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1. Introduction and statement of the main results

Normal form theory is used to simplify ordinary differential equations
through changes of variables and it was initiated by Poincaré [19]. In-
spired by the work of Bibikov [4], Sternberg [20], Chen [5], Takens [21],
and many other mathematicians, nowadays it plays an important role in
the study of bifurcation and stability, among others. In recent years seri-
ous results have been achieved with the development of new techniques
including the way to calculate the holomorphy for analytic admissible
autonomous systems in [3], homotopy methods for random dynamical
systems in [16, 17], the application of exponential dichotomy spectra
theory for differential and difference non-autonomous systems in [15]
and [22], correction function methods for the analytic linearization of
Fuchsian systems in [7, 8], majorant norm methods for the new proof of
the classical Poincaré Theorem in [13], etc.

In general the construction of normal forms reflects deeply on two ba-
sic aspects, one is the dynamical behavior of the linear parts especially
for non-autonomous ones, the other is the study of normal form opera-
tors in convenient functional spaces. Due to such difficulties for generic
dynamical systems, here we restrict our attention to the simplest ones,
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which are with Lyapunov ‘regular’ linear parts, i.e. with fundamental
matrices X(t) of the form

X(t) = Z(t)ediag(α1,...,αd)t,

and belong to the Poincaré domain, i.e. Lyapunov exponents are of the
same signs. See [1] for more details about the regularity. Therefore, we
manage to detect a uniform way to build Poincaré type linearization the-
orems for such systems. The methods used here stem from the technique
of controlling sub-exponential unbounded nonlinearities in [16, 17], the
applications of admissible conditions in [3] and classical majorant norm
methods in [12].

In brief, first of all we establish an analytical linearization criterion
for systems with diagonal linear parts but sub-exponential unbounded
nonlinearities. Consider the following non-autonomous differential sys-
tems

(1)
dx

dt
= Λx+ f(t, x).

Here Λ = diag(λ1, . . . , λd), f(t, x) is continuous in t and analytic in x
at x = 0 for every fixed t, f(t, 0) ≡ 0 and Dxf(t, 0) ≡ 0. As usual
Dxf denotes the Jacobian matrix of f with respect to the variable x.

Moreover, we say f(t, x) =
∑d
l=1

∑
|k|≥2 f

l
k(t)xkel ∈ Ckδ(Λ), provided

that for all the monomials f lk(t)xkel satisfying f lk(t) 6≡ 0 there exists
δ > 0 such that 〈k, λ〉 − λl ≤ −|k|δ or 〈k, λ〉 − λl ≥ |k|δ. Here el is the

unit vector with the l-th component 1, |k| =
∑d
i=1 ki ≥ 2 and 〈k, λ〉 =∑d

i=1 kiλi. Specially, we note that this definition is always valid whatever
f depends on t or not.

Theorem 1. Let ρ(t) and M(t) be two positive continuous functions.
Assume that f(t, x) ∈ Ckδ(Λ) in system (1) and

max
|x|≤ρ(t)

|f(t, x)| ≤M(t), t ∈ R.

If there exists a positive function κ(t) satisfying the following condi-
tions:

(C1) κ(t)≤min{1/(C(d)M(t)), ρ(t)/2, 1}, where C(d)=d
∑
|k|≥0(1/2)|k|

is a constant, and

(C2) there exists a positive constant τ < δ such that

κ(t+ h)

κ(t)
≤ eτ |h|, t, h ∈ R,
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then there exist coordinates substitutions x = y+ h(t, y), which are ana-
lytic in the domain {(t, x) | |x| ≤ r0κ(t)} for a fixed t and some r0 > 0,
changing system (1) into the linear system ẏ = Λy. Moreover, if the
functions ρ(t) and M(t) additionally satisfy

lim
|t|→∞

1

|t|
ln+M(t) = 0, lim

|t|→∞

1

|t|
ln− ρ(t) = 0,

where ln+ x = max{lnx, 0} and ln− x = min{lnx, 0}, then for every
fixed y the function h(t, y) admits the limit

lim
|t|→∞

1

|t|
ln |h(t, y)| = 0.

Next, as applications, we study the analytic conjugate problems for
autonomous, random and almost periodic dynamical systems in the same
frame. By doing a linear non-autonomous change, we force those sys-
tems into the form (1). In general, that transformation may destroy
the original autonomous, random, and almost periodic structures. So,
technically saying, the proofs of such classical theorems can be split into
two parts. One is the convergence of the transformation, which shall
be confirmed by Theorem 1; the other is the formal preservation due to
their corresponding structures.

Consider the analytic differential system

(2) ẋ = Ax+ f(x),

where A = D+N is in the Jordan normal form with the diagonal part D
and the nilpotent part N , f(0) = 0, Dxf(0) = 0 and f is analytic at the
origin.

Theorem 2. Assume that f ∈ Ckδ(D) in system (2). Then there exist
coordinates substitutions x = y + h(y), which are analytic at the origin,
changing system (2) into the linear system ẏ = Ay.

This result is new because of the existence of nilpotent parts, while
the diagonal case was discussed in [3]. Moreover, we specially note that
our conditions cannot be weakened if N 6= 0. For more details see [11].

Let (Ω,F ,P) be a probability space and we use the notation ẋt =
dxt
dt . Then consider the random system associated with the dynamical

system (Ω,F ,P, (θt)t∈R) defined by the differential equation

(3) ẋt = A(θtω)xt + f(θtω, x) = F (θtω, x),

under the following hypotheses:
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(i) The condition of the Multiplicative Ergodic Theorem is satisfied,
i.e.

α±(ω) := sup
0≤t≤1

ln+ ‖Φ(ω, t)±‖ ∈ L1(Ω).

(ii) The function F (θtω, x) is analytic in x for a fixed t and there exist
ρ(ω) tempered from below and M(ω) tempered from above such
that

max
|x|≤ρ(θtω)

|f(θtω, x)| = M(θtω) <∞.

(iii) F (θtω, x), ρ(θtω) and M(θtω) are all continuous in t for ω P a.e.

As usual a random variable R : Ω → (0,∞) is called tempered with
respect to a metric dynamical system θt if

lim
|t|→∞

1

t
lnR(θtω) = 0,P a.e.,

R : Ω→ [0,∞) is called tempered from above if

lim
|t|→∞

1

t
ln+R(θtω) = 0,P a.e.,

and R : Ω→ (0,∞) is called tempered from below if 1/R is tempered from
above. Furthermore, Lyapunov exponents γ(ω) = (γ1(ω), . . . , γd(ω)) are
called non-resonant if 〈k, γ(ω)〉 6= γl(ω) for all 1 ≤ l ≤ d and |k| ≥ 2.
Then we provide a new proof of the Poincaré linearization theorem for
random dynamical systems. See [16] for another proof by homotopy
methods.

Theorem 3. Under hypotheses (i), (ii), and (iii) if the Lyapunov ex-
ponents γ(ω) = (γ1(ω), . . . , γd(ω)) have the same signs and are non-
resonant, then there exist coordinates substitutions xt = yt + h(θtω, yt),
which are analytic in some tempered ball, changing system (3) into the
linear system ẏt = A(θtω)yt.

Finally, we show that such math model (Theorem 1) is valid for those
systems, which can apply averaging methods. More precisely, suppose
that U is a non-empty set, x ∈ U ⊆ Cd and ε ≥ 0 is a real parameter,
then we say f ∈ AF([0,∞), U), if

(i) the function f : R× [0,∞)× U → Cd is continuous,

(ii) f(t, ε, x) is almost periodic in t uniformly with respect to x in
compact sets of U for each fixed ε,

(iii) f(t, ε, x) is analytic with respect to x ∈ U for every fixed t and ε,

(iv) f(t, ε, x)→ f(t, 0, x) as ε→ 0 uniformly for t ∈ R and x in compact
sets.
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We associate the system of differential equations

(4) ẋ :=
dx

dt
= εf(t, ε, x),

with the averaged system

(5) ẋ = εf0(x),

where

f0(x) = lim
T→∞

1

T

∫ T

0

f(t, 0, x) dt.

