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Abstract: The interpolating sequences S for H∞(D), the bounded holomorphic

functions in the unit disc D of the complex plane C, were characterized by L. Carleson

using metric conditions on S. Alternatively, to characterize interpolating sequences
we can use the existence in H∞(D) of an infinity of functions {ρa}a∈S , uniformly

bounded in D, the function ρa being 1 at the point a ∈ S and 0 at any b ∈ S \
{a}. A. Hartmann recently proved that just one function in H∞(D) was enough to
characterize interpolating sequences for H∞(D). In this work we use the “hard” part

of Carleson’s proof of the corona theorem to extend Hartmann’s result and to answer

a question he asked in his paper.
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1. Introduction

Let D be the unit disc in C and S a sequence of points in D. Let
dP (a, b) := | a−b1−āb | be the pseudohyperbolic distance and dH(a, b) :=

tanh−1(dP (a, b)) the hyperbolic distance in D.
To say that the sequence S is separated means that there is an η > 0

such that

∀ a, b ∈ S, a 6= b, dH(a, b) ≥ η ⇐⇒ dP (a, b) ≥ tanh η.

Equivalently, a sequence S is δ-separated when the discs D(a, δ(1−|a|)),
a ∈ S, are disjoint.

We shall also need the notion of Carleson measure. Let (ζ, h) ∈
T× (0, 1), and denote by

W (ζ, h) := {z ∈ D s.t.
∣∣1− ζ̄z∣∣ < h}

the associated Carleson window. If ν is a Borel measure on D, we shall
say that ν is Carleson if there is a constant C > 0 such that

∀ ζ ∈ T, ∀ h ∈ (0, 1), |ν| (W (ζ, h)) ≤ Ch.
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Definition 1.1. A sequence S is called a Carleson sequence if the canon-
ical measure associated with it

µS :=
∑
a∈S

(1− |a|)δa

is a Carleson measure.

Definition 1.2. We say that S is interpolating for H∞(D) if for any λ
in `∞(S) there is an f in H∞(D) such that for any a in S we have
f(a) = λa.

L. Carleson [1] characterized these sequences by the condition:

(C) inf
a∈S

∏
b∈S\{a}

∣∣∣∣ a− b1− b̄a

∣∣∣∣ > 0.

It is easily seen that this condition is equivalent to the fact that S is
dual bounded in H∞(D), (or weakly interpolating) which means:

∃ C > 0, ∀ a ∈ S, ∃ ρa ∈ H∞(D), ‖ρa‖∞ ≤ C s.t. ∀ b ∈ S, ρa(b) = δab.

To see this, it is enough to take ρb(z) := Bb(z)
Bb(b) withBb(z) :=

∏
a∈S\{b}

a−z
1−āz

|a|
a .

So the metric condition (C) which characterizes interpolation is equiv-
alent to the functional characterization, namely the existence of an in-
finity of functions satisfying the above conditions.

Another functional characterization is due to D. Sarroste [5]:

Theorem 1.3. If there is 0 < τ < η such that for any partition A, B
of S, i.e. S = A ] B, there is a function f ∈ H∞(D), ‖f‖∞ ≤ 1, such
that for any a in A, |f(a)| ≤ τ and for any b in B, |f(b)| ≥ η, then S is
H∞(D)-interpolating.

Again it requires an infinity of functions in H∞(D) to characterize
interpolating sequences.

A. Hartmann [3] showed that this can be reduced to a condition on
only one function:

Theorem 1.4. Let S be a separated Blaschke sequence in the unit disc D
of C. There is a partition (A,B) of S such that if there is a function f ∈
H∞(D) with f = 0 on A and f = 1 on B, then S is interpolating
for H∞(D).
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A natural question after these results is: is it possible to have an
analogous result as D. Sarroste replacing for any partition by there is a
partition?

The aim of this work is to prove that the answer is yes, provided that
τ < ηκ for a certain constant κ > 1 introduced by Carleson in his proof
of the corona theorem.

1.1. Good partitions.

We need the following notions.

Definition 1.5. A partition (A,B) of a sequence of points S ⊂ D
is “good” if there is ϕ : A → B such that ∀ a ∈ A, dH(a, ϕ(a)) =
infc∈S\{a} dH(a, c) and if there is ψ : B → A such that ∀ b ∈ B,
dH(b, ψ(b)) = infc∈S\{b} dH(b, c).

