (1, 1) inequality for
sparse operators that we need for our proof of Theorem 1.5. Our proof
follows the broad outline of the analogous result for singular integrals
in Euclidean spaces due to Pérez [31]; however, it is simpler because of
the localized behavior of sparse operators. In Section 6 we prove Theo-
rems 1.5 and 1.6. Finally, in Section 7 we construct a pair of weights on
the real line that satisfies a separated logarithmic bump condition but
not the corresponding double bump condition.

In our proofs of Theorems 1.5 and 1.6 the only place we use that A
and B are log bumps is in the final argument in Section 6. However,
despite repeated efforts we are unable to eliminate this assumption. Nev-
ertheless, we conjecture that both results are true with the weaker as-
sumption that A € B, and B € B, but we believe that new techniques
will be required to prove this. On the other hand, very recently Nazarov,
Reznikov, and Volberg [29] have given a proof of the separated bump
result in Euclidean spaces using Bellman functions. Certain aspects of
their proof lead them to suggest that the full conjecture may be false.
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2. Dyadic cubes in spaces of homogeneous type

An important tool for our proofs is the concept of a dyadic grid 2 on
an SHT and the concept of a sparse family S in Z. These generalize the
classical Calderén—Zygmund decomposition (cf. [10, Appendix A]). The
following result is due to Hytonen and Kairema [17] (see also [5]).

Theorem 2.1. Given an SHT (X, p, ), there exist constants C > 0, 0 <
n, € < 1, depending on X, a family of sets I = Urep P (called a dyadic
decomposition of X ), and a corresponding family of points {z.(Q)}oeco
that satisfy the following properties:

(1) for all k € Z, the cubes in Dy are pairwise disjoint and X =

U @Q;

QEDy

(2) if Q1,Q2 € D then either Q1N Q2 =0, Q1 C Q2, or Q2 C Q1;

(3) for any Q1 € Dy, there exists at least one Q2 € Dy41 (called a child
of Q1) such that Q2 C Q1, and there exists exactly one Q3 € Di_1
(called the parent of Q1) such that Q1 C Qs;

(4) i Qa s a child of Qu, then j(Q2) > eu(@Qr);
(5) Bp(:(Q),n*) C Q C Bp(2(Q),Cn").

Remark 2.2. The number of children contained in a given dyadic cube is
uniformly bounded. It follows from (1) and (4) above that this number
is bounded by 1/e.

The sets Q@ € 2 are referred to as dyadic cubes with center z.(Q)
and sidelength 7*, but we must emphasize that these are not cubes in
any standard sense even if the underlying space is R, and care must be
taken when visualizing them. An exact characterization of the kinds of
sets which can be dyadic cubes is given in [18]. Below we will need the
dilations A@Q, A > 1, of dyadic cubes. However, these will actually be
balls containing @Q: given a cube @, we define

(2.1) AQ = By(x.(Q), \C).

Families of dyadic grids can be constructed that have additional useful
properties: see [17]. We apply one such family to show that our bump
conditions can be restated in terms of dyadic cubes. Given a dyadic
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grid 9, a pair of weights (u, o), and a Young function A, define
[u,0]%, = sup [[u!/P|laqllo" " [0
QED

We define [u,0]F 5, similarly.

Lemma 2.3. Given a pair of weights (u,0), and Young functions A
and B,

[u,0]ap ~ S;p[u,a]?{@ [u,0]a,Bp ~ S;p[um]?i,a,p
In both cases, the constants in the equivalence depend only on X.

Proof: We prove the first equivalence; the proof of the second is identical.
Given a dyadic grid 2 and @ € 2, by Theorem 2.1 there exists a ball %,
such that Q C B, and u(%,) ~ u(Q). Therefore, there exists C'(X) > 1
such that for any A > 0,

]éA (“&””)) du(z) < C(X) ][@ A (“(;)) du(z)

