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1. Introduction

The theory of discontinuous systems has been developing at a very
fast pace in recent years and it has become certainly an important com-
mon frontier between Mathematics, Physics, Engineering and other fields
of science. The study of this kind of systems is motivated by various
applications. For instance, we may cite some problems in control the-
ory [3], nonlinear oscillations [1, 20], nonsmooth mechanics [6], econom-
ics [11, 15], biology [4], and others.

On the other hand, the knowledge of the existence or not of periodic
solutions is very important for understanding the dynamics of differential
systems. One of the useful tools to detect such objects is the averaging
theory, which is a classical and mature tool that provides techniques to
study the behavior of nonlinear smooth dynamical systems. We refer to
the books of Sanders and Verhulst [21] and Verhulst [22] for a general
introduction about this subject.

In [7], Buică and Llibre generalized the averaging theory for studying
periodic solutions of continuous differential systems mainly using the
Brouwer degree. More recently in [18], Llibre, Novaes, and Teixeira
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extended the averaging theory for studying periodic solutions of a class
of piecewise continuous differential systems with two zones.

In what follows, we introduce the class of piecewise continuous systems
with two zones.

Let D be an open subset of Rn. Let X,Y : D → Rn be two continu-
ous vector fields and let h : D → R be a C1 function. The discontinuity
set h−1(0) is denoted by M . So we define a piecewise continuous differ-
ential system with two zones as

(1) x′(t) = Z(x) =

{
X(x) if h(x) > 0,

Y (x) if h(x) < 0,

which we denote concisely by Z = (X,Y )h. It is worth to say that this
definition can be easily extended to non-autonomous systems.

Let the sign function be defined in R \ {0} as

sign(u) =

{
1 if u > 0,

−1 if u < 0.

The piecewise continuous differential system (1) can be conveniently
written as

(2) x′(t) = Z(x) = Z1(x) + sign(h(x))Z2(x),

where

Z1(x) =
1

2
(X(x) + Y (x)) and Z2(x) =

1

2
(X(x)− Y (x)) .

In [18], conditions for the existence of periodic solutions when the
discontinuity set M is a regular manifold are exhibited. However, many
applications deal with discontinuous systems having the discontinuity
set as an algebraic variety, see for instance the book of Andronov, Vitt,
and Khaikin [1] and the book of Barbashin [3]. In fact, some problems
contained in [3] were the main source of motivation of the present work.

In few words, our main result deals with discontinuous perturbation of
nondegenerate planar centers. The discontinuity set M is supposed to be
a union of regular curves, which includes, particularly, the case when M
is an algebraic variety. Moreover, conditions for the existence of periodic
solutions of such perturbed systems are presented, via averaging theory.

We also provide two applications with careful details. The first one
generalizes the problem of an m-piecewise discontinuous Liénard poly-
nomial differential equation of degree n proposed by Llibre and Teix-
eira [19]; the second application deals with a plane divided in a mesh,
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where each piece admits one of the two vector fields. For these systems,
the existence of periodic solutions is studied.

The paper is organized as follows. In Section 2 the main result is
stated. In Section 3 we present some useful elements of the averaging
theory and Brouwer degree theory. In Section 4 we prove the results
presented in Section 2, and in Section 5 applications of the results are
discussed.

2. Statement of the main result

Let D be an open subset of R2. We consider the following planar
discontinuous differential system

x′(t) = X(x, y) + εF1(x, y),

y′(t) = Y (x, y) + εF2(x, y),
(3)

with

Fi(x, y) = Fi,1(x, y) + sign (h(x, y))Fi,2(x, y),

where X,Y, Fi,j : D → R2 for i, j = 1, 2 are continuous functions being
Fi,j for i, j = 1, 2 locally Lipschitz, and h : R2 → R is a a C1 func-
tion. Furthermore, we shall consider that the origin of the unperturbed
system (3) (ε = 0) is a nondegenerate global center in D.

Usually, 0 is assumed to be a regular value of the function h which im-
plies that M = h−1(0) is a regular manifold, see for instance Theorem 3
of this paper. Here, we assume that

(H1) The set of nonregular points in M = h−1(0) is bounded. In other
words, for

N = {(x, y) ∈ M : ∇h(x, y) = (0, 0)},
we can choose δ > 0 such that N ⊂ Bδ(0, 0). Here, Bδ(0, 0) ⊂ R

2

is the open ball with radius δ centered at (0, 0).

We denote M = M\Bδ(0, 0), which is an embedded submanifold
in D ⊂ R2. In addition for the set M we assume that

(H2) 〈∇h(x, y), (−y, x)〉 6= 0 for all (x, y) ∈ M.

Remark 1. Geometrically, Hypothesis (H2) is equivalent to (−y, x) /∈
T(x,y)M because T(x,y)M is the kernel of the operation inner product
by ∇h(x, y).

The idea of the proof of our main result (see Theorem A) consists in
defining a convenient change of variables which drives some restrictions
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of system (3) to a system whose discontinuity set is a regular manifold.
To do this we define the function Ψδ : S

1 × R+ → R2 as

(4) Ψδ(θ, r) = ((r + δ) cos(θ), (r + δ) sin(θ)),

where δ > 0 is chosen in (H1). Clearly, this function is a diffeomorphism

onto its image. Furthermore, Bδ(0, 0) ∩ Ψδ(S
1 × R+) = ∅. Now, let

ρ̃ > 0 be a real number such that Ψδ(S
1 × (0, ρ̃)) ⊂ D, and denote

D̃ = S1 × (0, ρ̃).

For simplicity, given a function H : Ψδ(D̃) → R and δ > 0 we denote
δ∗H(θ, r) = H ◦Ψδ(θ, r).