By the classical averaging theorem (see [9, 10]), if x0 ∈ U is a hyperbolic
singular point of system (5), then system (4) has an almost periodic
solution x∗(t, ε)→ x0 uniformly as ε→ 0.

Let Uδ = {x ∈ Cd : ‖x‖ ≤ δ} and A be a d-square matrix. Set
λ(A) = (λ1, . . . , λd) be the eigenvalues of A. Denote by Re the real
part of a complex number. Without loss of generality, we can assume
that Reλ1 ≤ · · · ≤ Reλd. We say that the eigenvalues λ(A) are in the
Poincaré domain if Reλd < 0 or Reλ1 > 0. The following conditions
are called resonant conditions:

d∑
i=1

ki Reλi − Reλj = 0.

Here k=(k1, . . . , kd) ∈ Zd+ and j = 1, . . . , d. As usual, Z+ denotes the set
of non-negative integers. We say that A is non-resonant, if λ(A) possess

non-resonant conditions for every |k| =
d∑
i=1

ki ≥ 2 and j = 1, . . . , d.

System (4), with the change of variables x 7→ y given by

x = y + x∗(t, ε),

becomes

(6) ẏ = εF (t, ε, y).

Here F (t, ε, 0) ≡ 0 and F (t, ε, y) = f(t, ε, y + x∗(t, ε)) − f(t, ε, x∗(t, ε))
satisfies the same conditions as the function f(t, ε, x). As usual, Dy de-
notes the Jacobian matrix with respect to y and m(f) is remarked as
the module of an almost periodic function f .

Theorem 4. Let A = Dxf0(x0). If λ(A) is in the Poincaré domain and
non-resonant, then there exist ε0 > 0 and δ > 0 independent of ε such
that for 0 < ε ≤ ε0 under the change of coordinates y = z + w(t, ε, z),
where w ∈ AF([0, ε0), Uδ), Dzw(t, ε, 0) → 0 uniformly for t ∈ R as
ε→ 0 and m(w) ⊂ m(F ), system (6) becomes

ż = εDyF (t, ε, 0)z.
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In general, normal forms are studied one by one for non-autonomous
systems. However, when we study the invalidity of Seigel type theorems
for random diffeomorphisms, it is shown that there actually exist some
common laws for general ones. Therefore, we extend the criterion [14,
Theorem 3.4] to Theorem 1 for more systems, whose linear parts are near
the diagonal constant ones. Then using it, we provide an extension of the
results in [3] and new proofs of partial results in [15] and [16]. Moreover,
by playing tricks in [13], Poincaré analytic polynomial normal forms also
can be achieved. Additionally, we specially note that our definitions of
the Poincaré domain for systems (3) and (6) stem from the one of real
autonomous systems, because those systems are non-autonomous and
the time variable is real.

The reminder parts are organized as follows. In §2 basic introductions
and fundamental properties are provided for classical majorant norms,
random and almost periodic systems. Then Theorem 1, the analytic lin-
earization criterion, is established in §3, which naturally leads to proofs
of Theorem 2, 3 and 4 in §4, §5 and §6, respectively. And some other
applications are also mentioned in §7.

2. Preliminaries

In this part, first we introduce some basic definitions and properties of
majorant norms, most of which are from [13]. Next we continue with the
background of random dynamical systems and the statement of the Mul-
tiplicative Ergodic Theorem from [2]. Finally, we recall some classical
results of the exponential dichotomy and almost periodicity from [6].

The majorant operator is the nonlinear operator acting on formal
power series by replacing all Taylor coefficients by their absolute values,

M :
∑
α∈Z+

d

Cαz
α 7→

∑
α∈Z+

d

|Cα|zα.

Moreover, the majorant ρ-norm is the function on the space of formal
power series, given by

[]f []ρ = |Mf(ρ, . . . , ρ)| ≤ ∞.

Then we provide the fundamental property of majorant norms, for
more details see [13]. Let C[[x]] be the space of formal series with com-
plex coefficients. Given f and g two vector fields in C[[x]] with positive
coefficients, we denote by f � g when each coefficient of f is no greater
than the corresponding one of g.
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Proposition 5. Let f and g ∈ C[[x]]. Then the following statements
hold:

(i) M(fg)�Mf · Mg,
(ii) M(f ◦ g)�Mf ◦Mg.

Proof: The proof follows by a straightforward computation of the coef-
ficients of f · g and f ◦ g.

Next we give basic concepts of random dynamical systems and related
theorems. Let (Ω,F ,P) be a probability space and T and F are R or C,
where one is related to the base space and the other to the bundle space.
Moreover, T is endowed with its Borel σ-algebra B(T). We say that a
family (θt)t∈T of mappings from Ω into itself is called a metric dynamical
system if:

(i) (ω, t)→ θtω is F ⊗ B(T) measurable;
(ii) θ0 = IdΩ, the identity on Ω, θt+s = θt ◦ θs for all t, s ∈ T;
(iii) θt preserves the probability measure P.

The map

ψ : T× Ω× Fd → Fd, (t, ω, x) 7→ ψ(t, ω, x)

is called a random dynamical system (or a cocycle) on the measurable
space (ω,F) over a metric dynamical system (Ω,F ,P, θt) if:

(i) ψ is B(T)⊗F ⊗ B(Cd)-measurable;
(ii) the map ψ(t, ω) := ψ(t, ω, ·) : Fd → Fd forms a cocycle over θt:

ψ(0, ω) = Id for all ω ∈ Ω, and

ψ(t+ s, ω) = ψ(s, θtω) ◦ ψ(t, ω) for all s, t ∈ T, ω ∈ Ω.

In addition, a random variable R : Ω → (0,∞) is called tempered with
respect to a metric dynamical system θt if

lim
|t|→∞

1

|t|
lnR(θtω) = 0,P a.e.,

R : Ω→ [0,∞) is called tempered from above if

lim
|t|→∞

1

|t|
ln+R(θtω) = 0,P a.e.

and R : Ω→ (0,∞) is called tempered from below if 1/R is tempered from
above. The result below is the celebrated Multiplicative Ergodic Theo-
rem, whose statement comes from Theorem 3.4.11 and Corollary 4.3.12
in [2].
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Lemma 6. Consider the random system associated with the dynamical
system (Ω,F ,P, (θt)t∈R)

ẋt = A(θtω)xt,

where A(θtω) is continuous in t P a.e. and the corresponding generated
linear cocycle is denoted by Φ(ω, t). Assume that

α±(ω) := sup
0≤t≤1

ln+ ‖Φ(ω, t)±‖ ∈ L1(Ω).

Then there exists an invariant subset Ω̃ ⊂ Ω of full measure such that

for each ω ∈ Ω̃ the following statements hold:

(i) The limit lim|t|→∞(Φ(t, ω)∗Φ(t, ω))1/2t =: Ψ(ω) exists.

(ii) Let eγ1(ω) < · · · < eγp(ω)(ω) be the different eigenvalues of Ψ(ω)
with the multiplicities li(ω). Then we have that p(θtω) = p(ω),
li(θtω)= li(ω), and γi(θtω)=γi(ω) for i=1, . . . , p(ω) and any t∈R.

(iii) The functions ω → p(ω), ω → li(ω) and ω → γi(ω) are measurable.
In addition, if (Ω,F ,P, θn) is ergodic, then the functions p(ω),
li(ω), and γi(ω) are invariant constants.

(iv) There exists a measurable map

P : Ω→ Gl(d,C)

satisfying ‖P (ω)‖ and ‖P−1(ω)‖ are both tempered such that Φ(t, ω)
is conjugated to a block diagonal random dynamical system Ψ(t, ω)
by P (ω):

P (θtω)Φ(t, ω)P−1(ω) = Ψ(t, ω),

where Ψ(t, ω) = diag(Ψ1(t, ω), . . . ,Ψp(t, ω)) and Ψi(t, ω) are cocy-
cles of size li(ω)× li(ω) with the same Lyapunov exponents.