1.1.1. Restricted good partition. We shall need more specific par-
titions of a discrete sequence. Let γ ∈]0, 1[; we set

Cn = Cn(γ) := {z ∈ D : 1− γn < |z| ≤ 1− γn+1}.
Let S be a discrete sequence in the disc, let γ ∈]0, 1[, and for any parti-
tion (A,B) of S, set An := A∩Cn(γ), Bn := B∩Cn(γ), Sn := S∩Cn(γ).

Definition 1.6. A restricted good partition of the discrete sequence S
in the disc is a partition (A,B) of S such that there is a γ in ]0, 1[ so
that (An, Bn) is a good partition of Sn for any n ∈ N.

As we shall see later a discrete sequence S in the disc always admits
a restricted good partition.

1.1.2. Hoffman partition. Let S be a discrete sequence in the disc.
We shall cut S in two parts; for this let

D1 := {z ∈ D : Arg z ∈ [0, π[}, D2 := {z ∈ D : Arg z ∈ [π, 2π[}.
Now set S1 := S ∩D1, S2 := S ∩D2. Since the union of two Carleson
sequences is also a Carleson sequence, it will be enough to prove that S1

and S2 are Carleson to get that S is Carleson. So let S = S1.
For convenience we shall work in the upper half plane C+. We can

assume that ∀ a ∈ S, 0 ≤ <a ≤ L < ∞, 0 < =a ≤ H < ∞ and
Cn = Cn(γ) := {z ∈ C+ : γn+1 < =z ≤ γn}, γ being fixed later.

We start with the point a0 = x0 + iy0 in Sn := Cn ∩ S with the
biggest y0 among the points with the smallest real part x0; if #Sn = 1,
put a0 in An and set Bn := ∅; if not, take the next point b = x + iy
in Sn with the same real part as a0 hence with a smaller imaginary part,
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if any, or such that its real part x is as small as possible; if there is more
than one such point, choose the one with biggest y. Call this point b0
and define ϕ(a0) := b0. This implies in particular that if <b0 = <a0 then
there is no point of Sn in the vertical segment (a0, b0); if <b0 > <a0 then
there is no point of Sn in the strip {z ∈ Cn : <a0 ≤ <z < <b0}. If S,
hence Sn, is δ-separated and if γ > 1

1+2δ , then the only possibility is

<b0 > <a0. To see this recall that dP (a, b) = |a−b
a−b̄ |. Hence, if <a = <b

then dP (a, b) =
∣∣∣=a−=b=a+=b

∣∣∣ ≥ δ. But if a, b ∈ Cn(γ) then |=a−=b| ≤
γn − γn+1 = γn(1− γ) and |=a+ =b| ≥ 2γn+1 which implies

δ ≤
∣∣∣∣=a−=b=a+ =b

∣∣∣∣ ≤ 1− γ
2γ

⇒ γ ≤ 1

1 + 2δ
.

So if γ > 1
1+2δ , then a and b cannot be in the same Cn(γ).

Now take the next point in Sn at the right side of b0, i.e. the same
way as above, and call it a1, etc. Then each time define ϕ(aj) := bj .
Call An the set of all aj ’s and Bn the set of all bj ’s. We have that An
and Bn are finite because ∀ a ∈ S, 0 ≤ <a ≤ L <∞, 0 < =a ≤ H <∞.
So by construction we always have that if <bj = <aj then there is no
point of Sn in the vertical segment (aj , bj); if <bj > <aj then there
is no point of Sn in the strip {z ∈ Cn : <aj ≤ <z < <bj}. Again
if S, hence Sn, is δ-separated and if γ > 1

1+2δ , then the only possibility
is <bj > <aj , which means that the points of Sn are disposed on one
“horizontal file”. See [2, Hoffman’s theorem, p. 402].

Definition 1.7. Let A :=
⋃
n∈NAn and B :=

⋃
n∈NBn then (A,B) is

the Hoffman partition of S associated to γ ∈]0, 1[.

Definition 1.8. Let (A,B) be a restricted good partition or a Hoff-
man partition of the sequence S ⊂ D. Let κ ≥ 1 be a constant, the
sequence S ⊂ D is κ-ultra-separated if S is separated and if there are
0 < τ < η < 1, τ < ηκ, and a function f in H∞(D), ‖f‖∞ ≤ 1, such
that |f | ≤ τ on A and |f | ≥ η on B.

Now we can state the theorem.

Theorem 1.9. There is a constant κ > 1 such that the sequence S
is H∞(D)-interpolating if and only if it is κ-ultra-separated.