Example 1. To illustrate Hypothesis (H1) and the change of vari-
ables (4), we consider the function h(x, y) = (x2 − 1)(y2 − 1). The
set M = h−1(0) is represented by the bold lines in Figure 1. Observe
that M is not a regular manifold since it has self-intersections at the
points N = {(1, 1), (−1, 1), (1,−1), (−1,−1)} ⊂ B1(0, 0). So, choosing

δ =
√
2 and proceeding with the change of variables defined above, the

set M̃ = (δ∗h)−1(0), represented by the bold lines in Figure 2, becomes

a regular submanifold of D̃ (we shall use this example in Application 2 of
Section 5). This procedure of finding a conveniently change of variables
to remove undesirable regions can be replied for other systems, even in
higher dimension.

y

M

δ
x

Figure 1. The set M = h−1(0) ⊂ D is not a regular
manifold since it has self-intersections at the points N =

{(1, 1), (−1, 1), (1,−1), (−1,−1)} ⊂ B1(0, 0).
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Figure 2. Proceeding with the change of variables M̃ =

(δ∗h)−1(0), the set M̃ is now a regular submanifold of D̃.

For the functions X and Y from (3) we assume that

(H3) For each (θ, r) ∈ D̃ the following relations hold:

S(θ, r) = cos(θ)δ∗X(θ, r) + sin(θ)δ∗Y (θ, r) = 0, and

T (θ, r) = cos(θ)δ∗Y (θ, r) − sin(θ)δ∗X(θ, r) 6= 0.

The next proposition gives a class of nondegenerate planar centers for
which Condition (H3) is verified, assuring then its non-emptiness.

Proposition 1. Consider the functions

X(x, y) =

µ∑

m=1

fm(x, y) and Y (x, y) =

µ∑

m=1

gm(x, y),

where

fm(x, y) =

m∑

i=0

am,ix
m−iyi and gm(x, y) =

m∑

i=0

bm,ix
m−iyi;

and assume the following conditions are satisfied:

(a) am,0 = bm,m = 0 and bm,i = −am,i+1 for i = 0, 2, . . . ,m − 1 and
for m = 1, 2, . . . , µ;

(b) bm,i > 0 if (m, i) = (1, 0); bm,i ≥ 0 if (m, i) = (2(n + j) + 1, 2j)

with (n, j) ∈ N2 and n+ j ≤ µ−1
2 ; and bm,i = 0 otherwise.

Then, (H3) holds for the functions X and Y .
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Remark 2. The Hypothesis (H3) implies the existence of ρ′ > 0 such
that the restriction of the unperturbed system (3) (i.e. ε = 0) to the
ball Bρ′(0, 0) is conjugated to the linear center. In other words, the
unperturbed system (3) is locally conjugated to the linear center at the
origin. From our assumptions, it follows that D ⊂ Bρ′(0, 0).

Now, we define the averaged function f : (0, ρ̃− δ) → R as

f(r)=(r+δ)

∫ 2π

0

(
δ∗F1,1(θ, r) cos(θ) + δ∗F2,1(θ, r) cos(θ)

(δ∗Y (θ, r) cos(θ)− δ∗X(θ, r) sin(θ))
2

+sign(δ∗h(θ, r))
δ∗F1,2(θ, r) cos(θ) + δ∗F2,2(θ, r) sin(θ)

(δ∗Y (θ, r) cos(θ) − δ∗X(θ, r) sin(θ))
2

)
dθ.

(5)

The function (5) is a suitable modification via the change of variables
defined in (4) for system (3), of the averaged function (12) of Theorem 2
(see Section 3). In Example 2 we can see how useful is this function.
In what follows we state a hypothesis for the function f . It uses the
concept of Brouwer degree dB which is defined in Section 3.

(H4) For some a ∈ (δ, ρ̃) with f(a− δ) = 0, there exists a neighborhood
V ⊂ (0, ρ̃− δ) of a − δ such that f(z) 6= 0 for all z ∈ V \{a − δ}
and dB(f, V, 0) 6= 0.

Remark 3. When f (defined in (5)) is a C1 function, Hypothesis (H4)
becomes:

(H4’) For some a ∈ (δ, ρ̃) with f(a− δ) = 0 we have f ′(a− δ) 6= 0.

Our main result, which provides conditions for the existence of peri-
odic solutions of the nonsmooth perturbed system (3), is the following.

Theorem A. If (H1)–(H4) hold, then for |ε| > 0 sufficiently small
there exists a periodic solution (x(t, ε), y(t, ε)) of system (3) such that
|(x(t, ε), y(t, ε))| → a when ε → 0, for every t ∈ R.

The following corollary deals with the perturbations of the linear pla-
nar center.

Corollary B. We consider the linear planar center (X(x, y), Y (x, y)) =
(y,−x). Then the averaged function f : R+ → R defined in (5) becomes

f(r)= −
∫ 2π

0

(
δ∗F1,1(θ, r) cos(θ)+δ∗F2,1(θ, r) sin(θ)

)
dθ

−
∫ 2π

0

sign (δ∗h(θ, r))
(
δ∗F1,2(θ, r) cos(θ)+δ∗F2,2(θ, r) sin(θ)

)
dθ.

(6)
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If (H1), (H2), and (H4) hold, then for |ε| > 0 sufficiently small there
exists a periodic solution (x(t, ε), y(t, ε)) of system (3) such that, for
every t ∈ R, |(x(t, ε), y(t, ε))| → a when ε → 0.

Remark 4. For (X(x, y), Y (x, y)) = (y,−x), the origin of the unper-
turbed system (3) (ε = 0) is a global center in R2, so we can choose
ρ̃ > 0 as large as we want.

Example 2. As an illustration of Theorem A and Corollary B we con-
sider the following differential equation

(7) ẍ(t) = −x+ ε
(
ẋ− sign

(
ẋ
(
x2 − x2

0

)))
,

which is equivalent to the differential system

(8) x′(t) = y and y′(t) = −x+ ε
(
y − sign

(
y
(
x2 − x2

0

)))
.

For (8) we have that h(x, y) = y
(
x2 − x2

0

)
. So

M =
{
(x, y) ∈ R

2 : x = ±x0 or y = 0
}
.

Such set is not a manifold at the points P1 = (−x0, 0) and P2 = (x0, 0).