< f (2

the last inequality holds since Young functions are convex. Hence, by
the definition of the Orlicz norm, [lulla,q < C(X)|lulla,%,. The same
estimate holds for the norm of . We thus have that

s%p[uyalf,p < C(X)[u,0]ap-

To prove the reverse inequality, we use the fact that there exists a family
of dyadic grids 2',...,2”7, J depending only on X, that satisfy the
properties of Theorem 2.1 with the additional property that given any
ball 2,, there exists j and Q € %7 such that 2, C Q and u(%,) = u(Q).
(See [17, Theorem 4.1].) Therefore, we can repeat the above argument,
reversing the roles of %, and @, to get

[u,0]a,, < C(X)suplu, 0]%4). O
2

Given a collection of dyadic cubes 2, a sparse family S C Z is a col-
lection of dyadic cubes for which there exists a collection of sets {E(Q) :
@ € S} such that the sets E(Q) are pairwise disjoint, F(Q) C @, and
w(Q) < 2u(E(Q)). Sparse families of cubes are a generalization of the
Calderén—Zygmund decomposition in the Euclidean case. Using Theo-
rem 2.1 we can form this decomposition in an SHT. In order to do this

we need the Lebesgue differentiation theorem, which holds in any SHT.
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This fact seems to be new, though the proof only consists of assem-
bling pieces already present in the literature: in particular, it is implicit
in [37].

Lemma 2.4. Given an SHT (X, p, u), the Lebesgue differentiation the-
orem holds: for p-almost every x € X,

. 1

@) e U6 - I@la =0

Proof: Macias and Segovia, building on their earlier work in [25], showed
in [26] that given any SHT (X, p, i), there exists an equivalent quasidis-
tance J (i.e., there exist constants ¢;, co depending on X such that for
allz,y € X, c1p(x,y) < d(x,y) < eap(x,y)), such that given any ball %
with respect to §, then (%s, 0, ) is again a space of homogeneous type,
and the constants are independent of the ball %s.

Toledano [37] proved that since u(%s) < oo, the measure p when
restricted to %Bs is regular. The Lebesgue differentiation theorem holds
for regular measures: this follows from the standard argument (cf. [36,
Chapter 7]) using the fact that the maximal operator is weak (1,1)
on L(%s, 1) [5] and that smooth functions of compact support are dense
in L'(%s, 1) [36, Chapter 3]. Therefore, we have that for pu-almost ev-
ery x € Hs,

lim |f(y) = f(@)| dp(y) = 0.
r—0 Bs(x,r)
Since p and § are equivalent and p is doubling, it follows immediately

that (2.2) holds in %,. Since X can be covered by a countable collection
of p-balls, it holds for p-almost every = € X. O

Remark 2.5. As a corollary to this proof we also have that C.(X) is
dense in L*(X,u). This fact, together with Lemma 2.4, can be used
to simplify the hypotheses for results in a number of papers: see, for
example, [3, 4].

Corollary 2.6. Given an SHT (X, p, ) and a dyadic grid 2 that sat-
isfies the hypotheses of Theorem 2.1, then for pu-almost every x € X, if
{Qx} is the sequence of dyadic cubes in 2 such that NEQr = {x}, then

(2.3) lim £ |£(y) = f()] duly) = 0.

k—o0 Qk

Proof: First note that since p is a quasi-distance and p is doubling, if
r € ABy(xo,r), then there exists a constant K such that %B,(zo,r) C
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Bo(x,2Kr) and w(AB,(x,2Kr)) = n(%B,(xo,r)). Hence,

f 1w - s@ld) <c 1£(0) ~ 1) dity).
B,(xo,r) B,(x,2KT)

Therefore, if %}, is a sequence of balls such that (), %, = {z}, then it
follows from Lemma 2.4 that

(2.4) lim |f(y) — f(@)]du(y) = 0.

k—o0 By

Now for any k, by Theorem 2.1 there exists a ball % such that z €
Q1 C By, and u(PBr) <Cu(Qy). Then (2.3) follows at once from (2.4). O

Remark 2.7. Corollary 2.6 was stated in [2] without proof and with a
reference to [37]. However, as we noted, this result was only implicit
there.

We now extend the Calderén-Zygmund decomposition to an SHT. We
give a version that holds for Orlicz norms and not just for L' averages.
We begin by defining a dyadic Orlicz maximal operator. Given a dyadic
grid 2 and a Young function ®, define

Mg f(z) = sup |f]
TEQED

°,Q-

The standard dyadic maximal operator is gotten by taking ®(t) = ¢t
(which is not a Young function); in this case we simply write MZ.

