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1. Introduction

The study of two degrees of freedom Hamiltonian systems defined
on a symplectic manifold is one of the areas where mathematicians and
physicists have devoted a lot of efforts. In particular Hamiltonian sys-
tems with an additional integral are useful models for a wide range of
physical phenomena. But in many applications systems have a first in-
tegral that is not a Hamiltonian function of the vector field.

The knowledge of the first integrals is of particular interest in mathe-
matics and physics because of the possibility to have explicit expressions
for the solutions of the system. However, it can be interesting sometimes
to know if the system can have an invariant.

Here we generalize basic results on Hamiltonian integrable systems
([8] and [9]) to the case of a Morse–Bott integral.

Given a vector field ν on a manifold M, a first integral F of ν will be
a real Cr, r ≥ 1 function F : M → R that is constant on trajectories of ν
but not identically constant on open sets of M.

Denote by

Ib(F ) = {p ∈ M | F (p) = b}

the level sets of F . In the case where F is a first integral of the vector
field, Ib(F ) is an invariant set for the flow.

An integrable Hamiltonian system is a Hamiltonian system with an-
other first integral F independent of the H . A particular aspect in the
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study of integrable Hamiltonian systems is the decomposition of Ib(H)
in level sets of F or in other words the study of the foliation defined
on Ib(H) by F . These foliations are singular. By a singular k-foliation
on M we understand a regular foliation on a dense set M − S, where
S is a finite union of closed connected components where the level sets
contain leaves with dimension < k.

Recall that a point p of a manifold M1 is said to be a singular point
of a smooth map f : M1 → M2 if the rank of df at p is less than the
maximum possible value; f(p) is called a critical value.

Given F : M → R, F is a Morse–Bott function (MB function from
now on) if its singular points are organized as non degenerate smooth
critical submanifolds (see [6]). Here a critical submanifold of F is called
non-degenerate if the Hessian of F is non-degenerate on normal planes
to this submanifold. The index of F at p ∈ M is the index of F |TN ,
where TN is the normal plane of M at p. If all the singular points are
isolated the function F will be called a Morse function.

We will assume that ν is Cr vector field r ≥ 2, that admits a MB func-
tion F as a first integral. The set of these vector fields will be denoted
by ψMB(M). We will say that v ∈ ψMB(M) is non singular if it has
no equilibrium points. Therefore we will assume that F does not have
critical level set components that consist of a point. The corresponding
set will be denoted by ψNMB(M). Given a vector field if it has a first
integral F all function functionally related with F are also first integrals;
therefore, if needed we will denote by (ν, F ) the pair of a vector field and
a particular first integral.

We will say that (ν, F ) has saddle connection if there exists an orbit
that leaves one saddle periodic orbit and ends in another saddle periodic
orbit.

The main result in this paper is Theorem 12 which says that the
structure of the level sets for vector fields on ψNMB(S

3) is similar to the
case of Hamiltonian systems. Although the structure is the same the
tools used are different; for instance we do not have the Arnold–Liouville
Theorem. In particular we introduce in Definition 14 an invariant that
is a graph whose vertex are in correspondence with singular knotted
periodic orbits of the system.

The study of invariants for orbital equivalent flows and topological
obstructions to the integrability are main items in this area. See [4], [5],
[9], and [10]. For a symplectic point of view see [13]. The knowledge of
the structure of the integrable systems implies integrability criterion. In
particular we found that, as in the Hamiltonian case, all periodic orbits
in a MB integrable system must be generalized torus knots.
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The characterization of Morse–Bott foliations without codimension
one singularities is also analyzed in [16] and [17].

In the second part of the paper we focus on systems that admit an-
other MB first integral independent of the former one.

To our knowledge the structure corresponding to a vector field with
two first independent integrals has not been studied in the context of
foliations. For Hamiltonian systems it is assumed that all basic infor-
mation is contained in the foliation defined on Ib(H) by F . Here we see
that in fact the second integral is also important. More concretely, we
introduce in Definition 22 a new invariant where the edges of the graph
are associated with knotted periodic orbits. Therefore in the case of one
first integral we associate a knotted periodic orbit to each vertex. In the
case of two first integrals, we also associate a knotted periodic orbit to
each edge.

This paper is organized as follows. In Section 2 we study the level
set of MB first integrals defined on 3-spheres. In Section 3 we present
a handle decomposition of S3, this decomposition is done using a MB
first integral. Their local characterization is given. The main theorem
of this paper (Theorem 12) is in Section 4. It characterizes the link of
singular periodic orbits of a non singular Morse Bott integrable vector
field on S

3. We focus on the MB completely integrable systems in Sec-
tion 4. Finally, in last section, there are two examples of integrable and
completely integrable MB systems.