We note that, for δ = x0, both points are contained in the ball Bδ(0, 0).
Moreover 〈∇h(x, y), (−y, x)〉 = x

(
x2 − x2

0 − 2y2
)
6= 0 for all (x, y) ∈

M = M\Bδ(0, 0). So, (H2) is verified.

Now, taking F1,1(x, y)=F1,2(x, y)=0, F2,1(x, y)=y, and F2,2(x, y) =
−1, we can compute the averaged function (6) from Corollary B, since
system (8) is a perturbed linear center. Thus

(9) f(r) = −
∫ 2π

0

(r + x0) sin
2(θ) + sign

(
h̃(θ, r)

)
sin(θ) dθ,

where h̃(θ, r) = (r + x0)
(
−x2

0 + (r + x0)
2 cos2(θ)

)
sin(θ). By studying

the signal changes of the function h̃ we can compute the following ex-
pression for the function f :

(10) f(r) =
8r

r + x0
− π(r + x0)− 4.

Now, from Corollary B and Remark 3 we have that for each a > 0
with f(a − x0) = 0 such that f ′(a − x0) 6= 0 there exists a periodic
solution (x(t, ε), y(t, ε)) of equation (7) such that |(x(t, ε), y(t, ε))| → a
when ε → 0, for every t ∈ R. So

• if x0 = 0, then

a0 =
4

π
is the solution of the system f(a− x0) = 0;
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• if 0 < x0 < 1/(2π), then

a1 =
2

π
− 2

√
1− 2πx0

π
and a2 =

2

π
+

√
1− 2πx0

π

are solutions of the system f(a− x0) = 0;

• if x0 = 1/(2π), then

a3 =
2

π

is the solution of the system f(a− x0) = 0;

• finally, if x0 > 1/(2π), then the system f(a − x0) = 0 has no
solution for a > x0.

3. Basic results on averaging theory and Brouwer
degree theory

In Theorem A the function dB(f, V, 0) denotes the Brouwer degree,
which is uniquely determined by the conditions of the next theorem (for
a proof see [3]).

Theorem 2. Let P = Rn = Q for a given positive integer n. For
bounded open subsets V of P , consider continuous mappings f : V → Q,
and points y0 in Q such that y0 does not lie in f(∂V ) where ∂V denotes
the boundary of V . Then to each such triple (f, V, y0), there corresponds
an integer dB(f, V, y0) having the following three properties:

(1) If dB(f, V, y0) 6= 0, then y0 ∈ f(V ). If f0 is the identity map of P
onto Q, then for every bounded open set V and y0 ∈ V , we have

d
(
f0
∣∣
V
, V, y0

)
= ±1.

(2 - Additivity) If f : V → Q is a continuous map with V a bounded
open set in P , and V1 and V2 are a pair of disjoint open subsets
of V such that

y0 /∈ f(V \(V1 ∪ V2)),

then

d (f0, V, y0) = d (f0, V1, y0) + d (f0, V1, y0) .

(3 - Invariance under homotopy) Let V be a bounded open set in P ,
and consider a continuous homotopy {ft : 0 ≤ t ≤ 1} of maps of V
into Q. Let {yt : 0 ≤ t ≤ 1} be a continuous curve in Q such that
yt /∈ ft(∂V ) for any t ∈ [0, 1]. Then dB(ft, V, yt) is constant in t
on the interval [0, 1].
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In [18] the methods of averaging theory for studying crossing periodic
solutions were extended to a class of discontinuous differential systems.
It has been established the following result:

Theorem 3. We consider the following discontinuous differential sys-
tem

(11) x′(t) = εF (t, x) + ε2R(t, x, ε),

with

F (t, x) = F1(t, x) + sign(h(t, x))F2(t, x),

R(t, x, ε) = R1(t, x, ε) + sign(h(t, x))R2(t, x, ε),

where F1, F2 : R×D → Rn, R1, R2 : R×D× (−ε0, ε0) → Rn and h : R×
D → R are continuous functions, T -periodic in the variable t and D is
an open subset of Rn. We also suppose that h is a C1 function having 0
as a regular value. We denote M = h−1(0).

The averaged function f : D → Rn is defined as

(12) f(x) =

∫ T

0

F (t, x) dt.

We also assume that the following conditions hold:

(i) F1, F2, R1, R2 are locally L-Lipschitz with respect to x;

(ii) ∂h/∂t 6= 0, for all p ∈ M ;

(iii) for some a ∈ D with f(a) = 0, there exists a neighbourhood V of
a such that f(z) 6= 0 for all z ∈ V \{a} and dB(f, V, 0) 6= 0.

Then, for |ε|>0 sufficiently small, there exists a T -periodic solution x(·, ε)
of system (11) such that x(0, ε) → a when ε → 0.

4. Proofs of Proposition 1, Theorem A, and Corollary B

Proof of Proposition 1: We must show that S(θ, r) = 0 and R(θ, r) 6= 0

for each (θ, r) ∈ D̃. Thus we denote

σm(θ, r) = cos(θ)δ∗fm(θ, r) + sin(θ)δ∗gm(θ, r), and

νm(θ, r) = cos(θ)δ∗gm(θ, r) − sin(θ)δ∗fm(θ, r).
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So

S(θ, r) = cos(θ)δ∗X(θ, r) + sin(θ)δ∗Y (θ, r)

= cos(θ)δ∗
(

µ∑

m=1

fm(θ, r)

)
+ sin(θ)δ∗

(
µ∑

m=1

gm(θ, r)

)

=

µ∑

m=1

(cos(θ)δ∗fm(θ, r) + sin(θ)δ∗gm(θ, r)) =

µ∑

m=1

σm(θ, r),

for m = 1, 2, . . . , µ; and

T (θ, r) = cos(θ)δ∗Y (θ, r) + sin(θ)δ∗X(θ, r)

= cos(θ)δ∗
(

µ∑

m=1

gm(θ, r)

)
− sin(θ)δ∗

(
µ∑

m=1

fm(θ, r)

)

=

µ∑

m=1

(cos(θ)δ∗gm(θ, r) − sin(θ)δ∗fm(θ, r)) =

µ∑

m=1

νm(θ, r),

for m = 1, 2, . . . , µ.