Theorem 2.8. Given an SHT (X, p, ) such that u(X) = oo, a dyadic
grid 2, and a Young function ®, suppose that f is a measurable function
such that || flle,o — 0 as u(Q) — oo. Then the following are true:

(1) For each A > 0, there exists a collection {Q;} C Z that is pairwise
disjoint, maximal with respect to inclusion, and such that

O ={zeX:M{f(z)>A=]Q;

Moreover, there exists a constant C(X) such that for every j,
A<lflle.q <CX)A

(2) Given a > 2/e, where € is as in Theorem 2.1, for each k € Z let
{Q%}; be the collection of mazimal dyadic cubes in (1) with

O ={zeX:M{f(x)>d}=]Q}
J

Then the set of cubes S = {Qf} is sparse, and E(Qf) = Q?\Q;Hl.
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If (X)) < oo, then (1) holds provided that X > f |f(x)| du(x), and
(2) holds for all k such that a* > §, |f(x)|du(x).

The proof of Theorem 2.8 is essentially identical to that in the Eu-
clidean in case: see, for example, [10, Appendix A.1]. The constant C'(X)
n (1) depends on the doubling constant of x. When p(X) < oo some
minor modifications to the proof are necessary; these correspond to
what is often referred to as a “local” Calderén-Zygmund decomposi-
tion. To make them it suffices to note that in this case X is bounded
(see [15]). Therefore, by Theorem 2.1, for all dyadic cubes @ suffi-
ciently large, X = Q, and so the argument for (1) still holds if we take

A> e lf (@) dp(z) = o |f ()] dpu(x).

Theorem 2.9. Given an SHT (X, p, ) such that u(X) = oo, and a
dyadic grid 9, suppose f is a function such that ||f|l1.o — 0 as p(Q) —
0o. Then for any A > 0 there exists a pairwise disjoint family {Q;} C 2
and functions b and g such that:

2) 9— fX{z M7 f()<xy T 225 fa,s

3) for p-ace. z € X, lg(x)] < C(X)\;

4) b=);bj, where b; = (f fQJ)XQJ.;

5) supp(b )C Q; and JCQ x)du(x) = 0.

If u(X) < oo, then this decomposztzon still exists if we take A >

fx | (@) dp(z).

Theorem 2.9 is proved exactly as in the Euclidean case, taking {Q;}
to be the cubes from (1) in Theorem 2.8. The proof that g € L* requires
the Lebesgue differentiation theorem, Corollary 2.6.

(
(
(
(

3. Reduction to estimates for sparse operators

Given a dyadic grid 2 and a sparse family S in &2, define the sparse
operator T° = T%7 by

TS (@) = 3 (72 i) - xalo)

Qes

The operator T is a positive, dyadic Calderén-Zygmund operator. It
follows from the definition of sparseness that 7 is bounded on L?(p)
and satisfies a weak (1, 1) inequality: see [2, Lemmas 6.4 and 6.5].

A key feature of our proofs is that we reduce the problem for Calderén—

Zygmund operators to proving the same estimates for sparse operators.
To do so we need to extend two results from the Euclidean setting to
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spaces of homogeneous type. The first result is due to Lerner [23] in the
Euclidean setting; it was central to his greatly simplified proof of the
Ay conjecture and strong bump conjecture. We defer the proof until the
end of this section.

Theorem 3.1. Given an SHT (X, p, ) and a Calderén—-Zygmund op-
erator T, then for any Banach function space Y,

3.1) IT(fo)lly < C(X,T)sup [T°(fo)lly,
2,8

where the supremum is taken over every dyadic grid 2 in (X, p,u) and
over every sparse family S in 9.

By taking Y equal to LP>*°(u) or LP(u), it follows immediately from
Theorem 3.1 that to prove estimates for Calderén—Zygmund operators,
it suffices to prove them for all sparse operators T° with constants in-
dependent of S and Z. Below, we will prove Theorems 1.4 and 1.5 by
establishing such estimates.