2. Level sets of Morse–Bott first integral

We will denote F(Mn) the (singular) foliation defined on M
n by the

level sets of F . Here we will assume that M
n = S

3 but the results
of this section hold for any orientable 3-manifold that can not contain
an embedded Klein bottle as for instance, M2 × S

1, M2 6= S
2, a lens

space L(p, q) with p odd or L(2, q), see [7].
The fact that we have a vector field on S

3 that admits a MB first
integral imposes restrictions on the type of singularities.

• In Figure 1 we have a leaf L(F) asymptotic to a torus τ and to
a circular singular set. The transversal structure is of Morse type
but any first integral F will be constant on the solid torus bounded
by τ , therefore is not an admissible singularity in our case. See
also [16].

• In [18] we have a necessary and sufficient condition that a Reeb
graph must fulfill in order to have a Morse first integral of a vector
field v on a surface S. The direct product of v with the vector field
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defined on S
1 by α̇ = 1 is a three dimensional example of system

where all singularities are admissible but with a global structure
incompatible with a MB first integral.

Figure 1. Not admissible singularity.

Now we will focus the level set of a Morse–Bott function F .

Proposition 1. Given a pair (ν, F ), with v ∈ ψNMB(S
3), assume that

b is a regular value of F , then each connected component of Ib(F ) is
homeomorphic to a two dimensional torus.

Proof: If b is a regular value of F then Ib(F ) is a 2-dimensional ori-
entable, compact manifold on S

3 without boundary. As it is defined a
non singular vector field on it, its Euler characteristic is zero. Therefore
Ib(F ) could be only a torus.

Sing(F(S3)) will be the set of singularities of F(S3). According to the
index of F the singularities of it are classified as Sad(F) saddle singu-
larities and Cen(F), center singularities. A center singularity of dimen-
sion m will be denoted by ςm and an m-dimensional saddle singularity
by σm.

Let b be a critical value of F . Sb(F ) will be the set of critical points
of F contained in Ib(F ).

Proposition 2. Let F be a MB first integral for a vector field ν on S
3,

then Sb(F ) is an invariant set of ν.

Proof: Assume that b = 0 and p ∈ Sb(F ) then, in a neighborhood of p
the function F can be written as

k
∑

i=1

±x2i , k ≤ 3



Integrable Systems on S3 337

and the critical level set:
k
∑

i=1

±x2i = 0, k ≤ 3.

If k = 3 then S0(F ) = I0(F ). It is an equilibrium point of the vector
field.

If k = 2 and F (x1, x2, x3) = x21−x
2
2 the singular level set decomposes

in two invariant subsets: x1 = ±x2. Its intersection is invariant and
coincides with S0(F ).

If k = 2 or k = 1 and the index is zero, then S0(F ) = I0(F ) and the
singularity is a center.

From now on we will assume that ν is non singular, i.e. v ∈ ψNMB(S
3).

Proposition 3. Given a pair (ν, F ), with v ∈ ψNMB(S
3), and a singular

value b of F then each connected component of Sb(F ) is homeomorphic
to a circle or a two dimensional torus.

Proof: The function F cannot have isolated critical points. Therefore
by the definition of a MB function, Sb(F ) must be a circle or a compact
surface with Euler characteristic equal to zero. Since a Klein bottle can
not be contained in S

3, the surface must be a T
2.

It follows from Proposition 3 that Sb(F ) is a union of circles and tori
but Ib(F ) can have a complicated topology.

If Sb(F ) is homeomorphic to a disjoint union of tori only, then it is a
critical manifold of F but it is not a singularity of the foliation since all
nearby leaves are tori.

Any invariant set diffeomorphic to S
1 is a period orbit of ν. Otherwise

we will have equilibrium points on the circle.

Definition 4. A singularity of the vector field Sing(ν) will be a center
equilibrium point or a center periodic orbit and any subset that is the
limit set of some other trajectories.

The vector field ν can have singularities that are not singularities of
the MB first integral, as periodic orbits on regular 2-torus.