Finally, we recall some of the hyperbolic properties of a non-au-
tonomous system. By studying the exponential dichotomy we can char-
acterize the asymptotic speed of the solutions tending to infinity, which
implies a close relationship with the unique bounded solution of a non-au-
tonomous system.

Lemma 7. Let A be a d×d matrix in the Jordan normal form. Consider
the following differential equation

(7) ẋ = (A+B(t))x,
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where B(t) is almost periodic in t. If

β = sup
t∈R
‖B(t)‖ ≤ α/(36K5),

where α = µ/4, µ = min{|Re(λi − λj)| | Reλi 6= Reλj} and K is
a constant dependent on the dimension d, then there exists an almost
periodic change of variables x = y +H(t)y turning system (7) into

ẏ = (A+ B̂(t))y.

Here m(B̂) and m(H) ⊆ m(B), ||H|| ≤ 18α−1Kβ, ||B̂|| ≤ 3Kβ and

B̂(t) is in the block diagonal form with respect to the different real parts
of the eigenvalues of A.

As usual, m(f) denotes the module of an almost periodic function f .
The above toughness lemma comes from the classical research of the
exponential dichotomy. A detailed proof can be found in [6]. Moreover,
it is well known that the exponential dichotomy implies the existence of
a unique bounded solution, which is almost periodic for almost periodic
systems. Here, the statement of the following lemma is in [6], see also [9,
10].

Lemma 8. For the non-homogeneous equation

ẋ = A(t)x+ f(t),

where A(t) and f(t) are almost periodic functions, if the corresponding
homogeneous equation ẋ = A(t)x has an exponential dichotomy on R,
then there exits a unique almost periodic solution ψ of that non-homo-
geneous equation which satisfies m(ψ) ⊂ m(A(t)x+ f(t)).

3. Linearization criterion

In this part we provide the analytic linearization criterion for non-au-
tonomous systems with diagonal linear parts and sub-exponential un-
bounded nonlinearities. The methods are enlightened from [13, 16, 17].
See [14] for a weak version.

Consider the following non-autonomous differential systems

(8)
dx

dt
= Λx+ f(t, x),

where Λ = diag(λ1, . . . , λd), f(t, 0) ≡ 0, Dxf(t, 0) ≡ 0 and f is analytic

at x = 0 for a fixed t. Consider f =
∑d
l=1

∑
|k|≥2 f

l
k(t)xkel. For simplic-

ity of the proof, we only consider that for all the monomials f lk(t)xkel
satisfying f lk(t) 6≡ 0 there exists a δ > 0 such that 〈k, λ〉 − λl ≤ −|k|δ.
The arguments for the other case are similar.
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When system (8) can be linearized, then there exist coordinates sub-
stitutions x = y+h(t, y), which change the original system into ẏ = Λy.
By simple computation, it yields

(9) ∂th(t, y) +Dyh(t, y)Λy − Λh(t, y) = f(t, y + h(t, y)).

Denote two operators by adΛ : h(t, y) 7→ ∂th(t, y)+Dyh(t, y)Λy−Λh(t, y)
and Sf : h(t, y) 7→ f(t, y + h(t, y)). Then system (9) can be rewritten as

(10) adΛ h(t, y) = Sf h(t, y).

Therefore, the key is to detect the solution as the fixed point of above
equation in the convenient functional space. Let us begin with the esti-
mation of unbounded exponential nonlinearities.

Lemma 9. Let ρ(t) and M(t) be two positive continuous functions. De-
note the positive function η(t) by

(11) η(t) = min{1/(C(d)M(t)), ρ(t)/2, 1},

where C(d) = d
∑
|k|≥0(1/2)|k|. Assume that f(t, x) is analytic in the

domain {(t, x) | |x| ≤ ρ(t)} for a fixed t, f(t, 0) ≡ 0, Dxf(t, 0) ≡ 0 and

max
|x|≤ρ(t)

|f(t, x)| ≤M(t), t ∈ R.

Then any positive function κ(t) satisfying κ(t) ≤ η(t) can fulfill the
condition

(12) max
|x|≤κ(t)

|f(t, x)| ≤ κ(t), t ∈ R.

Moreover, the functions ρ(t) and M(t) satisfy

lim
|t|→∞

1

|t|
ln+M(t) = 0, lim

|t|→∞

1

|t|
ln− ρ(t) = 0.

Hence, the function η satisfies lim|t|→∞
1

t
ln η(t) = 0.

Proof: By Cauchy estimation, we have that supl |f lk(t)| ≤ M(t)/ρ|k|(t).
Therefore, for every fixed t, the conditions f(t, 0) ≡ 0 and Dxf(t, 0) ≡ 0
naturally imply that

|f(t, x)| ≤
d∑
l=1

∑
|k|≥2

|f lk(t)||x|k

≤ |x|2
d∑
l=1

∑
|k|≥0

M(t)

ρ|k|(t)
|x||k| ≤ C(d)M(t)|x|2,
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where C(d) = d
∑
|k|≥0(1/2)|k| for |x| ≤ ρ(t)/2. Then by formula (11) we

know that lim|t|→∞
1
|t| ln η(t) = 0 and κ(t) admits (12). This completes

the proof.

Now we introduce the modified majorant norms, which are defined in
the domain {(t, x) | |x| ≤ rρ(t)} by

[]f []r, ρ :=

∞∑
|k|=1

d∑
l=1

sup
t∈R
{|f lk(t)|ρ(t)|k|−1}r|k| <∞

and

||f ||r, ρ :=

∞∑
|k|=1

d∑
l=1

sup
t∈R
{|f lk(t)|ρ(t)|k|}r|k| <∞,

for any formal series f(t, x) =
∑∞
|k|=1

∑d
l=1 f

l
k(t)xkel. One will easily

see that they are natural generations for the definition of majorant norm
because for any fixed t ∈ R we have that

∞∑
|k|=1

d∑
l=1

|f lk(t)|ρ(t)|k|r|k| =Mf(t, rρ(t), . . . , rρ(t)) =Mf(t, rρ(t)ê),

associated with the classical majorant operator

M :
∑
α∈Z+

d

cαx
α 7→

∑
α∈Z+

d

|cα|xα,

where ê = (1, . . . , 1) ∈ Cd. Especially, notice that the above definitions,
when f is independent of the variable t, agree with the classical ones
in [13]. That is, []f []r,1 = ||f ||r,1 = []f []r.

Consider Br = {h | h(t, 0) = 0, []h[]r, κ ≤ r, h ∈ Ckδ(Λ)}. Then we
study the operators adΛ and Sf in Br. The key is to show that adΛ has
a bounded reverse and Sf is strongly contracting in some convenient
functional space.

Lemma 10. The operator adΛ has a bounded inverse in the space
(Br, [] · []r,κ), provided that there exists a positive constant τ < δ such
that

(13)
κ(t+ h)

κ(t)
≤ eτ |h|, t, h ∈ R.
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Proof: Let adΛ g = f with []f []r,κ < ∞. Then for the expansion f =∑
f lk(t)xkel, the solution g =

∑
glk(t)xkel, which follows from the ex-

pression

(14) glk(t) =

−
∫∞
t
e(s−t)(〈k,λ〉−λl)f lk(s) ds, 〈k, l〉 < λl;∫ t

−∞ e(s−t)(〈k,λ〉−λl)f lk(s) ds, 〈k, l〉 > λl,

is unique in the sense of the Lyapunov exponent less than δ.