This constant κ was introduced by Carleson in his proof of the corona
theorem.
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Theorem 1.9 generalizes the result of A. Hartmann and answers pos-
itively his question:
If there is an f in H∞(D) such that f(a) = 0, for any a in A and
|f(b)| ≥ η > 0 for any b in B, where (A,B) is a Hoffman partition of S,
and if S is separated, is S interpolating?

I introduce also “good” partitions for dealing with this problem in the
unit ball of Cn. This notion is invariant by automorphisms and hence
more natural that the Hoffman partition. The result in the ball, not as
good as in the disc, will be posted later. It involves complex geometry
and the key fact used is that the measure (1 − |z|) |∂f(z)|2 dm(z) is a
Carleson measure in the unit ball of Cn.

2. General facts

Lemma 2.1. Let S be a discrete sequence in the metric space (X, d).
Then there is a good partition (S1, S2) of S.

Proof: Take a point O ∈ X and a1 ∈ S such that d(a1, O) is minimal, if
#S = 1 set ϕ(a1) = a1 and S1 := {a1} = S; S2 = ∅; then we are done.

If #S ≥ 2, then take b1 ∈ S a nearest neighbour for the distance d
of a1 and define ϕ(a1) = b1. By the assumption on the cardinality of
S, b1 exists. Take a2 a nearest neighbour of b1, if it exists, and define
ψ(b1) := a2; if a2 = a1 we stop at this “perfect” pair (a1, b1) with
ψ(b1) := a1. If not we continue with b2 a nearest neighbour of a2, etc.
We stop at a perfect pair. This way we get a branch B1 finite or infinite.
We put all the “a” in S1 and all the “b” in S2.

If it remains any point in S, then we have that the points in S \B1 are
far from the points in B1 by construction. We take a point c in S \ B1

which is the nearest from O.

A) If all the nearest points from c are in B1, which may happen, then
we take one of them, d. Now if d is in S1, then we put c in S2 and
we set ψ(c) := d. If d is in S2, then we put c in S1 and we set
ϕ(c) := d. This completes B1 and we start again.

B) If c has a nearest neighbour which is not in B1, then we start a
new branch B2. A new point may have its nearest neighbour in B1

or in B2, then we put it in B1 or in B2, as in the step A.

We continue this way in order to exhaust S. The S1 part is all the “a”
and S2 is all the “b”. Then S is a bipartite graph with components Sj ,
j = 1, 2 on which the two mappings ϕ, ψ are well defined.
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3. Proof of the main theorem

Let S be a discrete sequence in the unit disc D. Fix any γ in ]0, 1[
and n ∈ N and recall

Cn = Cn(γ) := {z ∈ D s.t. 1− γn < |z| ≤ 1− γn+1}, Sn := S ∩ Cn.

We shall use the following lemmas.

Lemma 3.1. If the number of points in Sn is smaller than a fixed num-
ber m for any n ∈ N, then S is a Carleson sequence.

Proof: For S to be Carleson it must exist a constant C > 0 such that
for any Carleson window W = W (ζ, h), we have

∑
a∈S∩W

(1− |a|) ≤ Ch.

If a ∈W then we have 1− |a| ≤ h, hence∑
a∈S∩W

(1− |a|) ≤
∑

a∈S, 1−|a|≤h

(1− |a|).

But a ∈ Cn(γ) implies γn+1 < 1 − |a| ≤ γn and, because there are at
most m points in S ∩ Cn(γ), we have∑

a∈S, 1−|a|≤h

(1− |a|) =
∑

n∈N, γn+1<h

∑
a∈Cn(γ)∩S

(1− |a|)

≤ m
∑

n∈N, γn+1<h

γn ≤ m

γ(1− γ)
h.

Hence we have the lemma with C = m/γ(1− γ).

Lemma 3.2. Let S be a discrete sequence in D, then there is a restricted
good partition for S.

Proof: Take any γ ∈]0, 1[; because S is discrete, Sn := S ∩ Cn(γ) has
only a finite number of points. If Sn = ∅, we simply set An = Bn := ∅. If
its cardinal is bigger than one, then we can apply the general Lemma 2.1:
there is a good partition (An, Bn) of Sn.

Setting A =
⋃
n∈NAn, B =

⋃
n∈NBn, we have that (A,B) is a re-

stricted good partition of S.

We remark that γ ≤ 1−|a|
1−|ϕ(a)| ≤ 1/γ because a and ϕ(a) belong to the

same Cn(γ).
Back to the proof of the main Theorem 1.9. We suppose first that S

is κ-ultra-separated and we want to show that S is interpolating.
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It is enough to show that S is Carleson because S being separated, it
will be H∞(D)-interpolating.