Now we will describe the dynamics on a regular torus that can be
richer than in the case of Liouville integrable systems. The dynamic on
a torus depends on the rotation number if it is defined. If it is irrational
the trajectories are dense on the torus. In the other cases the flow
consist in a set of annulus bounded by periodic separatrices. Inside the
annulus one has a periodic parallel flow or open trajectories that tend to
the separatrices. In case the separatrices have reverse orientation with



338 J. Mart́ınez-Alfaro, R. Oliveira

respect to time we will say that the annulus is a Reeb component called
Kneser ring. See Figure 2.

Figure 2. Parallel, asymptotic and Kneser ring.

Proposition 5 ([2]). Let ϕt a flow on a torus without equilibrium states.
Then the Poincaré rotation number υ exists and 1) if υ is rational or ∞,
then there is at least one closed trajectory on the torus; 2) if υ is irra-
tional, then the flow ϕt has no closed trajectory and contains exactly one
non-trivial (that is, not an equilibrium state or a closed trajectory) min-
imal set which is either the whole torus (transitive flow) or a nowhere
dense on the torus (singular flow).

The last case of Proposition 5 is possible only if the vector field is not
twice differentiable. A global section is a simple closed curve C that is a
section and such that any positive half-trajectory starting on it reaches C
again for t > 0.

If the flow on the torus has neither equilibrium states nor a global
section, then the rotation number υ of this flow is either rational or ∞
and the flow contains at least one Kneser ring.

Proposition 6 ([2]). Two transitive flows on a torus without equilibrium
states are topologically equivalent if and only if their rotation numbers
are commensurable.

3. Handles

The usual definition of handle of dimension n and index k, hk =
Dk ×Dn−k with ∂−hk = ∂Dk ×Dn−k and ∂+hk = Dk × ∂Dn−k is not
suitable for the study of MB functions and its associated vector fields. It
was generalized by Asimov [3], introducing round handles, that are not
homotopically trivial. For 2-dimension singular sets must be generalized
a bit more (see [1]). We will use the following definitions:
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Definition 7. Let i ≥ 1. An oriented i-th multi-round handle of dimen-
sion n and index k is a disk bundle over Ti:

Ri
k = Dk

⊕

Ti

Dn−k−i.

If Ri
k is orientable it is a trivial disk bundle:

Ri
k = Dk ×Dn−k−i × S

1
1 × · · · × S

1
i .

The boundary of Ri
k contains two subsets

∂−R
i
k = ∂Dk

⊕

Ti

Dn−k−1, ∂+R
i
k = Dk

⊕

Ti

∂Dn−k−1,

that in the orientable case can be reduced to:

∂−R
i
k = ∂Dk ×Dn−k−i × S

1
1 × · · · × S

1
i ,

∂+R
i
k = Dk × ∂Dn−k−i × S

1
1 × · · · × S

1
i .

(3.1)

Definition 8. Let Mn be a compact connected manifold. We say that
M

n has a flow manifold structure if the boundary of Mn is a disjoint
union of connected components such that ∂Mn = ∂−M

n ∪ ∂+M
n and

χ (Mn) = χ (∂−M
n) = χ (∂+M

n).

Let s be a critical connected manifold of Sb(F ). We will denote
by Hb(F, s) a connected component of I[b−ε,b+ε](F ), or just H(F, s) if it
is not necessary to specify the singular values.

We want to study what kind of manifold is H(F, s). We consider first
that the singularity is a center.

Proposition 9. Hb(F, ς
m) has a structure of flow round handle mani-

fold, where ςm is a center singularity of dimension m = 1, 2.

Proof: Firstly we consider the case of the critical tori. In this case
Hb(F, s) = R2

1 = D1 × D0 × S
1 × S

1 and ∂−R
2
1 = (p × D0 × S

1 ×
S
1) ∪ (q ×D0 × S

1 × S
1), where D1 = [p, q] and ∂+R

2
1 = ∅.

When we have a center periodic orbit, Hb(F, s) = R1
2 = D2×D0×S

1

and ∂−R
1
2 = S

1 × {p} × S
1, where p is a point and ∂+R

1
2 = ∅.

As χ(Ri
k) = χ(∂−R

i
k) = χ(∂+R

i
k) = 0 since S

1 is a factor of Ri
k for

all i and k and ∂+R
2
1 = ∂+R

1
2 = ∅, it follows that Hb(F, s) = R1

2 = R2
1

are flow round handles.

We will denote Σ(F ) the manifold M minus the level sets of saddle
singularities.

Definition 10. Consider a connected component Σ(F ) and ς a center
singularity contained in Σ(F ). The basin of ς is in Σ(F ). It will be
denoted by B(ς).
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B(ς) is an open set since it is equal to M or the complementary set
of the union of a finite number of closed sets.