To prove Theorem 1.6 we need to argue indirectly using a result which
connects the weak and strong type norm inequalities of sparse opera-
tors. In the Euclidean case this theorem is due to Lacey, Sawyer, and
Uriarte-Tuero [22].

Theorem 3.2. Given an SHT (X, p, ), let 2 be a dyadic grid and S a
sparse family in 9. Then

(32) 7% 0)ro)»rw = 1T 0)llLo(0) Lo
+ ||TS( . u)HLp,(u)%LP“OC(o-)'

The constants in the equivalence depend only on X, T, and p; in partic-
ular they are independent of 2 and S.

The proof of Theorem 3.2 passes through the equivalence of the weak
and strong type inequalities to certain testing conditions. The proof of
this equivalence for weak type inequalities in an SHT is the same as in
[22, Section 2.2] in the Euclidean setting; it is straightforward to see
that the only properties of dyadic cubes used in the proof are the those
given in Theorem 2.1. The proof of this equivalence for strong type
inequalities in [22] is much more involved; however, a simpler proof was
recently given by Treil [38] and as he notes (see Section 5 of his paper),
this proof also extends to an SHT with essentially no change.

Given Theorem 3.2, Theorem 1.6 follows from the characterization of

the weak type inequality in Theorem 1.5. We will make this precise in
Section 6 below.
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Proof of Theorem 3.1: Our proof draws heavily on the results proved
in [2] and we refer the reader there for complete details.

By our assumptions on f and ¢ we can, for clarity, replace fo by f.
As was proved in [17, Proposition 4.3], if we fix a point o € X, we
can construct a dyadic grid 2* satisfying Theorem 2.1 that contains a
sequence of nested dyadic cubes {Qn} such that zg is the center of each
cube Qu and such that | Jy @~ = X. Therefore, by duality and Fatou’s
Lemma, there exists g in the associate space Y”, ||g|ly» = 1, such that

5l = [ TS lote) dnte) < Sgint |17 5@)lo(w) dute).

Fix N > 0; we will prove that the final integral is bounded by
C'sup |T¥f|ly, where the supremum is taken over some collection of S
and &, but the constant is independent of these and also independent
of N.

As was proved in [2, Section 5], there exist Cy,Cy,m > 0 such that
for p-a.e. x € Q,

oo

1
(3.3) Tf(@)| < LM f(a)+Co ) o Aif (@),
i=1
where
Af@) = 3 @) duly) xolo)
Qesy /2@
and Sy is a sparse subset of Z* that consists of dyadic sub-cubes of @y .
The constants depend only on X and T’; in particular C; depends on the
fact (see [5]) that T: LY(X,pu) — LY°(X,p). Therefore, by Holder’s
inequality (with respect to Y and Y’),

/Q T (@) g(x) dul) <C1| M f-xanlly+Co S 27 Aifoxau =T+ Do.

To estimate I; we give a pointwise estimate for M f(x). By [17, Theo-
rem 7.9] there exists a constant K = K(X) and a collection 21, ..., 2%
of dyadic grids such that for every x € X,

K
(3.4) Mf(z) < C(X))_ M*f(x),
k=1

where M* = M?" is the dyadic maximal operator defined with respect
to 2*. We claim that for each k there exists a sparse subset S (depend-
ing on f) such that

(3.5) M f(a) < C(X)T5 f(2).
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This follows from (2) in Theorem 2.8. With the notation of this result,
let S = {Q;} € 2% be the sparse family. Then given = € €; \ Q4 1,
there exists Q; such that

Mf(z) <a™*t <ao  f(y)duly);
hence, for p-a.e. x,

v <a)] W) ay) xoy () = aT* f().