Then consider clk(g) = supt∈R |glk(t)|κ(t)|k|−1. By formula (14) we
obtain

|glk(u)|κ(u)|k|−1≤
∫ ∞
u

e(s−u)(〈k,λ〉−λl)|f lk(s)|κ(u)|k|−1 ds

=

∫ ∞
0

et(〈k,λ〉−λl)|f lk(u+t)|κ(u+t)|k|−1(κ(u)/κ(u+t))|k|−1dt

≤ clk(f)

∫ ∞
0

e−δ|k|teτ(|k|−1)t dt ≤ clk(f)

δ − τ
,

which implies []g[]r,κ ≤ []f []r,κ/(δ−τ) for every positive r. This completes
the proof.

Next three lemmas confirm the strongly contraction of Sf .

Lemma 11. If f and h ∈ Ckδ(Λ), then we have that Sf (h) ∈ Ckδ(Λ).

Proof: Without loss of generality, we denote the coefficients simply by ∼,
whatever depending on t or not. So f =

∑
∼ xkel for 〈k, λ〉−λl ≤ −|k|δ.

We have that

Sf (h) =
∑

f lk(x+ h(∼, x))kel

=
∑
∼

d∏
s=1

(
∼ xs +

∑
t

∼ xmst
)ks

el

=
∑
∼

(
d∏
s=1

xis0s

)
x
∑d
s=1

∑
t≥1 istmstel.
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Here k = (k1, . . . , kd), ∼ xmstes is a monomial of h with the non-zero
coefficient, and

∑∞
t=0 ist = ks for s = 1, . . . , d. It then leads to

− λl +
d∑
s=1

is0λs +

d∑
s=1

∑
t≥1

〈istmst, λ〉

≤ −λl +

d∑
s=1

is0λs +

d∑
s=1

∑
t≥1

ist(−δ|mst|+ λs)

= −λl + 〈k, λ〉 − δ
d∑
s=1

∑
t≥1

ist|mst|

≤ −δ

|k|+ d∑
s=1

∑
t≥1

ist|mst|


≤ −δ

 d∑
s=1

is0 +

d∑
s=1

∑
t≥1

ist|mst|

 .

That is, we get Sf (h) ∈ Ckδ(Λ), which completes the proof.

Lemma 12. Assume that f(t, 0) = g(t, 0) = 0. Then the following
statements hold.

(i) []fg[]r,κ ≤ ||f ||r,κ[]g[]r,κ, provided that both ||f ||r,κ and []g[]r,κ are
finite.

(ii) ||f ◦ g||r,κ ≤ ||f ||τ,κ, provided that τ = []g[]r,κ.

Proof: For a fixed t, we have that

∞∑
|k|=1

d∑
l=1

|f lk(t)|κ|k|−1(t)r|k| = κ−1(t)Mf(t, rκ(t)ê).

Consequently, by Proposition 5, it implies that

κ−1(t)M(fg)(t, rκ(t)ê) ≤ κ−1(t)Mf(t, rκ(t)ê)Mg(t, rκ(t)ê)

≤Mf(t, rκ(t)ê)κ−1(t)Mg(t, rκ(t)ê).

Thus []fg[]r,κ ≤ ||f ||r,κ[]g[]r,κ, which proves (i). The proof of (ii) follows
similarly from the fact that

M(f ◦ g)(t, rκ(t)ê) ≤Mf(t,Mg(t, rκ(t)ê)ê)

≤Mf(t, κ(t)κ−1(t)Mg(t, rκ(t)ê)ê)

≤Mf(t, τκ(t)ê).

This completes the proof.
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Here the operator Sf is called strongly contracting in the ball (Br, [] · []r,κ),
provided that the following conditions are fulfilled

(i) Sf (Br) ⊆ Br,
(ii) [] Sf h− Sf h̃[]r,κ ≤ C(r)[]h− h̃[]r,κ, where C(r)→ 0 as r → 0.

Lemma 13. Assume that f(t, 0) = 0, Dxf(t, 0) = 0 and

max
|x|≤κ(t)

|f(t, x)| ≤ κ(t), t ∈ R.

Then the operator Sf is strongly contracting in the ball (Br, [] · []r,κ) for
r small enough.

Proof: By Lemma 11, it is proved that Sf (Ckδ(Λ)) ⊆ Ckδ(Λ). Then
notice that

Sf h(t, x) =

∫ 1

0

Dxf(t, u(x+ h(t, x))(x+ h(t, x)) du

and

g(t, x) =

∫ 1

0

Dxf(t, x+ uh(t, x) + (1− u)h̃(t, x))(h− h̃)(t, x) du,

where g = Sf h− Sf h̃. Additionally []x[]r,κ = r. Thus by Lemma 12 we
obtain that

[] Sf h[]r,κ ≤ ||Dxf ||τ,κ([]h[]r,κ + []x[]r,κ), []g[]r,κ ≤ ||Dxf ||τ,κ[]h− h̃[]r,κ,

where τ ≤ []x[]r,κ + max{[]h[]r,κ, []h̃[]r,κ} ≤ 3r.
Now we estimate the upper bound of ||Dxf ||3r, κ. By Lemma 12 and

the Cauchy estimation we obtain that |f lk(t)| ≤ κ1−|k|(t) for a fixed t.
Thus, when r < 1/6, we have that

||Dxf ||3r, κ ≤ d
∞∑
|k|=2

|k||f lk(t)|κ|k|−1(t)(3r)|k|−1

≤ d
∞∑
|k|=2

|k|(3r)|k|−1 ≤ dr
∞∑
|k|=0

(|k|+ 2)/2|k|.

This completes the proof.

Finally, in this context we restate Theorem 1 as follows and give the
proof out.
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Theorem 14. Let ρ(t) and M(t) be two positive continuous functions.
Assume that in system (8) the function f(t, x) ∈ Ckd(Λ) is analytic in
the domain {(t, x) | |x| ≤ ρ(t)} for a fixed t, f(t, 0) = 0, Dxf(t, 0) = 0
and

max
|x|≤ρ(t)

|f(t, x)| ≤M(t), t ∈ R.

If there exits a positive function κ(t) satisfying conditions (11) and (13),
then there exist coordinates substitutions x = y+ h(y, t), which are ana-
lytic in the domain {(t, x) | |x| ≤ r0κ(t)} for a fixed t and some r0 > 0,
changing system (8) into its linear part. Moreover, if functions ρ(t) and
M(t) additionally satisfy

lim
|t|→∞

1

|t|
ln+M(t) = 0, lim

|t|→∞

1

|t|
ln− ρ(t) = 0,

then, for any fixed y, the function h(t, y) admits

lim
|t|→∞

1

|t|
ln |h(t, y)| = 0.

Proof: The key is to prove that equation (10) has an analytic solution
in (Br, [] · []r,κ) via the Contraction Mapping Principle for some conve-

nient κ(t).
Consider the composition operator ad−1

Λ ◦ Sf in the space (Br, [] · []r,κ),

where both adΛ and Sf are given in equation (10). On one hand, the

operator ad−1
Λ is bounded by Lemma 10, whose norm is independent of r.

On the other hand, the shift operator Sf is strongly contracting with the
Lipschitz constant going to zero with r → 0 as O(r). Thus the composi-
tion will be contracting in (Br, [] · []r,κ) with the rate O(1) ·O(r) = O(r)
as r → 0. By the Contracting Mapping Principle, we can choose r small
enough such that there exists a unique fixed point of the equation

h = (ad−1
Λ ◦ Sf )h for h ∈ (Br, [] · []r, κ).

Thus, equation (10), or the equivalent system of the form (9), has an
analytic solution in the domain {(t, x) | |x| < rκ(t)}, which linearizes
system (8). This completes the proof.

4. Autonomous systems

In this part we study autonomous differential systems in order to
extend the results in [3] for the non-diagonal case. Consider the following
analytic system

(15) ẋ = Ax+ f(x),
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where A = D + N is in the Jordan normal form with the diagonal and
nilpotent parts D and N , respectively. If system (15) can be changed
into ẏ = Ay by analytic coordinates substitutions x = y + h(y), the
traditional way is to study the equality

DyhAy −Ah(y) = f(y + h(y)).