Claim 1.1. Condition (a) implies σm(θ, r) = 0 for each (θ, r) ∈ D̃.

Indeed,

σm(θ, r)=cos(θ)δ∗fm(θ, r) + sin(θ)δ∗gm(θ, r)

=cos(θ)

m∑

i=0

am,i(r + δ)m−i cosm−i(θ)(r + δ)i sini(θ)

+sin(θ)
m∑

i=0

bm,i(r + δ)m−i cosm−i(θ)(r + δ)i sini(θ)

=(r+δ)m

(
m∑

i=0

am,icos
m−i+1(θ)sini(θ)+

m∑

i=0

bm,icos
m−i(θ)sini+1(θ)

)

=(r + δ)m

(
m−1∑

i=0

(am,i+1 + bm,i) cos
m−i(θ) sini+1(θ)

)
= 0.

Hence σm(θ, r) = 0 for each m = 1, 2, . . . , µ and for each (θ, r) ∈ D̃.

Therefore S(θ, r) = 0 for each (θ, r) ∈ D̃. So Claim 1.1 is verified.
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Claim 1.2. Condition (b) implies ν1(θ, r) > 0, and νm(θ, r) ≥ 0 for

m 6= 1 and for each (θ, r) ∈ D̃.

Indeed

νm(θ, r)=cos(θ)δ∗gm(θ, r) − sin(θ)δ∗fm(θ, r)

=cos(θ)
m∑

i=0

bm,i(r + δ)m−i cosm−i(θ)(r + δ)i sini(θ)

−sin(θ)
m∑

i=0

am,i(r + δ)m−i cosm−i(θ)(r + δ)i sini(θ)

=(r+δ)m

(
m−1∑

i=0

bm,icos
m−i+1(θ)sini(θ)−

m∑

i=1

am,icos
m−i(θ)sini+1(θ)

)

=(r+δ)m
m−1∑

i=0

bm,i

(
cosm−i+1(θ) sini(θ) + cosm−i−1(θ) sini+2(θ)

)

=(r + δ)m
m−1∑

i=0

bm,i cos
m−i−1(θ) sini(θ).

So for (m, i) = (2(n+ j)+1, 2j), cosm−i−1(θ) sini(θ) = cos2n(θ) sin2j(θ),
which implies that νm(θ, r) ≥ 0 for m odd. Clearly, νm(θ, r) = 0 for
m even. Hence T (θ, r) > 0, since ν1(θ, r) = b1,0(r + δ) > 0, for each

(θ, r) ∈ D̃. So Claim 1.2 is verified.

Proof of Theorem A: We consider system (3) restricted to Ψδ(D̃), i.e.

(13) (ẋ(t), ẏ(t))=Z(x, y)=(X(x, y)+εF1(x, y), Y (x, y)+εF2(x, y))
∣∣∣
Ψ(D̃)

.

Since Ψδ :D→Ψδ(D̃) is a diffeomorphism, thus the pullback Ψ∗
δZ(θ, r) :

D̃ → R2 is well defined and the differential system

(14)
(
θ̇(t), ṙ(t)

)
= Ψ∗

δZ(θ, r)
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is equivalent to (13). Moreover,

θ̇(t) =
δ∗Y (θ, r) cos(θ)− δ∗X(θ, r) sin(θ)

r + δ

+ ε
δ∗F2(θ, r) cos(θ)− δ∗F1(θ, r) sin(θ)

r + δ
,

ṙ(t) = ε (δ∗F1(θ, r) cos(θ) + δ∗F2(θ, r) sin(θ)) ,

(15)

since δ∗X(θ, r) cos(θ) + δ∗Y (r, θ) sin(θ) = 0.

We note that for |ε| > 0 sufficiently small, Hypothesis (H3) implies

that θ̇(t) 6= 0. So

(16)
ṙ(t)

θ̇(t)
= (r + δ)

δ∗F1(θ, r) cos(θ) + δ∗F2(θ, r) sin(θ)

δ∗Y (θ, r) cos(θ)− δ∗X(θ, r) sin(θ)

(
ε

1− εz(θ, r)

)
,

where

z(θ, r) =
δ∗F1(θ, r) sin(θ)− δ∗F2(θ, r) cos(θ)

δ∗Y (θ, r) cos(θ)− δ∗X(θ, r) sin(θ)
.

Now, taking θ as the new independent variable of (15), we obtain the

expression of dr(θ)/dθ by expanding ṙ(t)/θ̇(t) in Taylor series around
ε = 0 as

(17)
dr

dθ
(θ) = ε(r + δ)

δ∗F1(θ, r) cos(θ) + δ∗F2(θ, r) sin(θ)

δ∗Y (θ, r) cos(θ)− δ∗X(θ, r) sin(θ)
+ ε2R(θ, r, ε).

Moreover, given δ > 0 and ρ̃ > 0, there exists ε (ρ̃) > 0 sufficiently
small such that |z(θ, r, ε)| < 1 for all (θ, r) ∈ S1×(0, ρ̃] and ε ∈ (−ε0, ε0).
Therefore we may write

ε2R(θ, r, ε) = −(r + δ)
δ∗F1(θ, r) cos(θ) + δ∗F2(θ, r) sin(θ)

δ∗F2(θ, r) cos(θ)− δ∗F1(θ, r) sin(θ)

∞∑

n=2

z(θ, r, ε)n,

which gives rise to the following claim:

Claim A.1. Taking t = θ and x = r we have that the function R(θ, r, ε)
of system (17) satisfies the hypotheses of the function R(t, x, ε) of sys-
tem (11) of Theorem 3.

Let R1, R2 : D̃ × (−ε (ρ̃) , ε (ρ̃)) → R2 be some functions such that

(18) R(θ, r, ε) = R1(θ, r, ε) + sign (δ∗h(θ, r))R2(θ, r, ε).