If we now combine inequalities (3.4) and (3.5), we have that
K
I < O X)|Mflly < OT.X) ) IT% flly < O(T. X)sup [IT° -
k=1

To estimate I, we will decompose each A; f and apply duality. By [17,
Theorem 4.1] there exists a family of dyadic grids 2!, ..., 27, satisfying
the properties of Theorem 2.1 with the additional property that given
any ball %,, there exists j and Q* C 27 such that %, C Q* and u(%,) ~
w(Q*), with constants depending only on X. Recall (see equation (2.1)
and the discussion after Theorem 2.1) that 2!Q is defined to be a ball.
Therefore, if we define

S3, ={Q e Sy :3Q* € 27, 2'Q c Q*},

then
Aif(x Z > ][ duly) - xo(x ZB,yf
Jj=1 Qesj
2IQCQ”

Arguing as in [2, Section 6] (see especially Lemmas 6.5 and 6.13) we
apply the same argument used to prove (3.3) for T to the adjoint oper-
ators B; ;. Key to this is the fact that adjoint operators are weak (1,1)
with a constant that is linear in 4. This yields the following pointwise
estimate:

B, f(2) < ICXOMS() +iCa(X) Y f F5)duly) - xole)
Qesi?
= 1C1 (X)M f(z) +iC2(X)T55 f (),
where S C 97 is sparse. Therefore, repeating the above argument for
bounding the maximal operator, we have that B} ; is bounded pointwise
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by a finite sum of sparse operators TSL, 1 <1< L (defined with respect
to a finite collection of dyadic grids ). We can now estimate Iy by

duality using the fact that the operators 75" are self-adjoint: there exists
a collection of g; € Y, ||g;|ly» = 1, such that

I, = C(T, X) ZQ_MHA'JC “Xawlly
(1. X) 22-’"/ i (@)g:(x) dp(x)
o XYy [, Buat@a dne
% | g;
< C(T,X)ZQ—”IZ/Xf(x)BZ-*,jgi(x) dp(z)
O(T, X 222 WZZ/f () dp()

j=11=1

=C(T, X) 222 WZZ/ TS f(2)g;(z) du(z)

jlll

Crx)3 i D317 il

j=11=1
< C(T,X)SupHTstIY-
2,5

This completes the proof of Theorem 3.1. O

4. Proof of Theorem 1.4

We will prove this result for sparse operators, with the [u, 0] 4,5, con-
dition replaced by the [u, o] 2 p,p condition. Theorem 1.4 then follows
immediately by Theorem 3.2 and Lemma 2.3. The proof for sparse op-
erators is essentially identical to the proof in the Euclidean case in [9];
for the convenience of the reader we sketch the details.

We need one preliminary result. In the Euclidean case this is due to
Pérez [32], and in an SHT to Pérez and Wheeden [33], Pradolini and
Salinas [34], and the first author [1]. In the latter papers the proofs
are for maximal operators defined with respect to balls instead of dyadic
cubes, but the proofs rely on a version of Theorem 2.8 for balls and so
immediately adapt to this setting.
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Lemma 4.1. Given an SHT (X, p, ) and a Young function ® such that
® € B, then

1M Fll Loy < CEOIEP | Fll o)

Remark 4.2. In [32, 34] it is assumed that ® satisfies the doubling condi-
tion ®(2t) < CP(t). However, as noted in [10, p. 102] this assumption is
only used to prove an equivalent formulation of the B, condition and can
be removed. In the Euclidean case this is due to Liu and Luque [24]. In
recent paper [1] the first author has shown that the doubling assumption
can be fully removed in SHT.

Proof of Theorem 1.4: By duality and the definition of T, there exists
g € L (u), ||9||Lp'(u) =1, such that

”TS(fU)HLP(u):/ T5(fo)(z)u(z)g(x) du()
X

2% ]é f(@)o () du(x) ]é u(e)g(x) dulz) - w(E(Q))

QEeS

<83 o' Pl g ollgu P i gllu' P laglle " ls.ou(E(Q))
Qes

<8u,01% 5, /X MZ(fo /7)) M2 (gu/) (x) du(x)

|ME (fo /D)l MZ (gu P )l

§8[U, U]%,B,p

<CX)[w,01% 5, ALY (BIEL 1 llio@) 9] Lo (- O

In the next section we will need an equivalent version of this result
for sparse operators, and so we state it here. The equivalence is easily
seen by letting o = v' 7P,

Theorem 4.3. Given an SHT (X, p, 1), a dyadic grid 9, a sparse family
S C 2, and Young functions A, B, with A € By and B € By, suppose
the pair of weights (u,v) satisfies

(4.1) [[w,0])Z 5, = sup [u!/?[laqllv™"?|l5.q < oo
Q2
Then
1T fll ey < CO[u,ollZ 5, [/_1]}3/5 [BIEY 111l ow)-
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5. A weak (1,1) inequality

In this section we prove a two-weight, weak (1, 1) inequality for sparse
operators. A version of this result for general Calderén—Zygmund oper-
ators in the Euclidean case was due to Pérez [31] and our proof closely
follows his. However, it is simplified because we are working with sparse
operators: instead of appealing to duality and the Coifman—Fefferman
inequality relating singular integrals and the maximal operator, we use
two-weight theory via Theorem 4.3.