In general it is impossible to seek the explicit expression of the operator
adA : h 7→ DyhAy−Ah(y) except when A is diagonal. Consequently, we
use another way to study it. Doing non-autonomous coordinates substi-
tutions x = eNtu, system (15) can be changed into the non-autonomous
one

(16) u̇ = Du+ e−Ntf(eNtu).

Then we can apply Theorem 1. So it is necessary to analyze the condi-
tions of the linearization criterion one by one.

First of all, we verify that system (16) formally satisfies the conditions
of Theorem 1. Let E be the classical identity matrix.

Lemma 15. Assume that A = D+N is in the Jordan normal form with
the diagonal D and nilpotent N . Then e−Ntf(eNtu) ∈ Ckδ(D), provided
that f ∈ Ckδ(D).

Proof: Consider B = eNt or e−Nt. Notice that B has the expansion of
the form E±Nt+· · ·+(±Nt)d/d!. Since in the rest proof the coefficients
are not important, we shall not make the distinction between their signs.
Moreover, if Nm 6= 0, then any non-zero (i, j)-th entry implies λi = λj ,
hence Bf(x) has a monomial xkei and 〈k, λ〉 − λi = 〈k, λ〉 − λj . Thus
we have that Bf(x) ∈ Ckδ(D). Then by straightforward computation it
is easy to get Bx =

∑
(λixi+ ∼ xi+1 + · · ·+ ∼ xi+mi)ei, where λi =

· · · = λi+mi . So a typical monomial of f(Bx) takes the form
∏

(λixi+ ∼
xi+1 +· · ·+ ∼ xi+ki)kiel, whose monomials preserve 〈k, λ〉−λl invariant.
So we get f(Bx) ∈ Ckδ(D) and the proof is finished.

Let | · |0 be the operator norm of the matrix given by

|A|0 := sup
‖x‖=1

‖Ax‖ = sup
‖x‖=1

√
x∗A∗Ax,

where ·∗ is the classical notation for the conjugate transpose matrix.
Then we obtain the function κ(t), which is key to determine the conju-
gated domain.
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Lemma 16. Assume A = D+N is in the Jordan normal form with the
diagonal D and non-zero nilpotent N . Let ρ1(t) = |eNt|0 and ρ2(t) =
|e−Nt|0. Then for every positive σ there exits a function κ(t) such that

(i) κ(s)/κ(t) ≤ eσ|s−t| for s, t ∈ R.
(ii) C2κ(t) ≤ ρi(t) ≤ C1κ(t) for i = 1, 2 and positive constants C1

and C2.

Proof: Consider s satisfying Ns 6= 0 and Ns+1 = 0. Since we have that
e±Nt = E ±Nt+ · · ·+ (±1)sNsts/s!, we obtain that

ρi(t) ∼ o(|t|s), |t| → ∞.

So C2(1 + |t|s) ≤ ρi(t) ≤ C1(1 + |t|s) for i = 1 and 2. Let g(t) = 1 + |t|s.
Then the function g(t) : R→ R+ is of class C1 and satisfies

(17) lim
|t|→∞

g′(t)

g(t)
= lim
|t|→∞

|(ln g(t))′| = 0, lim
|t|→∞

g(t) =∞.

Thus for that σ there exits N such that for |t| ≥ N and we have that
|(ln g(t))′| ≤ σ. Let b = max[−N,N ] g(t). Remark a1 ∈ [−∞, N ] and

a2 ∈ [N,∞] such that ρ(a1) = ρ(a2) = b. Therefore, we can define

κ(t) =

{
b, t ∈ [a1, a2];

g(t), t ∈ R \ [a1, a2],

satisfying g(t) ≤ κ(t). Moreover, we also have that∣∣∣∣∫ s

t

κ′(u)

κ(u)
du

∣∣∣∣ = | lnκ(s)− lnκ(t)| ≤ σ|s− t|,

which implies (i). Finally b = min[−N,N ] g(t), then (b/b)g(t) ≥ κ(t),
which proves the statement (ii).

Next lemma guarantees the preserving of autonomous structures.

Lemma 17. Assume that f ∈ Ckδ(D) and that equation (16) can be
linearized, then the transformation has the form u = x + e−Nth(eNtx)
in the sense of formal series with respect to h.

Proof: Consider f̃(t, x) = e−Ntf(eNtx). If h̃(t, x) = e−Nth(eNtx), then
we obtain

Sf̃ (h̃) = e−Ntf(eNt(x+ e−Nth(eNtx)))

= e−Ntf(eNtx+ h(eNtx))

= e−NtF (eNtx),
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where F (x) = f(x+ h(x)). Next, by formula (14) for a fixed k we have
that

ad−1
D f̃k(t, x) =

−
∫∞
t
e(s−t)(〈k,λ〉Ed−D)e−Nsfk(eNsx) ds, 〈k, l〉 < λl;∫ t

−∞ e(s−t)(〈k,λ〉Ed−D)e−Nsfk(eNsx) ds, 〈k, l〉 > λl,

where f̃k(t, x) =
∑d
l=1 f̃

l
k(t)xkel. For simplicity, we only consider the

case 〈k, l〉 < λl for all l. The other case follows with similar arguments.

Let g̃k(t, x) = ad−1
D f̃k(t, x), then we notice that

eNtg̃k(t, e−Ntx) = −
∫ ∞
t

e(s−t)(〈k,λ〉Ed−D)e−N(s−t)fk(eN(s−t)x) ds

= −
∫ ∞

0

eu(〈k,λ〉Ed−D)e−Nufk(eNux) du = G(x)

is independent of the variable t. So g̃k(t, x) = e−NtG(eNtx). Then the
proof follows by an induction procedure.

Here we specially mentioned again that for an analytic function h(x),
independent of the time variable t, the classical definition can be made
by

[]f []r =

∞∑
|k|=1

d∑
l=1

|f lk|r|k| =Mf(r, . . . , r).

Now we restate Theorem 2 as follows and give the proof out.

Theorem 18. Assume that f(x) is analytic at the origin, f(x)=O(‖x‖2)
as x → 0, A is in the Jordan normal form and f ∈ Ckd(D) in sys-
tem (15). Then system (15) can be analytically linearized.

Proof: The case N = 0, i.e. A in the diagonal form, follows by [3].
If N 6= 0, the transformation x = eNtu changes system (15) to sys-

tem (16). Let f̃(t, u) = e−Ntf(eNtu). Since f is analytic at the origin,
we can assume that max|x|≤r1 |f(x)| ≤M1, which implies

max
|x|≤r/ρ1(t)

|f̃(t, u)| ≤M1ρ2(t), t ∈ R,

where ρ1 and ρ2 are given in Lemma 16. Notice that by Lemma 16 again,
choosing σ = δ/2 and

C = min

{
1

C(d)M1C1
,
r

2C1

}
κ̃(t) = Cκ(t)−1 satisfies the conditions (11) and (13). In addition, by
Lemma 15 and Theorem 14 we obtain coordinates transformations u 7→
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u + h̃(t, u) with []h̃[]r0,κ̃(t) ≤ r0 for some r0 linearizing system (16).

Finally, by Lemma 17 we obtain h̃ = e−Nth(eNtu). Consequently, we

have that h̃(0, u) = h(u) and

r0 ≥ []h̃[]r0,κ̃(t) ≥
∞∑
|k|=1

d∑
l=1

|f lk(0)|ρ(0)|k|−1r
|k|
0 =

[]h[]r0ρ(0)

ρ(0)
.

Then the analytic transformation y = x + h(x) linearizes system (15)
and the proof is complete.

5. Random dynamical systems

In this part we consider the random system associated with the dy-
namical system (Ω,F ,P, (θt)t∈R)

(18) ẋt = A(θtω)xt + f(θtω, x) = F (θtω, x),

under the following hypotheses:

(i) The condition of Multiplicative Ergodic Theorem is satisfied, i.e.

α±(ω) := sup
0≤t≤1

ln+ ‖Φ(ω, t)±‖ ∈ L1.