Now we consider the case of a saddle singularity.
We will call Hb,l(F, σ) the intersection of R1

1 = Hb(F, σ) with a closed
regular neighborhood of σ in such a way that the border of Hb,l(F, σ) =
R1

1 is the union of two subsets. One of them, U , consists of the union of
subsets of regular tori of the foliation. The second one, τ is transversal to
the leaves. Let Πp be a normal plane to s at p and Σp = Πp ∩Hb,l(F, σ).
We will call Bi each connected component of U and T (Bi) the torus that
contains Bi, see Figure 3. Observe that the same torus can be attached
to different Bi. By Bi(c) we specify the level set Ic(F ) that contains Bi.

B1B2

B3 B4

p

Figure 3. Hb,l(F, σ), σ saddle.

For the local handle Hb,l(F, σ) we can assume the normal form of the
singularity. We characterize R1

1 from the local handle. The construction
of the global Hb(F, σ) from Hb,l(F, σ) will be done taking into account
how many T (Bi) exists and which Bi are contained in the same torus. In
particular, as s is a Morse–Bott singularity there are at most three T (Bi)
different and if T (Bi(b− ε)) = T (Bj(b − ε)), i < j then j = i + 2.

• Hb(F, σ) is orientable.
To fix the notation we assume that T (Bj) on Ib−ε(F ) are T (B1)

and T (B3).
Let p be a point of σ and consider on Σp, a local section πp then,

⋃

p∈σ πp ∩ T (Bi), i = 1, 3 defines two closed circles parallel to s

and located on T (Bi). We will denote this two circles by s1(b− ε)
and s3(b − ε). Since we are in the orientable case and πp can be
arbitrarily close to the separatrices, s1(b−ε) 6= s3(b−ε). Moreover,
s1(b − ε) and s3(b − ε) are essential (non homotopically trivial)
in T (B1) and T (B3), respectively. Assume that s1(b− ε) is trivial.
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Then s1 bounds a diskDs1(ε) on T (B1). As ε tends to zero s1(b−ε)
tends to σ, the disks Ds1(ε) converge to a disk on Ib(F ) which is
now invariant since it is bounded by σ. The interior of this disk
must contain an equilibrium point in contradiction with the non
singularity assumption on the vector field.

The set of the closed curves si(b − ε) defines a cylinder C con-
tractible to σ. On T (B1), s1(b − ε) and s2(b − ε) defines two
complementary annuli Ai with respect T (B1). Each Ai jointly
with C defines a solid torus. The union of the two tori for i = 1, 3
is T (B1) and they intersect only on C. The interior of these solid
tori contains T (B2) and T (B4). See Figures 4, 5, 6 and 7.

By the last arguments Hb(F, σ) ⋍ N2 × S
1, where Np a disk

with p ≥ 1 holes.

B2

B4

πpq1

B1

p

B3
q2

Figure 4. Hb,l(F, σ) ∩ Πp.

C

σ
T (B1)

T (B2)

T (B4)

σ

C

Figure 5. T (Bi) and C.
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s

T (B1) = T (B3)

s(a− ε)

T (B2)
Ia(f)

Figure 6. Hb(F, s) orientable, |T (Bj(b − ε))| = 1,
s1(b− ε) is not a parallel.

T (B2)

T (B4)

Figure 7. Hb(F, σ) orientable, |T (Bj(b − ε))| = 1,
s1(b− ε) is a parallel.

• Hb(F, σ) is not orientable.

In this case, T (B1) = T (B3) and T (B2) = T (B4). For each
p ∈ σ, in the section πp we have the same situation of the orientable
case with a (2, 1) knot. See Figure 8. But now the fibration is not
trivial and Hb(F, σ) does not have an S

1 factor. Then it must be
characterized as

(

N2 ×S
1
)

\Ψ, where Ψ is a regular neighborhood

of a (2, 1)-cable of {0} × S
1.
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T (B1)

T (B2)

Ia(f)

s
T (B2)

Figure 8. Section of Hb(F, σ), case not orientable.

We resume our discussion in the next theorem:

Theorem 11. Let σ be a saddle periodic orbit contained in Sb(f) without
connection by means of a separatrix with another saddle periodic orbit,
then Hb(F, σ) is homeomorphic to:

a) N2 × S
1 if Hb(F, σ) is orientable.

b)
(

N2 × S
1
)

\ Ψ where Ψ is a regular neighborhood of a (2, 1)-cable

of {0} × S
1 if Hb(F, σ) is not orientable.