Let W = W (ζ, h) be a Carleson window we have to show that∑
a∈A∩W

(1− |a|) ≤ Ch.

We shall cut the set A ∩W in two parts.

3.1. The points EW := {a ∈ W ∩ S such that ϕ(a) /∈ W}.

3.1.1. Case of Hoffman partition. For convenience we shall work in
the upper half plane C+. Let Ca be the strip Cn(γ) = {z : γn+1 <
=z ≤ γn} which contains a. If we deal with a Hoffman partition, the
point b := ϕ(a) is the nearest point in S ∩ Ca, either with the same
real part, hence with a smaller imaginary part, or on the right of a i.e.
with a bigger real part; hence if b /∈ W this means that there is no
points of A between a and the right vertical side of W in the strip Cn(γ)
containing a. So a is the nearest point in A to the right side of W in
the strip Ca. We shall take the maximum possible of these points, which
means that we have at most one point in each Cn(γ) ∩W and then we
have

∑
a∈EW

=a ≤ Ch by Lemma 3.1.

3.1.2. Case of restricted good partition. We shall work again in
the upper half plane. So W is a square with one side on the real axis.
Let c be the orthogonal projection of a on the side of W in the direction
of b.

We define the border strip to be a tube T (a, r) around the segment [a,c]
of width r=a.

The partition (A,B) being restricted, this means that b belongs to
the same strip Cn(γ) := {z ∈ C+ : γn+1 < =z ≤ γn} as a.

Lemma 3.3. Let (A,B) be a restricted good partition of S in D. Let
W = W (ζ, h) be a Carleson window and a ∈ A and b := ϕ(a) be such
that a ∈ W , b /∈ W . Then the border strip T (a, r) contains at most a
fixed number m = m(γ, δ, r) of points of A.

Proof: Because b is the nearest point to a in S ∩ Ca we have that there
is no point of S ∩ Ca in the hyperbolic ball Q(a, b) “centered” at a and
passing through b, i.e. Q(a, b) := {z ∈ C+ : | z−az−ā | = |

b−a
b−ā |}. So the worst

case is when b belongs to one of the three sides of W in C+. Suppose
first that b is in the vertical left side of W .
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The border strip is

T (a, r) := {z = x+ iy ∈W s.t. (1− r)=a < y < (1 + r)=a, x < <a}.

See Figure 1.

b

f
c
d e

a

T (a, r)

Q(a, b)

Left vertical side of  W

Figure 1.

Then the points of A \ {a} in T (a, r) must lie in the triangle fde ∩
T (a, r), but |de| ≤ |fd| ≤ γn(1−γ) and in this triangle there are at most
m = m(γ, δ, r) points in A, because A is a δ-separated sequence. To see
this let p ∈ A∩ bde∩T (a, r), then the discs D(p, δ=p) are disjoint, hence
the sum of their area is smaller than the area of the triangle fde∩T (a, r).
This means ∑

p∈A∩fde∩T (a,r)

πδ2(=p)2 ≤ 4r2γ2n.

But p ∈ A∩ bde∩ T (a, r) implies =p ≥ =a− r=a ≥ (1− r)γn+1 because
the width of T (a, r) is r=a and =a ≥ γn+1. So we get

mπδ2(1− r)2γ2n+2 ≤ 4r2γ2n ⇒ m ≤ 1

πδ2(1− r)2

4r2

γ2
.

If b is on the right side of W , this is the same.

Suppose now that b is on the top of W . Because b is the nearest
point in S ∩ Ca to a, the points in (A \ {a}) ∩ T (a, r) ∩W must be in
one of the triangles def or d′e′f ′ of sides less than r=a ≤ rγn.
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T (a, r)

e e′

Top side of W

a

d f b

c
d′f ′

Figure 2.

Because S is δ-separated, exactly as in the previous case, there are at
most m = m(γ, δ, r) such points. See Figure 2.

Taking border strips T (a, r) with half of the width, r → r/2, they
become disjoint. Now set E′W the points in EW such that the T (a, r)
is based on the vertical sides of W and E′′W the points in EW such that
the T (a) is based on the top of W .

We have, by Lemma 3.1, that
∑

a∈E′
W

=a . h.