(ii) The function F (θtω, x) is analytic in x for a fixed t and there exist
ρ(ω) tempered from below and M(ω) tempered from above such
that

max
|x|≤ρ(θtω)

|f(θtω, x)| = M(θtω) <∞.

(iii) F (θtω, x), ρ(θtω) and M(θtω) are all continuous in t for ω P a.e.

Applying our methods, we give a new proof of Poincaré analytic lin-
earization theorem for random dynamical systems. See [16] for another
one by homotopy methods.

First we ensure that system (18) is regular P a.e.

Lemma 19. Consider the linear random system associated with the dy-
namical system (Ω,F ,P, (θt)t∈R) as follows

(19) ẋt = A(θtω)xt,

satisfying hypotheses (i) and (iii). Denote the d-tuple positive reals
γ(ω) = (γ1(ω), . . . , γd(ω)) by Lyapunov exponents without multiplicities.
Then by the coordinates substitution xt = P (ω, t)yt, system (19) can be
changed into an invariant system like

(20) ẏt = Λ(ω)yt = diag(γ(ω))yt = diag(γ(θtω))yt.

Moreover, the following statements hold:
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(i) P (ω, t) = P1(θtω)P2(ω, t), where P1(ω) and P−1
1 (ω) are both tem-

pered.
(ii) P2 satisfies the cocycle property, i.e. P2(ω, t+s)=P2(θtω, s)P2(ω, t)

and P2(ω, t)Λ(ω) = Λ(ω)P2(ω, t). And all Lyapunov exponents of
P2(ω, t) are zero.

We especially note that such transformations cannot admit random
diffeomorphisms except that all the Lyapunov exponents are simple.

Proof: By Lemma 6(iv), i.e. Corollary 4.3.12 in [2], there exists a trans-
formation xt = P1(θtω)yt such that

Φ̃(ω, t) = P1(θtω)Φ(ω, t)P1(ω)−1,

where Φ̃(ω, t) is a block diagonal one

Φ̃(ω, t) = diag(Φ̃1(ω, t), . . . , Φ̃q(ω)(ω, t))

with the li(ω)×li(ω) block Φ̃i(ω, t) admitting one point spectrum for i =
1, . . . , q(ω). Moreover, the transfer matrix P1(ω) and its inverse P−1

1 (ω)

are both tempered. Then consider P̂i(ω, t) = e−γi(ω)tΦ̃i(ω, t) and P̂i is
a linear cocycle with all zero Lyapunov exponents. Let P2(ω, t) =

diag(P̂1(ω, t), . . . , P̂lq(ω)
(ω, t)). Then P (ω, t) = P1(θtω)P2(ω, t) makes

system (19) transform into system (20), which proves (i). In addition,
result (ii) follows from

P̂i(ω, t+ s) = e−γ(s+t)Φ̃i(ω, s+ t)

= e−γ(s+t)Φ̃i(θtω, s)Φ̃i(ω, t) = P̂i(θtω, s)P̂i(ω, t)

and P̂i(ω, t)γi(ω)Eli(ω) = γi(ω)P̂i(ω, t).

Now, by Lemma 19, doing substitutions xt = P (ω, t)yt to system (18),
we obtain

(21) ẏt = Λ(ω)yt + P−1(ω, t)f(θtω, P (ω, t)yt).

Then we consider the corresponding random dynamical system adding
an auxiliary parameter s

(22) ẏt = Λ(ω)yt + P−1(θsω, t)f(θt+sω, P (θsω, t)yt).

Lemma 20. Under hypotheses (i), (ii) and (iii) if the Lyapunov ex-
ponents γ(ω) = (γ1(ω), . . . , γd(ω)) have the same signs and are non-
resonant, then the linearized transformation of system (22) has the form
ut = yt + P−1(θsω, t)h(θt+sω, P (θsω, t)yt) in the sense of formal series.
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Proof: System (18) can be formally linearized using [2] or [16]. So,
without loss of generality, we can assume that the degree of f with
respect to the variable u is greater than max{γ(ω)/γ(ω), γ(ω)/γ(ω)} in
system (22), where γ(ω) = maxi{γi(ω)} and γ(ω) = mini{γi(ω)}.

Then the proof follows similarly to the one of Lemma 17. Consider

f̃(s, ω, t, y) = P−1(θsω, t)f(θt+sω, P (θsω, t)y).

If h̃(s, ω, t, y) = P−1(θsω, t)h(θt+sω, P (θsω, t)y), then we obtain

Sf̃ (h̃) = P−1(θsω, t)f(θt+sω, P (θsω, t)y + h(θt+sω, P (θsω, t)y))

= P−1(θsω, t)F (θt+sω, P (θsω, t)y),

where F (·, y) = f(·, y + h(·, y)).
Without loss of generality, we assume that all the Lyapunov exponents

are positive. Let f̃k(s, ω, t, y) =
∑d
l=1 f̃

l
k(s, ω, t)ykel and g̃k(s, ω, t, y) =

ad−1
Λ f̃k(s, ω, t, y). Therefore, still by formula (14) for a fixed k we have

that

g̃k(s, ω, t, y) = −
∫ ∞
t

e(a−t)(〈k,λ〉Ed−Λ)P−1(θsω, a)f̃k(θa+sω, P (θsω, a)y) da

= −
∫ ∞

0

eu(〈k,λ〉Ed−Λ)P−1(θsω, u+t)

× f̃k(θs+u+tω,P (θsω, u+t)y) du.

Since by Lemma 19(ii) we get that

P (θsω, u+ t) = P1(θs+t+uω)P2(θsω, u+ t)

and P2(ω, t)Λ(ω) = Λ(ω)P2(ω, t). Then by setting

G(ω, x) = −P1(ω)

∫ ∞
0

eu(〈k,λ〉Ed−Λ)P−1
2 (ω, u)P−1

1 (θuω)

× f̃k(θuω, P1(θuω)P2(ω, u)P−1
1 (ω)y) du

we obtain that

P (θsω, t)g̃k(s, ω, t, P−1(θsω, t)y) = G(θt+sω, y).

The proof finishes by an induction procedure.

Next we detect the tempered variable R(ω), which is related to the
analytic conjugated ball.
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Lemma 21. Let ρ(θtω) be a positive tempered function. Assume that
the linear cocycle Φ(ω, t), continuous in the variable t, satisfies the Mul-
tiplicative Ergodic Theorem with all zero Lyapunov exponents. Then for
any positive θ-invariant function τ(θtω) = τ(ω) the following statements
hold:

(i) There exists a positive tempered random variable R(ω) such that
R(θtω) ≤ ρ(θtω) and e−τ(ω)|s|R(θtω) ≤ R(θt+sω) ≤ eτ(ω)|s|R(θtω).

(ii) There exists a positive tempered random variable S(ω) such that
e−τ(ω)|t|S−1(ω) ≤ ||Φ(ω, t)|| ≤ eτ(ω)|t|S(ω), where S(θtω) is tem-
pered and satisfies e−τ(ω)|s|S(θtω) ≤ S(θt+sω) ≤ eτ(ω)|s|S(θtω).

Proof: Choosing a monotonically decreasing sequence εn → 0 for each
τ(ω) ∈ (εk+1, εk], by Proposition 4.3.3 and Theorem 4.3.4(i) in [2],
Rεk+1

(ω) satisfies the conditions of the statement.

In this context we restate Theorem 3 as follows and give the proof
out.

Theorem 22. Under hypotheses (i), (ii) and (iii), if the Lyapunov ex-
ponents γ(ω) = (γ1(ω), . . . , γd(ω)) have the same signs and are non-
resonant, then system (18) can be analytically linearized.

Proof: By the same arguments in the proof of Lemma 20, without loss
of generality, we can assume that γi(ω) ≥ 0 in system (18) and q(ω) =
degx f(θtω, x) > γ(ω)/γ(ω) in system (22). Here γ(ω) = maxi{γi(ω)},
γ(ω) = mini{γi(ω)} and q(ω) = degx f(ω, x) means that all the partial
derivatives of the function f with respect to the variable x vanish at
x = 0 till the q(ω)-th order.