4. Link of singular periodic orbits

Recall (see [15]) that a subset K of a space M is a knot if it is homeo-
morphic to a sphere Sp. More generally, K is a link if it is homeomorphic
to a disjoint union S

p1 ∪ · · · ∪ S
pr of one or more spheres. Two knots or

links K and K ′ are equivalent if there is a homeomorphism h : M → M

such that h(K) = K ′.
The following union ∪s∈Sing(F )H(F, s) defines a decomposition of S3

since F is a first integral. Moreover, as the sets H(F, s) are attached in
an essential way, as [20] or [8], one has the following result

Theorem 12. The link of singular periodic orbits of a non singular
Morse Bott integrable vector field on S

3, without saddle connections, is
made by applying operations IV, V and VI to a Hopf link.

The Wada operations IV, V and VI to a Hopf link are the following:
Given indexed links l1 and l2, denote by V (k,M) a regular neighbor-

hood of k in M then

IV. To make (l1#l2) ∪ m. The connected sum l1#l2 is obtained by
composing a component k1 of l1 and a component k2 of l2 each
of which has index 0 or 2. The index of the composed component



344 J. Mart́ınez-Alfaro, R. Oliveira

k1#k2 is equal to either ind(k1) or ind(k2). Finally,m is a meridian
of k1#k2, and its index is 1.

V. Choose a component k1 of l1 of index 0 or 2, and replace V (k1, S
3)

by D2 × S
1 with three indexed circles in it; {0} × S

1, k2 and k3.
Here, k2 and k3 are parallel (p, q)-cables on ∂V ({0}×S

1, D2×S
1).

The indices of {0} × S
1 and k2 are either 0 or 2, and one of them

is equal to ind(k1). The ind(k3) = 1.
VI. Choose a component k1 of l1 of index 0 or 2. Replace V (k1, S

3) by
D2 × S

1 with two indexed circles in it; {0} × S
1, and the (2, q)-ca-

ble k2 of {0} × S
1. So ind({0} × S

1) = 1 and ind(k2) = ind(k1).

This result can also be obtained by applying the results of [19].
We will denote the link of periodic orbits defined by F by L(F ). The

associated knot of a singular periodic orbit is a generalized torus knot
by [8] or [9]. Recall that a generalized torus knot is a knot obtained
from iterated torus knots or connected sums of iterated torus knots. In
particular, the eight knot is not an iterated torus knot.

If we consider also the periodic orbits of ν that are not singularities of
the MB function f , the conclusion is the same since this periodic orbits
lies on the tori of the system.

The next proposition and the realization properties can also be ob-
tained with similar arguments to those in [10].

Proposition 13. Let s be a periodic orbit of a vector field defined on S
3

with a Morse–Bott first integral then, s is an generalized torus knot.

Given a continuous function F : Mn → R the space obtained from M
n

by contracting each connected component of the level sets to a point is
called Reeb graph of F ([14] and [18]). When F is a MB function, each
vertex corresponds to a critical value of F . Since the singular tori do
not imply any topological change in the foliation defined by F we define
the reduced Reeb graph RG(F ) as the Reeb graph without the vertex
associated to the singular tori.

Definition 14. The graph link of (ν, F ) consists of the set of RG(F )
and L(F ) and a map from RG(F ) to L(F ) sending the vertex corre-
sponding to the critical value b to the periodic orbits on Ib(F ).

5. Vector fields completely integrable

We will say that a vector field v(Mn) is completely integrable if it has
n − 1 first integrals F1, F2, . . . , Fn−1 functionally independent. We will
denote by (ν, F1, . . . , Fn−1) the vector field and its integrals. From now
on we will consider that Mn = S

3 and that Fi are MB-first integrals.
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Now we focus on the singularities of F = (F1, F2). A point p will be
singular if the rank of the Jacobian of (F1, F2) is less than two. This
happens if p is a singular point of F1 or F2 or if the gradients of both
integrals are parallel.

Proposition 15. The set T verifying that Ia1
(F1) intersects tangen-

tially Ia2
(F2) is a closed set on each regular level set.

Proof: In a point of tangential intersection the normal vectors of each
level set are dependent. Consider an accumulation point q of T , since
there exist a sequence of points of T tending to q where the normals are
dependent, by continuity they must also be dependent on q.

Here to avoid degenerate cases we assume the following

I. Fi are MB functions.
II. The restriction of Fi to each regular level set Ia(Fj) of Fj , where

j 6= i is a MB function.