For E′′W we have that a ∈ E′′W must belong to the Cn(γ) with the
smallest n such that W ∩ Cn(γ) 6= ∅. So we have γn ≤ =a ≤ γn−1,
hence, because the tube T (a, r) has width r=a, we have at most h/rγn

such tubes. So finally ∑
a∈E′′

W

=a ≤ γn−1 h

rγn
≤ 1

rγ
h.

So adding these two inequalities we get∑
a∈EW

=a . h,

and the right estimate for EW .

3.2. The points FW := {a ∈ W ∩ S such that ϕ(a) ∈ W}.

We shall go back to the unit disc and in this part, we shall use the
“hard” part of the proof of L. Carleson of the corona theorem, as inter-
preted by Hörmander [4, Lemma 11, p. 948]:
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Lemma 3.4. There exists a constant κ such that if 0 < η < 1
2 and

f ∈ H∞(D), sup |f | ≤ 1, then one can find ψ with 0 ≤ ψ ≤ 1 so that
∂ψ
∂z̄ dm is a Carleson measure in D and

ψ(z) = 0 when |f(z)| < ηκ, ψ(z) = 1 when |f(z)| ≥ η.

We shall call this κ the Carleson constant. Because ψ is real valued
we also have ∂ψ

∂z dm is Carleson hence |gradψ| dm is Carleson.
We shall use the following well known facts:

1. If f ∈ H∞(D) and |f(a)| ≤ τ , then for τ ′ > τ there is an r > 0
depending only on f and τ ′ such that:

∀ z ∈ D(a, r(1− |a|)), |f(z)| < τ ′.

2. If f ∈ H∞(D) and |f(b)| ≥ η, then for η′ < η there is an r > 0
depending only on f and η′ such that:

∀ z ∈ D(b, r(1− |b|)), |f(z)| > η′.

Let (A,B) be the restricted or Hoffman partition of S associated to
the function f ∈ H∞(D). Taking eventually a power of f , we can assume
that η < 1/2 to fit with the hypotheses of Hörmander’s lemma. We have

∀ a ∈ A, |f(a)| ≤ τ < ηκ, ∀ b ∈ B, |f(b)| ≥ η.

By fact 1 we have

∀ a ∈ A, ∀ z ∈ D(a, r1(1− |a|)), |f(z)| < τ ′

and by fact 2

∀ b ∈ B, ∀ z ∈ D(b, r2(1− |b|)), |f(z)| > η′.

Take r = min(r1, r2) to have both.
We shall need the following notions. Let 0 < α < 1, β > 0, a, b ∈ D

and set R(a, b, α, β) a tube around a smooth curve Γ(a, b) with thickness
τ := αmin(1− |a| , 1− |b|) i.e.

R(a, b, α, β) :=
⋃

c∈Γ(a,b)

D(c, τ).

Moreover the Lebesgue measure on R(a, b, α, β) must be β-equivalent
to the Lebesgue measure on the product (−τ, τ)×Γ(a, b), which means
that, for any positive continuous function f on R(a, b, α, β), we have for
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a smooth parametrization f(z) = f̃(t, c) of R(a, b, α, β)

1

β

∫ τ

−τ

∫
Γ(a,b)

f̃(t, c) dc dt ≤
∫
R(a,b,α,β)

f(z) dm(z)

≤ β
∫ τ

−τ

∫
Γ(a,b)

f̃(t, c) dc dt.

Lemma 3.5. Let (A,B) be a restricted or a Hoffman partition of S.
Then we can make tubes R(a, ϕ(a), s, π/2) which are disjoint.

Proof: If (A,B) is a restricted good partition, then for any a ∈ A we take
the tube of width r(1−|a|) around the segment (a, ϕ(a)). Because a, b :=

ϕ(a) belong to the same strip Cn(γ), we have that γ ≤ 1−|a|
1−|ϕ(a)| ≤ 1/γ.

Also S being δ-separated, there is no point of S in a disc D(b, δ(1− |b|))
centered at b and of radius δ(1− |b|). Moreover, because b is the nearest
point in S to a, in the hyperbolic metric, the disc Q(a, b) of all the points
in D nearer to a than b contains no other points of S; hence the tube
with width s = min(δ, r) does not contains any point in S but a and b.
See Figure 3.

D(b, δ(1 − |b|))
Q(a, b)

b

a

Figure 3.

So we take these tubes, which are disjoint, in the case of a restricted
good partition.

If (A,B) is a Hoffman partition, again a and b := ϕ(a) are in the
same strip Cn(γ) hence 1− |a| ' 1− |b|.