To prove Claim A.1 we must show that for some decomposition (18)
the involved functions are continuous, 2π-periodic in the variable θ and
locally Lipschitz with respect to r.
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We note that

(19) R(θ, r, ε) = −(r + δ) (δ∗F1 cos(θ) + δ∗F2 sin(θ))

∞∑

n=2

εn−2Gn(θ, r),

where

Gn(θ, r) =
(δ∗F2 cos(θ)− δ∗F1 sin(θ))

n−1

(δ∗Y cos(θ)− δ∗X sin(θ))
n .

Applying the Binomial Formula, expression (19) becomes

R(θ, r, ε)=

∞∑

n=2

n−1∑

k=0

εn−2Cn
k (r) cos

n−kθ sinkθ
(δ∗F1)

k+1(δ∗F2)
n−k−1

(δ∗Y cos θ−δ∗Xsin θ)n

+

∞∑

n=2

n−1∑

k=0

εn−2Cn
k (r) cos

n−k−1θ sink+1θ
(δ∗F1)

k(δ∗F2)
n−k

(δ∗Y cos θ−δ∗Xsin θ)n
,

with

Cn
k (r) =

(−1)k+1

(r + δ)

(
n− 1

k

)
.

Again, by applying the Binomial Formula to (δ∗Fi)
a with i = 1, 2 and

a ∈ N, we obtain

(δ∗Fi)
a =

⌊a/2⌋∑

l=0

(
a

2l

)
(δ∗Fi,1)

a−2l(δ∗Fi,2)
2l

︸ ︷︷ ︸
Pa

i

+ sign (δ∗h)

⌈a/2⌉−1∑

l=0

(
a

2l+ 1

)
(δ∗Fi,1)

a−2l−1(δ∗Fi2)
2l+1

︸ ︷︷ ︸
Qa

i

,

where, as usual, ⌊u⌋ denotes the greatest integer less than or equal to u
and ⌈u⌉ denotes the smallest integer greater than or equal to u.

Since

(δ∗F1)
a(δ∗F2)

b = P a
1 P

b
2 +Qa

1Q
b
2 + sign (δ∗h)

(
P a
1 Q

b
2 + P b

2Q
a
1

)
,
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it follows that R(θ, r, ε) = R1(θ, r, ε) + sign (δ∗h(θ, r))R2(θ, r, ε), where

R1(θ, r, ε)=
∞∑

n=2

n−1∑

k=0

εn−2Cn
k(r)cos

n−k(θ)sink(θ)
P 1
k+1P

2
n−k−1+Q1

k+1Q
2
n−k−1

(δ∗Ycos θ−δ∗Xsin θ)
n

+
∞∑

n=2

n−1∑

k=0

εn−2Cn
k(r)cos

n−k−1(θ)sink+1(θ)
P 1
kP

2
n−k+Q1

kQ
2
n−k

(δ∗Ycos θ−δ∗Xsin θ)
n ,

and

R2(θ, rε)=

∞∑

n=2

n−1∑

k=0

εn−2Cn
k(r)cos

n−k(θ) sink(θ)
P 1
k+1Q

2
n−k−1+P 2

n−k−1Q
1
k+1

(δ∗Y cos θ−δ∗Xsin θ)
n

+

∞∑

n=2

n−1∑

k=0

εn−2Cn
k(r)cos

n−k−1(θ)sink+1(θ)
P 1
kQ

2
n−k+P 2

n−kQ
1
k

(δ∗Ycos θ−δ∗Xsin θ)
n.

Now, it is easy to see that the functions R1 and R2 are continuous,
2π-periodic in the variable θ and locally Lipschitz with respect to r. So
Claim A.1 is verified.

Rewriting system (17) by making explicit the sign function, we obtain

(20)
dr

dθ
(θ) = ε

(
G1(θ, r) + sign (δ∗h(θ, r))G2(θ, r)

)
+ ε2R(θ, r, ε),

where

G1(θ, r) = (r + δ)
δ∗F1,1(θ, r) cos(θ) + δ∗F2,1(θ, r) sin(θ)

δ∗Y (θ, r) cos(θ)− δ∗X(θ, r) sin(θ)
,

and

G2(θ, r) = (r + δ)
δ∗F1,2(θ, r) cos(θ) + δ∗F2,2(θ, r) sin(θ)

δ∗Y (θ, r) cos(θ)− δ∗X(θ, r) sin(θ)
.

The functions G1 and G2 are also continuous, 2π-periodic in the vari-
able θ and locally Lipschitz with respect to r.

In order, to apply Theorem 3 to system (20) we shall check that
condition (ii) of Theorem 3 is verified. For this, we prove the following
claim:

Claim A.2. If M̃=(δ∗h)−1(0), then (∂(δ∗h)/∂θ)(θ, r) 6=0 for all (θ, r)∈
M̃.

Observe that M̃ = {(θ, r) ∈ D̃ : Ψδ(θ, r) ∈ M} which is, from (H1),

a regular manifold. We take (θ, r) ∈ M̃, and denote (x̃, ỹ) = Ψδ(θ, r) ∈
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M. Hence, from (H2), we have that

∂

∂θ
δ∗h(θ, r) =

∂

∂θ
(h ◦Ψδ)(θ, r)

= 〈∇h(Ψδ(θ, r)), (−(r + δ) sin(θ), (r + δ) cos(θ))〉
= 〈∇h(x̃, ỹ), (−ỹ, x̃)〉 6= 0.

So Claim A.2 is verified.
Summarizing, by Claims A.1–A.2 it follows that conditions (i) and (ii)

of Theorem 3 hold for system (20). Clearly, (H4) implies condition (iii)
of Theorem 3. Hence, applying Theorem 3, we conclude that for |ε| >
0 sufficiently small, there exists a 2π-periodic solution θ 7→ r(θ, ε) of
system (17) such that r(0, ε) → a when ε → 0. This implies that for
|ε| > 0 sufficiently small, there exists a periodic solution (x(t, ε), y(t, ε))
of system (3) such that |(x(t, ε), y(t, ε))| → a when ε → 0 for every
t ∈ R.