Theorem 5.1. Given an SHT (X, p, ), let 2 be a dyadic grid satisfying
the hypotheses of Theorem 2.1, and let S C & be sparse. Let ® be a
Young function such that for some 1 < q < oo, Ag(t) = ®(t?) satisfies
Ag € By . Then for all A\ >0 and f >0

(5.1) u({r e X :T9f(x) > \}) < C(X,q),q)% /X f(@x)MZu(x) du(z).

Proof: We first consider the case when u(X) = oo; at the end of the
proof we will sketch the changes needed when u(X) < oco.
Fix A > 0 and let the disjoint cubes {Q;} and functions ¢ and b =
Zj b; be as given by Theorem 2.9. Since f = g + b, we have that
u({x € X : T9f(z) > \})
= u(Q)+u({z € Q°: [T(z)| > N/2}) +u({z € Q°: T¥g(x) > \/2})
=h+L+1;

where Q0 =, Q;.

The estimate for I; is immediate: since p is doubling, by the proper-
ties of the cubes {Q;},

IlZU(Q)SZU(Qj):ZU(QJ:)M(Qj)Si ‘ ZEgj; Q_f(x)du(x)

the last inequality follows from the fact that since ¢ < ®(t), [Jull1,0 <
C(@)]ulle,q-
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To estimate I, fix € QF then z € @Qf for all j. By linearity,

T5b(z) = > T5b;(x), and for each j,

Tb(x) =Y ]é bj(y) dp(y) - xo()

QeS

- 3 B [ () = o va, ) ) xalo)
Qes !

For Tb;(x) # 0, we need = € (), which in turn implies that @ N Q; # 0
and QNQ5 # (. Since Q,Q; € Z, we must have that Q; C Q. But then

1 1

) /Q () ~Fa,)xa, ) dnly) = — /Q (W)~ fo,) duts) =0.

Hence, T9b;(z) = 0 and so Iy = 0.

To estimate I3 we want to apply Theorem 4.3 with the pair (u, Meu).
Let B(t) = t"9" with 1/q < r < 1; then B € B, and [B]g, < C(q). We
claim that

[[w, MZ )%, 5 < 1.

To see this, fix Q € 2. Since B(1) = 1, it follows that ||x¢l s, = 1.
Moreover, for any x € @, by a change of variables in the definition of
the Orlicz norm,

Mg u(z) > |ul

2, = lu'|%, o
Therefore,

[Pl a0 @l ME () =7

8.0 < Iu? |l ay ol Pl 5L ollxells.g = 1.
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Hence, by Theorem 4.3 and since g(x) < C(X)A,

fs o [ T ue) duta)
< C(X.0.0)3; [ o)DM (wxa) (@) dita)
1 2
<O 005 [ oM (wxa) (@) dta)
=C(X,® q) @M (uxer) d(x)

Lo, q>§ 3 RS BETE
j J
=J1 + Js.

Clearly,
1
h 20X ) [ f@MFu() duto),
X

as desired. To estimate J3, assume for the moment that for each j and
xr e Qj,

(52) M (uxae)(w) < inf M (uxgs) ().