Next, by setting the variable δ(ω) = (q(ω)γ(ω)− γ(ω))/q(ω), we ob-
tain that f ∈ Ckδ(Λ) for a fixed ω. Let

f̃(s, ω, t, y) = P−1(θsω, t)f(θt+sω, P (θsω, t)y).

Thus by hypothesis (ii) we have

sup
|y|≤ρ(θt+sω)/‖P (θsω,t)‖

‖f̃(s, ω, t, y)‖ ≤ ‖P−1(θsω, t)‖M(θs+tω).

Let τ(ω) = δ(ω)/5. Note that by Lemma 21 there exist tempered posi-
tive functions R1(ω), R2(ω), R3(ω), and S(ω) such that

‖P1(θt+sω)‖ ≤ R1(θs+tω), ‖P1(θt+sω)−1‖ ≤ R2(θs+tω),

e−τ(ω)|t|S−1(θsω) ≤ ‖P2(θsω, t)
±1‖ ≤ eτ(ω)|t|S(θsω)

and
min{ρ(θtω),M(θtω)−1, 1} ≥ R3(θtω),
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where

e−τ(ω)|s|Ri(θtω) ≤ Ri(θt+sω) ≤ eτ(ω)|s|Ri(θtω),

e−τ(ω)|s|S(θtω) ≤ S(θt+sω) ≤ eτ(ω)|s|S(θtω).

Consequently, we can consider

A(s, ω, t)=min

{
R3(θt+sω)S(θsω)e−τ(ω)|t|

R2(θs+tω)
,
R3(θt+sω)S(θsω)e−τ(ω)|t|

R1(θs+tω)

}
.

For fixed ω and s, conditions (11) and (13) are satisfied, thus by The-

orem 14 there exist coordinates substitutions ut = yt + h̃(s, ω, t, y) lin-

earizing system (22). Moreover, we have that []h̃[]r0, A ≤ r0 for some
r0 > 0.

Finally, by Lemma 20 consider t = 0. Then we obtain h(θsω, y) =

h̃(s, 0, ω, y) = P−1
1 (θsω)h(θsω, P1(θsω)y), which implies for a fixed s that

∞∑
|k|=1

d∑
l=1

|hlk(θsω)|A(s, ω, 0)|k|−1r
|k|
0 ≤ []h̃[]r0, A ≤ r0.

That is, h(ω, y) is analytic in the tempered ball |y| < A(s, ω, 0). Hence,

it is enough to show the analyticity of h̃ in |y| ≤ A(0, ω, 0)/‖P1(ω)‖.
Obviously x 7→ x+h(θtω, x) changes system (18) into its linear part and
the proof is complete.

6. Almost periodic systems

In this part, we deal with the analytic linearization for almost periodic
systems, which obey averaging laws.

First of all, we do simplifications to the linear part. Consider the
following linear differential system

ẋ = ε(A+ Ã(t, ε))x,

where Ã(t, ε)→ 0 as ε→ 0 uniformly for t ∈ R and it is almost periodic
in the variable t. Assume that A is in the Jordan normal form. Then by
Lemma 7 building a change of variables x = (E +H(t, ε))y the original
system can be changed into

(23) ẏ = ε(A+ Â(t, ε))y.

Here Â is in the block diagonal form with respect to the different real

parts of eigenvalues, Â(t, ε) → 0 as ε → 0 uniformly for t ∈ R and
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m(Â) ⊆ m(Ã). Now we force the linear system into a constant and di-
agonal one. Of course, such transformations generally cannot be almost
periodic in t.

Lemma 23. Doing the change of variables y = Ĥ(t, ε)z, system (23)
can be change into

ż = εΛz,

where the matrix Λ = diag(Reλ1, . . . ,Reλd) with λ(A) = (λ1, . . . , λd).
For any τ > 0, there exist a positive constant µ and a function ρ(t) such

that max{|Ĥ(t, ε)|, |Ĥ−1(t, ε)|} ≤ ρ(t) for fixed t and |ε| ≤ µ and

ρ(t+ h)

ρ(t)
≤ eετ |h|, t, h ∈ R.

Proof: Without loss of generality, we take system (23) into account.
Let Υ = diag(Imλ1, . . . , Imλd) and N be the nilpotent part. Then

A = Λ +
√
−1Υ +N . Since Â is in the block diagonal form with respect

to Λ, it implies ÂΛ = ΛÂ. Let Ĥ(t, ε) be the fundamental matrix
solution of the following system

ẏ = ε(
√
−1Υ +N + Â(t, ε))y.

This is the desired transformation. At last, for that τ we can find µ > 0

such that ||Â|| ≤ τ/4 for |ε| ≤ µ. Thus the equation

ẏ = ε(
√
−1Υ +N + Â(t, ε)− τ/2)y,

whose fundamental matrix solution is remarked as Ψ(t, ε, τ), is positive
asymptotically stable uniformly for any initial time t0 ∈ R. Now consider

K1 = sup
t≥0,|ε|≤µ

{|Ψ(t, ε, τ)|, |Ψ−1(t, ε, τ)|}.

It admits |Ĥ(t, ε)| ≤ K1e
ετt/2 and |Ĥ−1(t, ε)| ≤ K1e

ετt/2 for t ≥ 0 and
|ε| < µ. Similarly, for

ẏ = ε
(√
−1Υ +N − Â(t, ε)

)
y,

we can get

K2 = sup
t≤0,|ε|≤µ

{|Ψ̂(t, ε, τ)|, |Ψ̂−1(t, ε, τ)|},

where Ψ̂−1(t, ε, τ) is the corresponding fundamental matrix solution.
Taking ρ(t) = (K1 +K2)eετ |t|/2 the proof is finished.

Next we show that any formal transformation fulfilling Theorem 4
with uniformly bounded Taylor coefficient functions is almost periodic.
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Lemma 24. Under the conditions of Theorem 4, if the formal transfor-
mation w =

∑
k,j wk,j(t, ε)z

kej exists, satisfying supt∈R |wk,j | < ∞ and

turning system (6) into its linear part, then wk,j is almost periodic in t
and m(wk,j) ⊆ m(F ) for a sufficiently small ε.

Proof: Without loss of generality, we can assume that Reλ1 ≥ Reλ2 ≥
· · · ≥ Reλd > 0 for λ(A) = (λ1, . . . , λd). Let

F (t, ε, y) = (A+ Â(t, ε))y +
∑
k,j

Fk,j(t, ε)y
kej

and F̂ = F − (A + Â(t, ε))y. Of course, as it is shown in formula (10)
w satisfies

adε(A+Â) w(t, ε, y) = SεF̂ w(t, ε, y).

Since Â → 0 as ε → 0 uniformly for t ∈ R, so does the operator ad,
i.e. adε(A+Â) → adεA as ε→ 0 uniformly for t ∈ R. Let adA = ∂t + LA,

where LAh := DhAy − Ah is the same as the one used for autonomous
systems. Then by the classical normal form theory, the eigenvalues set
of LεA is

{ε(〈k, λ〉 − λj) | |k| ≥ 2, j = 1, . . . , d}.
So for |k| = 2, the corresponding equations admit exponential dichotomy
for a sufficiently small ε under the non-resonant condition by Lemma 7.
Using Lemma 8, we get the desired almost periodic solution. At last, by
an induction procedure, the proof is completed.

Finally we prove Theorem 4.

Proof of Theorem 4: Let’s begin with system (6). Without loss of gen-
erality, by Lemma 7 we can consider

F (t, ε, y) = (A+ Â(t, ε))y +
∑
k,j

Fk,j(t, ε)y
kej .