Proof of Corollary B: Corollary B is an immediate consequence of
Proposition 1 and Theorem A.

5. Applications

5.1. Application 1. In [19], Llibre and Teixeira have introduced
the following m-piecewise discontinuous Liénard polynomial differential
equation of degree n:

ẋ = y + sgn(gm(x, y))Fn(x),

ẏ = −x,
(21)

where F (x) = c0 + c1x + · · · + cnx
n. The zero set of the function

sgn(gm(x, y)) with m = 2, 4, 6, . . . is the product of m/2 straight lines
passing through the origin of coordinates dividing the plane in sectors
of angle 2π/m.

Here, we shall consider a generalization of this problem.
Let Tm denote the m-Torus. Given α = (α1, α2, . . . , αm) ∈ T

m, with
m = 2, 4, 6, . . . , such that 0 ≤ α1 < α2 < · · · < αm ≤ 2π, and δ > 0 we
consider a function hα : R

2 → R2 defined by

(22) δ∗hα(θ, r) = (θ − α1)(θ − α2) · · · (θ − αm).

Thus the discontinuity set M = hα
−1(0) is represented, partially, by the

bold lines in Figure 3. We stress that only the behavior of the set M out-

side the ball Bδ(0, 0) is considered, because the part of the discontinuity

set M contained in Bδ(0, 0) is not important for our arguments.
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x

y

α1

α2

αm

δ

M

...

Figure 3. The discontinuity set M = hα
−1(0) ⊂ R

2

outside the ball Bδ(0, 0).

A system of the form

ẋ = y + sgn(hα(x, y))Fn(x),

ẏ = −x
(23)

will be called an α-piecewise discontinuous Liénard polynomial differen-
tial system of degree n. Also, H(m,n) will denote the maximum number
of limit cycles that system (23) can have for any α = (α1, α2, . . . , αm) ∈
Tm, with m = 2, 4, 6, . . . , such that 0 ≤ α1 < α2 < · · · < αm ≤ 2π.
We shall use the theory developed in Section 2 to obtain estimates of
H(m,n).

Such kind of problem is fairly known in the literature and its origin
is based in the 16th Hilbert’s problem [12], see for instance: [10], [13],
[14], [17], [9], and [8].

The next theorem gives a lower bound for H(m,n).

Theorem 4. The inequality H(m,n) ≥ n holds for m = 2, 4, 6, . . . and
n ∈ N.

Clearly, taking α2 = α1+π, system (23) becomes a 2-piecewise discon-
tinuous Liénard polynomial differential equation. In this case, Llibre and
Teixeira [19] have proved that ⌊n/2⌋ is a lower bound for the maximum
number of limit cycles of this system when α1 = π/2. In the following
proposition, we assure that this result holds for every α1 ∈ (0, π).
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Proposition 5. Assume that α2 = α1 + π and α1 ∈ (0, π). Then
⌊n/2⌋ is a lower bound for the maximum number of limit cycles of the
differential system (23).

When the symmetry α2 = α1 + π is broken, many others limit cycles
can appear, as we can see in the following proposition.

Proposition 6. Take α = (α1, α2) and assume that one of the following
statements hold:

(a) α2 − α1 < π, sin(α1) cos(α1) ≥ 0 and sin(α2) cos(α2) ≤ 0. More-
over one of the last two inequalities is strict;

(b) α2 − α1 > π, sin(α1) cos(α1) ≤ 0 and sin(α2) cos(α2) ≥ 0. More-
over one of the last two inequalities is strict.

Then n is a lower bound for the maximum number of limit cycles of the
differential system (23), that is H(2, n) ≥ n.

Note that all points (α1, α2) ∈ T2 such that (α1, α2) ∈ (0, π/2) ×
(π/2, π) or (α1, α2) ∈ (π, 3π/2)× (3π/2, 2π) satisfy statement (a), more-
over both inequalities are strict. Also, all points (α1, α2) ∈ T

2 such
that (α1, α2) ∈ (π/2, π) × (α1 + π, 2π) satisfy statement (b) and both
inequalities are strict.

Clearly, Theorem 4 is valid for m = 2 provided that Proposition 6
holds.

To prove Propositions 5 and 6 and Theorem 4 we need a technical
lemma about the number of zeros of a real polynomial.

Lemma 7. Consider the real polynomial p(x) = ai1x
i1 + ai2x

i2 + · · ·+
airx

ir with 0 ≤ i1 < i2 < · · · < ir and aij 6= 0 real constants for j ∈
{1, 2, . . . , r}. Then p(x) has at most r − 1 positive real roots. Moreover,
given δ > 0 it is always possible to choose the coefficients of p(x) in such
a way that p(x) has exactly r − 1 distinct real roots greater than δ.

Proof: The proof of the lemma follows immediately by observing that the
set of functions {xi1 , xi2 , . . . , xir} is an Extended Complete Chebyshev
System (or just ECT-system) on the interval (δ,∞). For more details,
see the book of Berezin and Shidkov [5], and the book of Karlin and
Studden [16].

We start by proving Proposition 6 since it will be used to prove Propo-
sition 5 and Theorem 4.
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Proof of Proposition 6: To prove that n is a lower bound for the max-
imum number of limit cycles of system (23) we shall find a polynomial
function Fn(x) of degree n such that the differential system (23) has
n limit cycles. Thus, taking Fn(x) = εPn(x), with Pn(x) = a0 + a1x +
a2x

2 + · · ·+ anx
n, system (23) becomes

ẋ = y + ε sgn(hα(x, y))Pn(x),

ẏ = −x.
(24)

In order to prove the proposition we have to identify in system (23)
the elements of Corollary B. Thus,

F1,1(x, y) = F2,1(x, y) = F2,2(x, y) = 0, and F1,2(x, y) = Pn(x).