Given this, we have that

Jo < C(Xv‘I’MJ)% > fo,m(@)) yieanJ Mg (uxqe)(y)
j
C(X,®,q)< Z YIME (uxq:)(y) duly)

1 5
< O(X.2.0)5 /X £ ) Mg uly) duly).
It remains to prove (5.2). But if z € Q;, then

M (uxoe)(x) < M (uxqs)(@) = sup [luxqele.o-
TEQED

The norm on the right hand side is non-zero only if z € @ and QNQ); # 0.
Therefore, by the properties of dyadic cubes we must have that @) C @);.
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Hence,

Mg (uxqe)(x) = sup [luxo: |0,
QED
Q;CQ
and since this quantity is independent of x € Q);, we get (5.2).
If u(X) < oo, then we can repeat the above proof for all
A > fX f (@) du(zx). If the opposite inequality holds, then for some dyadic
cube Q sufficiently large, Q = X, and so

u({zeX : T f(z)>A}) <u(X) <

Hors L S ante)

1 1
<5 [ S uGe) ) < C@)5 [ MGt o). O

6. Proof of Theorems 1.5 and 1.6

We first show that Theorem 1.6 is a consequence of Theorem 1.5.
Given both separated bump conditions, the latter result implies that

IT5 (- o)l 2o oy >z ) S [1:0] 4y
ITC W)l s 10 (o) S 10 Ul B -
Therefore, by Theorem 3.2 we get the desired strong type inequality.

To prove Theorem 1.5 it will again suffice to prove it for sparse op-
erators. In order to do this we need a weighted norm inequality for an
Orlicz maximal operator. The following result was proved in [11] for the
Hardy-Littlewood maximal operator in the Euclidean case; the proof in
an SHT is nearly the same and we sketch the details.

Lemma 6.1. Given 1 < p < oo, let A, C, and ® be Young functions
such that A=Y (t)C~1(t) < co®~1(t) for t > 0 where and C € By. If
[u,0]% , < oo, then

1M (Fu)ll o (o) < CCX, c0)lats 04 p[CTH2 1

Proof: We first consider the case when p(X) = co. By Theorem 2.8, fix
a > 1 sufficiently large and form the cubes {Q¥} such that

= {o: MF (fu)(a) > o} = | Q).
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Then by the generalized Holder’s inequality we have that

/ M (fu)(@)? o(z) du(z)
X

= Zz uacp/ax T
—Z/Qk\QWM@(f (@) o) dyu(z)

k

<a” Z I Fully e (@%)

CXc0) 3 It 2, el 71 o7 1) o Q)
k.j

<ot ano, ¥ o, ME T @ it

< C(X, co)us o], /X M2 (Ful/? () du(z)

< C(X, o), o [C / £ (@) u(z) dy).

If u(X) < oo, then let ko be the largest integer such that

o< fllx e
Then 9, = X. We can repeat the above argument summing over
k > ko, and for k > ko we can still form the cubes {Q%} and argue as
before. When k = ko, then there exists a large dyadic cube @ = X.
Hence, a® < | f|lo.¢o and the argument proceeds as before, replacing
the collection {Q¥} with the single cube Q. O

We can now prove Theorem 1.5. This is the only part of the proof
in which we use the fact that A is a log-bump. Our proof relies on an
openness property that is particular to log-bumps. More precisely, given
A(t) = tPlog(e + t)P~1+% where § > 0, then A € B, and

AT AT () <t
But in fact we can find € > 0 and C' € By such that
t
AN o) < —
(®) () < log(e + t)¢
For a different way to view this openness property, see Remark 10 and the
preceding discussion in [14]. A weaker version of this property would be
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sufficient (see [11, Theorem 4.1]) but it seems doubtful that this property
is satisfied by an arbitrary bump function.

The proof uses an extrapolation argument from [11]; see also [10,
Chapter 8]. Fix A > 0 and define

O\ ={z € X :T%(fo)(z) > \}.
Then by duality, there exists h € L¥ (u), 2]l 1oy = 1, such that

U@ =[xyl = [ u@h(o) dute) = (uh) ().

Qx
Now let ®(t) = tlog(e+1t)¢, where we will fix the value of € > 0 below.
Let ¢ — 1 = ¢/2 and let Ag(t) = t?log(e + )7~ 'T</2. Then Ag € B,
and so by Theorem 5.1,

(Wh)(@) £ O, [ Fla)o(e) M (uh)(a) duta)

1
< C(X, )3 1F oo IME (@h)l] o o)

Now fix € < §/p and define C(t) = t* log(e + ¢)~ =@ =11 where
n = J0—ep. Then C' € B, and [C] B,, depends only on p and 6. Moreover,
we have that A=1(¢t)C~1(t) < co®~1(¢), where the constant ¢y depends
on 0 and p. (See [11] for details.) Therefore, by Lemma 6.1,

1M (hu) | Lot (o) < C (X, p,0) [, 0] a pl|ll 1o () = C(X, P, 8) [, 0 -

Combining the above inequalities we get the desired result.