Because again the points in S are δ-separated, we can perturb a little
bit the segment (a, b) in order to avoid discs D(c, δ(1−|c|)), c ∈ S\{a, b}
with a curve whose length is less than π/2 times the length of (a, b).
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Figure 4.

This means that around this curve we can make a tube of width less
than (δ/4)×(1 − |a|) and these tubes are still disjoint provided that no
segments (a, ϕ(a)) and (a′, ϕ(a′)) cut each other. But by the construction
of the Hoffman partition this cannot happen. We have now to take
s = min(δ/4, r) to have that the tubes R(a, ϕ(a), s, π/2) are disjoint.

Because S is κ-ultra-separated, we have

∃ f ∈H∞(D) : ‖f‖∞ ≤ 1, ∀ a ∈ A, |f(a)| ≤ τ < ηκ, ∀ b∈B, |f(b)| ≥ η.
Fix τ ′ satisfying τ < τ ′ < ηκ, then we have an r > 0 such that

∀ a ∈ A, ∀ z ∈ D(a, r(1− |a|)), |f(z)| ≤ τ ′ < ηκ.

By Lemma 3.5 we have that the length of the curve Γ(a, ϕ(a)) is less
than π/2 times the length of the segment (a, ϕ(a)) so we can enlarge a
little bit W , say W ′ := W ′(ζ, πh/2), in order to have that

R(a, ϕ(a), s, π/2) ⊂W ′.
See Figure 5.

W

W ′

0

∂D

b

a

Figure 5.
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The Carleson–Hörmander Lemma 3.4 gives us: there is a ψ with
0 ≤ ψ ≤ 1 so that |gradψ| dm is a Carleson measure in D and

ψ(z) = 0 when |f(z)| < ηκ, ψ(z) = 1 when |f(z)| > η.

Let b := ϕ(a) and Ia := [−s(1 − |a|),+s(1 − |a|)]. Parametrize the
tube R(a, ϕ(a), s, π/2):

R(a, ϕ(a), s, π/2) = Ia×Γ(a, b).

Then, because ψ = 0 on Ia×{a} and ψ = 1 on Ia×{b}, by the known
facts 1 and 2 and the construction of the R(a, ϕ(a), s, π/2), we have

∀ t ∈ Ia, 1=ψ(t, b)−ψ(t, a) =

∫
Γ(a,b)

gradψ·ds⇒ 1 ≤
∫

Γ(a,b)

|gradψ| ds.

Now we integrate with respect to t:

2s(1−|a|)=

∫
Ia

1 dt ≤
∫
Ia

∫ b

a

|gradψ| ds dt ≤ π

2

∫
R(a,b,s,π/2)

|gradψ| dm,

because the Lebesgue measure on R(a, b, s, π/2) is π/2 equivalent to the
product measure.

This gives the estimate for the points a in W such that R(a, b, s, π/2)
is in W ′ = W (ζ, πh/2), because∑

a∈FW

(1− |a|) ≤ 1

2s

∑
a∈FW

π

2

∫
R(a,b,... )

|gradψ(z)| dm(z)

≤ π

4s

∫
W ′
|gradψ(z)| dm(z) ≤ π2

8s
Ch,

the tubes being disjoint by Lemma 3.5 and the last inequality because
|gradψ(z)| dm(z) is a Carleson measure.

Hence the sequence A is Carleson and separated so it is H∞(D)-in-
terpolating.

For the sequence B we proceed analogously and we get that B is
also separated and Carleson, hence H∞(D)-interpolating. Because the
union S = A∪B is separated, we get that S is still H∞(D)-interpolating
and this finishes the proof of the direct part of the theorem.

For the converse part of the theorem let S be an interpolating sequence
for H∞(D). Then S is δ-separated, hence discrete, so take any restricted
or Hoffman partition (A,B) of S. Because S is H∞(D)-interpolating,
there is an f ∈ H∞(D) such that f = 0 on A, f = 1 on B, and ‖f‖∞ ≤
C. This means that g := f/C ultra-separates the sequence S for any
κ > 1.

Now the answer to the question by A. Hartmann:
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Corollary 3.6. Let S = A ∪ B, where (A,B) is a restricted or a Hoff-
man partition of S. Suppose that the Blaschke product BA, precisely
zero on A, satisfies infb∈B |BA(b)| ≥ η > 0. Then S is an H∞(D)-
interpolating sequence.

Proof: We have that 0 < ηκ, where κ is the Carleson constant, so we
can apply Theorem 1.9.
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