Computing the averaged function (6), for system (24), we have

f(r) =

∫ 2π

0

δ∗F1,1(θ, r) cos(θ) + δ∗F2,1(θ, r) sin(θ) dθ

+

∫ 2π

0

sign (δ∗h(θ, r))
(
δ∗F1,2(θ, r) cos(θ)+δ∗F2,2(θ, r) sin(θ)

)
dθ

=

∫ 2π

0

cos(θ)Pn ((r + δ) cos(θ)) sign((θ − α1)(θ − α2)) dθ

=
n∑

l=0

al(r + δ)l
∫ 2π

0

cosl+1(θ) sign((θ − α1)(θ − α2)) dθ

=
n∑

l=0

al(r+δ)l
(∫ α1

0

cosl+1(θ) dθ−
∫ α2

α1

cosl+1(θ) dθ+

∫ 2π

α2

cosl+1(θ) dθ

)

=

n∑

l=0

al bl(r + δ)l,

with

bl =

∫ α1

0

cosl+1(θ) dθ −
∫ α2

α1

cosl+1(θ) dθ +

∫ 2π

α2

cosl+1(θ) dθ.

So, for l = 0, 1, it is easy to see that

b0 = 2 sin(α1)− 2 sin(α2),

b1 = α1 − α2 + π + cos(α1) sin(α1)− cos(α2) sin(α2).
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Now, using the identity,
∫

cosl+1(θ) dθ =
cosl(θ) sin(θ)

l + 1
+

l

l + 1

∫
cosl−1(θ) dθ,

for l > 0, we conclude that, for l > 1,

bl =

∫ α1

0

cosl+1(θ) dθ −
∫ α2

α1

cosl+1(θ) dθ +

∫ 2π

α2

cosl+1(θ) dθ

=
cosl(α1) sin(α1)

l + 1
+

l

l + 1

∫ α1

0

cosl−1(θ) dθ

− cosl(α2) sin(α2)

l + 1
+

cosl(α1) sin(α1)

l
− l

l + 1

∫ α2

α1

cosl−1(θ) dθ

− cosl(α2) sin(α2)

l + 1
+

l

l + 1

∫ 2π

α2

cosl−1(θ) dθ

=
2

l+ 1
(cosl(α1) sin(α1)− cosl(α2) sin(α2))

+
l

l + 1

(∫ α1

0

cosl−1(θ) dθ −
∫ α2

α1

cosl−1(θ) dθ +

∫ 2π

α2

cosl−1(θ) dθ

)

=
2

l+ 1
(cosl(α1) sin(α1)− cosl(α2) sin(α2)) +

l

l + 1
bl−2.

Proceeding by induction on l, we have that, for l ≥ 0,

b2l =
2 sin(α1)

2l+ 1

l∑

j=0

D1(l, j) cos
2j(α1)−

2 sin(α2)

2l+ 1

l∑

j=0

D1(l, j) cos
2j(α2),

and

b2l+1 =
sin(α1)

l+ 1

l∑

j=0

D2(l, j) cos
2j+1(α1)

− sin(α2)

l + 1

l∑

j=0

D2(l, j) cos
2j+1(α2) + 2

(2l+ 1)!!

(2l+ 2)!!
(α1 − α2 + π) ,

where

(25) D1(p, q) =
(2p)!!(2q − 1)!!

(2q)!!(2p− 1)!!
and D2(p, q) =

(2p+ 1)!!(2q)!!

(2q + 1)!!(2p)!!
,
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for p, q ∈ Z, where, as usual, n!! denotes the Double Factorial:

(2n+ 1)!! = 3 · 5 · · · · (2n+ 1),

(2n)!! = 2 · 4 · 6 · · · · (2n).

Following Arfken and Weber [2], these are related to the regular fac-
torial function by

(26) (2n)!! = 2nn! and (2n+ 1)!! =
(2n+ 1)!

2nn!
.

It is also defined (−1)!! = 1 (a special case that does not follow from
equation (26)).

Each of the statements, (a) and (b), implies that bl 6= 0 for l =
0, 1, 2, . . . , n. By Lemma 7 and choosing the coefficients al conveniently,
the polynomial g(r) = f(r − δ) has n distinct roots rk > δ for k =
1, 2, . . . , n. Therefore, f ′(rk) 6= 0 for k = 1, 2, . . . , n, since the polynomial
has degree n. Hence, by Corollary B, the differential equation (24) will
have n limit cycles near the circles of radius rk for k = 1, 2, . . . , n for
|ε| > 0 sufficiently small. Hence, the proposition is proved.

Proof of Proposition 5: Since α2 = α1+π and α1 ∈ (0, π), we have that
cos(α2) = − cos(α1) and sin(α2) = − sin(α1) with sin(α) 6= 0. Therefore

b2l =
4 sin(α1)

2l+ 1

l∑

j=0

D1(l, j) cos
2j(α1) 6= 0,

and b2l+1 = 0 for all l = 0, 1, . . . , ⌈n/2⌉ − 1.
By Lemma 7 and choosing the coefficients al conveniently, the polyno-

mial g(r) = f(r−δ) has ⌊n/2⌋ distinct roots rk > δ for k=1, 2, . . . , ⌊n/2⌋.
Clearly the other roots of that polynomial of degree 2⌊n/2⌋ are −rk
for l = 0, 1, 2, . . . , ⌊n/2⌋. Therefore f ′(rk) 6= 0 for k = 1, 2, . . . , ⌊n/2⌋.
Hence, by Corollary B, the differential equation (24) will have ⌊n/2⌋
limit cycles near the circles of radius rk for k = 1, 2, . . . , ⌊n/2⌋ for |ε| > 0
sufficiently small and the proposition is proved.

Proof of Theorem 4: We take α = (α1, α2, . . . , αm) ∈ Tm, with m =
2, 4, 6, . . . , such that 0 < α1 < α2 < · · · < αm < 2π. Denote α0 = 0 and
αm+1 = 2π. For Fn(x) = εPn(x), with Pn(x) = a0 + a1x+ a2x

2 + · · ·+
anx

n. The system (23) becomes

ẋ = y + ε sgn(hα(x, y))Pn(x),

ẏ = −x.
(27)
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Computing the averaged function (6), for system (27), we have

f(r) =

n∑

l=0

al bl(r + δ)l,

with

bl =

m∑

i=0

(−1)i
∫ αi+1

αi

cosl+1(θ) dθ.