Here A is in the Jordan normal form and Â is block diagonal with respect

to the different real parts of the eigenvalues of A. Then F̂ = F − (A +

Â(t, ε))y contains all higher order terms.
Here we consider the following system

ż = εΛz + εĤ−1(t, ε)F̂ (t+ s, ε, Ĥ(t, ε)z),

where Ĥ is the same given in Lemma 23. So the function

F̆ = Ĥ−1(t, ε)F̂ (t+ s, ε, Ĥ(t, ε)z) satisfies

sup
s∈R,|z|≤r1ρ−1(t)

|F̆ | ≤ ρ(t)||F̂ || ≤ Kρ(t), |ε| < µ1,
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where ρ(t) is also given in Lemma 23 and K = 2 supt∈R,z∈Ur1 |F̂ (t, 0, z)|.
Let λ̂ = max{Reλi} and λ̆ = min{Reλi}. Thus, when all Reλi are

positive, we have that 〈k,Reλ〉 −Reλj ≥ δ′|k|, where δ′ = λ̆− λ̂/d̂ and

d̂ is a positive integer satisfying d̂ > λ̂/λ̆. Similarly when all Reλi are

negative, we have 〈k,Reλ〉−Reλj ≤ −δ′|k| instead, where δ′ = −λ̂+λ̆/d̂

and d̂ > λ̆/λ̂. Notice that by the proof of Lemma 24 all higher order

terms, whose degree is less than d̂, can be removed. So all the conditions
of Theorem 1 are well prepared for F̆ ∈ Cεkδ′(εΛ).

Since here a clear estimation of the changes is necessary, we apply

Lemma 13 instead. So the linearized transformation H̃ is a fixed point in
(Br, [] · []r,κ) with κ(t) = min{r1ρ

−1(t),K−1ρ−1(t), 1}. Moreover, note
that in Lemma 10 the bounded operator norm is given by

|| ad−1
εΛ || ≤

2

εδ′
,

after using τ = δ′/2 in Lemma 23, where || · || is the operator norm in
(Br, [] · []r,κ). Meanwhile, the strong contraction of the operator SεF̆ in
Lemma 13 is measured by

||Dz(εF̆ )||3r,κ ≤ Cεr.

Therefore, the contraction property of the composition operator ad−1
εΛ◦SεF̆

remains.
Finally, in Lemma 20 setting the group action θt· = t+ ·, we get that

the solution formally can be written as

H̃(t, s, ε, y) = Ĥ−1(t, ε)H̆(Ĥ(t, ε)z, t+ s, ε).

Hence, H̆(s, ε, y) = H̃(0, s, ε, y) is what we seek, which satisfies the con-

dition []H̆[]r0κ(0) ≤ r0κ(0) and it is almost periodic in s by Lemma 24.
This completes the proof.

7. Other applications

In this last part we first apply the majorant norm method to prove
a kernel result in [3], which has originally been solved by computing
the holomorphy. Then, we show a result of [18] in the study of the
integrability of the Lotka–Volterra systems.

1. Analytic conjugacy with the parameter.

Consider the parametric analytic system

(24) ẋ = D(s)x+ f(s, x) = F (s, x),
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where s ∈ Cm is a complex parameter, x ∈ Cd, F is holomorphic
in (0, 0) ∈ Cm+d and D(s) = diag(λ1(s), . . . , λd(s)). When D(s) =
diag(λ1(s), . . . , λd(s)) is diagonal and s is a parameter, then we say f ∈
Cδ(D(s)) associated with the nonlinearity f(s, x)=

∑
|k|≥2

∑d
l=1f

l
k(s)xkel,

provided that there exists δ > 0 such that
∑d
i=1 λi(s)ki − λl ≥ δ

or
∑d
i=1 λi(s)ki − λl ≤ −δ uniformly for |s| ≤ r and all the mono-

mial ∼ xkel in the expansion series of f . Similarly, the operators adD
and Sf can be defined by adD : h(s, x) 7→ Dxh(s, x)D(s)x−Dh(s, x) and
Sf : h(s, x) 7→ f(s, x + h(s, x)). The arguments are similar except the
following.

Lemma 25. If f and h ∈ Cδ(D(s)), then we have that Sf (h) ∈ Cδ(D(s)).

Proof: Without loss of generality, we denote the coefficients, whatever
depending on s or not, simply as∼. So f =

∑
∼ xkel for 〈k, λ〉−λl ≤ −δ.

We have that

f(s, x+ h(s, x)) =
∑

f lk(s)(x+ h(s, x))kel

=
∑
∼

d∏
α=1

(
∼ xα +

∑
µ

∼ xmαµ
)kα

el

=
∑
∼

(
d∏

α=1

xiα0
α

)
x
∑d
α=1

∑
µ≥1 iαµmαµel,

where k = (k1, . . . , kd), ∼ xmαµeα is a monomial of h with the non-zero
coefficient and

∑∞
µ=0 iαµ = kα for α = 1, . . . , d. Thus we have that

− λl +

d∑
α=1

iα0λα +

d∑
α=1

∑
µ≥1

〈iαµmαµ, λ〉

≤ −λl +

d∑
α=1

iα0λα +

d∑
α=1

∑
µ≥1

iαµ(−δ + λα)

= −λl + 〈k, λ〉 − δ
d∑

α=1

∑
µ≥1

iαµ ≤ −δ.

This completes the proof.

Set Qr = {h | h(s, 0) = 0, []h[]r ≤ r, h ∈ Cδ(D(s))}. Now we reprove
Theorem 3 in [3] by majorant norm methods.
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Proposition 26. If f ∈ Cδ(D(s)), then system (24) can be linearized
by the coordinates substitutions y = x+ h(s, x), which is holomorphic at
the origin in Cm+d.

Proof: First, it is easy to verify that

(adD)−1 : f(s, x) =
∑

f lk(s)xkel 7→
∑ f lk(s)xkel
〈λ(s), k〉 − λl(s)

.

So [](adD)−1f []r ≤ []f []/δ is uniformly bounded in Qr.

Next, Lemma 13 is still valid if we take κ(t) = r, which means
that Sf is strongly contractive when r is small enough. Moreover, tak-
ing sup|s|≤w,|x|≤w |f(s, x)| ≤ M , by Cauchy estimation, we obtain that

sup|s|≤w |f lk(s)| ≤M/w|k|, which leads to

[]Dxf []r ≤ d
∑
k,l

|f lk(s)||k|r|k| ≤ rMd
∑
|k|≥0

|k|(1/2)|k|

for r < w/2. Consequently, the Lipschitz constant is independent of s.

The proof finishes using similar arguments like in Theorem 14. The
composed operator ad−1

D ◦ Sf (h) = h has a unique fixed point with
[]h[]r0 ≤ r0 via the Contracting Mapping Principle, which also implies
the analyticity with respect to s.

2. Integrability of the Lotka–Volterra systems.

The integrability problem for the 1 : −q resonant singular point is
attractive. See [18] for more introductions. Here we just provide uniform
proofs for Proposition 3.1, Theorem 3.1 and 3.2 in [18] together.

Consider the quadratic differential system

(25) ẋ = x+ ax2 + bxy + fy2, ẏ = −λy + cxy + dy2.

Proposition 27. Let λ > 0. If c/a + λ = k ∈ N+ with 2 ≤ k < λ + 1,
then system (25) is analytically integrable.

Proof: The transformation (u, v) = (ax, y(1+ax)−k) changes system (25)
to

u̇=(u+ bu(1 + u)k−1v + af(1 + u)2k−1v2)(1 + u),

v̇=(−λv+d(1 + u)k−1v2−kbu(1 + u)k−1v2−kaf(1 + u)2k−2v3)(1 + u),
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which is orbitally equivalent to

u̇ = u+ bu(1 + u)k−1v + af(1 + u)2k−1v2,

v̇ = −λv + d(1 + u)k−1v2 − kbu(1 + u)k−1v2 − kaf(1 + u)2k−2v3.

Let δ = k−1−λ < 0. Then Proposition 26 can be applied and the proof
is complete.
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