7. Separated and double bump conditions

We construct our example on the real line with p = 2. Our example
can be readily modified to work for other values of p. Define the Young
functions

A(t) = B(t) = t*log(e + t)*.
Then A, B € By. By rescaling, if we let ®(t) = tlog(e+1)2, then for any
pair (u, ),

1/2

a2l aq ~ lullgg, o™

1/2
B~ lollys.

Therefore, it will suffice estimate the norms of u and o with respect to ®.
Similarly, we can replace the localized L? norms of v'/? and o'/? with
the L' norms of u and o.

Before we define u and o we first construct a pair (ug, 0g) which will
be the basic building block for our example. Fix an integer n > 2 and
define Q@ = (0,n), 00 = X(0,1), and ug = KpX(n-1,n), Where K, =
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n?log(e +n)~32. Then a straightforward estimate with the definition of
the Orlicz norm shows that

[[uol =, luoll —— log(e + )’
U = U ~
oll1,Q o olle,Q )
looll : l[ooll Log(e ks
o = o ~ .
olle = olle,Q "
Therefore, we have that
U o , U o ~ ,
ollt,Qlloolle,Q olle,llooll1,Q Tog(e + 1)

but
[uolle,qlloolle,q = log(e + n).

We now define v and o as follows:

u(@) =Y Koxr,(x) o@) = xu, (@),

n>2 n>2

where I,, = (e" +n — 1,¢" + n) and J, = (e",e” + 1). Since the
above computations are translation invariant, we immediately get that
if @, = (", €™ +n), then

l[ulle.@.llolle.q, = log(e +n),

and so [u,0]4,B2 = 0.

It remains, therefore, to show that [u,c]42 and [o,u]p 2 are both
finite. We will consider [u,o]4.2; the argument for the second is essen-
tially the same. Fix an interval @); we will show that |ulle gl oll1,q is
uniformly bounded. Fix an integer N such that N —1 < |Q| < N. We
need to consider those values of n such that @ intersects either I,, or J,.

Suppose that for some n > N + 2, @Q intersects I,,. But in this case
it cannot intersect Jy for any k and so |lo|l1, = 0. Similarly, if Q
intersects J,, then |luljs o = 0.

Now suppose that for some n < N + 2, @ intersects one of I,, or J,.
If log(N) < n (more precisely, if N < e —e"~1 —1), then for any k # n,
@ cannot intersect I, or Jy. In this case ||ulle,glloll1,0 # 0 only if Q
intersects both I,, and J,,, and will reach its maximum when N ~ n. But
in this case we can replace @ by (€™, e” +n) and the above computation
shows that ||ulls ollolli,o S 1.

Finally, suppose @ intersects one or more pairs I,, and J, with n
log(N). Then [supp(u) N Q| < log(N) and [Jullp~(0) = K|iogn)]

S
S
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log(N)?2. Therefore,

/2 5/2
jsupp(u) N Q\"* _ log(N)
< < ooy [ BEPRAW T - o 0BV T
lullo S lulzq < lul=(o) (255 < loellY)
A similar calculation shows that
log(N
lolhq < 2B,

hence, we again have that ||ulle g|lo]
oo and our proof is complete.

1,0 S 1. It follows that [u,0]a2 <

Remark 7.1. If we modify our example by defining K,, = n? log(e+n) 2,
then the same arguments show that the pair (u, o) satisfies the separated
bump condition when A(t) = B(t) =t log(e+t)' %, 0 < § <2, but does not
satisfy the double bump condition for any § >0. It would be of interest
to construct a pair that satisfies a separated bump condition for some
pair of log bumps but fails to satisfy the double bump condition for any
pair of Young functions for which the appropriate B, conditions hold.
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