So, for l = 0, 1, it is easy to see that

b0 = 2

m/2∑

i=1

(sin(α2i−1)− sin(α2i)) ,

and

b1 =

m/2∑

i=1

(sin(α2i−1) cos(α2i−1)−sin(α2i) cos(α2i))+π+

m/2∑

i=1

(α2i−1−α2i) .

Proceeding as in the proof of Proposition 5, we obtain

bl =
2

l + 1

m/2∑

i=1

(
sin(α2i−1) cos

l(α2i−1)− sin(α2i) cos
l(α2i)

)
+

l

l + 1
bl−2.

By induction on l, we have that

b2l =
2

2l+ 1

m/2∑

i=1

l∑

j=0

D1(l, j) sin(α2i−1) cos
2j(α2i−1)

− 2

2l+ 1

m/2∑

i=1

l∑

j=0

D1(l, j) sin(α2i) cos
2j(α2i),

for l = 0, 1, . . . , ⌊n/2⌋, and

b2l+1 =
2

2l+ 1

m/2∑

i=1

l∑

j=0

D2(l, j) sin(α2i−1) cos
2j+1(α2i−1)

− 2

2l+ 1

m/2∑

i=1

l∑

j=0

D2(l, j) sin(α2i) cos
2j+1(α2i)

+ 2
(2l+ 1)!!

(2l+ 2)!!


π +

m/2∑

i=1

(α2i−1 − α2i)


,

for l = 0, 1, . . . , ⌈n/2⌉ − 1, where D1 and D2 are defined in (25).
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Now, we take the sequence (βi)i∈N ⊂ [π/4, π/2) such that

βi =
π

2
− π

4i
.

For every s > 1, we have

1 >
cos(βi+1)

cos(βi)
>

(
cos(βi+1)

cos(βi)

)s

> 0.

Moreover, for every i ∈ N, it follows that

sin
( π

2i

)
> sin

(
π

2(i+ 1)

)
> 0.

Therefore
cos(βi)

cos(αi+1)

sin(βi)

sin(βi+1)
=

sin
(
π
2i

)

sin
(

π
2(i+1)

) > 1.

Hence, for i ∈ N

sin(βi)

sin(βi+1)
>

cos(βi+1)

cos(βi)
.

So, for s > 1,

sin(β2i−1)

sin(β2i)
>

cos(β2i)

cos(α2i−1)
>

(
cos(β2i)

cos(β2i−1)

)s

,

which implies that

sin(β2i−1) cos
s(β2i−1) > sin(β2i) cos

s(α2i).

Choosing αi = βi, for i = 1, 2, . . . ,m, and s = 2j, for j = 0, 1, . . . , l,
we have that b2l > 0, for l = 0, 1, . . . , ⌊n/2⌋. Now, choosing s = 2j + 1,
for j = 0, 1, . . . , l, we have

m/2∑

i=1

(α2i−1 − α2i) <

∞∑

i=1

(β2i−1 − β2i) = − ln(2)

4
π.

So,

2
(2l+ 1)!!

(2l+ 2)!!


π +

m/2∑

i=1

(α2i−1 − α2i)


 > 0.

Therefore b2l+1 > 0, for l = 0, 1, . . . , ⌈n/2⌉ − 1.
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Since bl 6= 0 for l = 0, 1, . . . , n, by Lemma 7 and choosing the coef-
ficients al conveniently the polynomial g(r) = f(r − δ) has n distinct
roots rk > δ for k = 1, 2, . . . , n. Therefore f ′(rk) 6= 0 for k = 1, 2, . . . , n,
since the polynomial has degree n. Now, we choose δ > 0 such that the
circles of radius rk, for k = 1, 2, . . . , n, are contained in Σ0. Hence, by
Corollary B, for |ε| > 0 sufficiently small the differential equation (27)
will have n limit cycles near the circles of radius rk for k = 1, 2, . . . , n.
Hence, Theorem 4 is proved.

5.2. Application 2. Consider the function h(x, y) = (x2 − 1)(y2 − 1).
The discontinuity set M = h−1(0) is represented by the bold lines shown
in Figure 1.

Consider the equation

(28) x′′(t) = −x+ ε x′ sign(h(x, x′)).

Proposition 8. For |ε| > 0 sufficiently small there exists a periodic

solution x(t, ε) of system (28) such that |(x(0, ε), x′(0, ε)| →
√
4 + 2

√
2

when ε → 0.

Proof: First we have to identify the elements of Corollary B in sys-
tem (28):

F 1
1 (x, y) = F 1

2 (x, y) = F 2
1 (x, y) = 0 and F 2

2 (x, y) = y.

The averaged function of system (28) is given by

f(a+
√
2) =

(
2
√
2 + a

)(
π − 8 arccsc

(
2
√
2 + a

))
,

which has a =
√
4 + 2

√
2 as a solution. Moreover

df

dr
(r)
∣∣∣
r=

√
4+2

√
2−

√
2
= 8(

√
2− 1) 6= 0.

Thus, (H4) holds. Clearly, (H1), (H2) and (H3) also hold in this case.
Hence, the proposition follows from Corollary B.

In Figure 4 we can see a numeric approximation of the periodic solu-
tion given by Proposition 8.
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x

x

3

2

1

−3

−2

−1

1 2−1−2

Figure 4. Numerical simulation of the periodic solu-
tion of (28). The dashed lines indicate the solutions for
ε = −1;−0.7;−0.4;−0.1; the non dashed bold line indicates
the solution for ε = 0 which is a sphere centered at the ori-

gin (0, 0) with radius equal
√

4 + 2
√
2; and the dashed bold

line indicates the discontinuity set.
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