Definition 16. We will say that (ν, F1, F2) is a MB completely inte-
grable system if it is completely integrable and the assumptions I, II
hold.

The regular level sets Ia(F1, F2) are diffeomorphic to S
1 and the set

where Ia1
(F1) and Ia2

(F2) intersects tangentially, i.e. the singularities
of F on regular torus, it is an invariant set. The proofs are similar to
the case of one first integral.

On a regular torus of a MB completely integrable there is neither a
Kneser ring nor a ring with asymptotic orbits since any continuous first
integral must be constant on these rings.

Definition 17. We will say that ς1 is a trivial periodic center if in a
neighborhood of it all the orbits are periodic and parallel to ς1.

Proposition 18. Given a MB first integral F of a non singular vector
field ν on S

3 all saddle periodic orbits and non trivial periodic centers
are singularities of F .

Proof: Consider first a center of a system that has F1 as MB first integral.
If the proposition does not hold through ς1 will pass a regular torus τ of
the foliation defined by F2. On it all orbits are equivalent knots. On the
other hand, τ will cut all regular torus close to the center singularity.
But this imply that also on this tori the orbits are equivalent to ς1 in
contradiction with the fact that ς1 is not trivial center.

In the case of a saddle singularity, not only the periodic orbit σ1 lies
on the level set, also the invariant manifolds of σ1 will lie on it. It must
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be a singular level set since the set of the invariant manifolds does not
defines a manifold.

Two first MB integrals of ν must share saddle and non trivial center
one dimensional singularities, but they do not share necessarily the same
trivial center singularities.

On the other hand, since the singular tori are not singularities of the
foliation, if ς1, ς2 are trivial center periodic orbits in the same connected
component of Σ(f) (see Definition 10) then both center periodic orbits
will define the same basins B(ς1) = B(ς2). So we have:

Corollary 19. RG(F1) = RG(F2).

Proposition 20. All periodic orbits in the basin of a center ς are equiv-
alent knots.

Proof: If an orbit on a torus τ1 ∈ B(ς)(F1) is dense on it, its rotation
number is not rational and F2 will be constant on τ1 in contradiction
with the assumption of (ν, F1, F2) be MB completely integrable. Assume
that an orbit on τ1 is a torus knot of type (p, q) with rotational number p

q
.

If the another torus τ2 of B(ς) there is a periodic orbit of type p1

q1
6= p

q

as the rotation number varies continuously it will take a not rational
number in some torus, between τ1 and τ2. So (ν, F1, F2) will be not MB
completely integrable.

As a consequence of this proposition we define:

Definition 21. L(F1, F2) will consists of L(F1) and a periodic orbit of
the basin of each ς1.

Definition 22. The graph link of (ν, F1, F2) consists of the set of
RG(F1), L(F1, F2) and a map from RG(F1) to L(F1, F2) sending each
vertex to a periodic orbit of L(F1) and an edge of RG(F1) to an orbit of
L(F1, F2)− L(F1).

As a consequence of this study we have that

Proposition 23. The graph link is an invariant of orbital equivalent
systems.

In the other hand, the structure of the singular set determines the
knotted type of the orbits. In the case of two foliations in a surface
this is analyzed in [12]. The case of MB completely integrable system is
similar. The intersection of the singular set with a regular torus consists
of orbits of the system. As the type of knot will be the same on all the
basin, it determines how the orbits are knotted.
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6. Examples

In the last section we proved that any periodic orbit in a ψNMB(S
3)

is a generalized torus knot. Therefore a criterion of non-integrability of
a system on S

3 will be the presence of a knotted periodic orbit that was
not of this type or if the link between them do not corresponds to the
types described in Section 4. See in [11] an example of non integrable
system in the context of Hamiltonian systems.

In this section we give several examples of vector field in ψNMB(S
3)

in particular an example of a non MB completely integrable system and
another one MB completely integrable.

Example 1: Two center singularities and a singularity of the
vector field. Consider the vector field defined in R

4:

dx1
dt

= x2

(

(

x1 −
1

2

)2

+ x22

)

,

dx2
dt

= −x1

(

(

x1 −
1

2

)2

+ x22

)

,

dx3
dt

= x4,

dx4
dt

= −x3.

(6.1)

Except for the factor on the first equations it is the harmonic oscilla-
tor. It has the following first integrals:

h1(x1, x2, x3, x4) = x21 + x22 + x23 + x24,

h2(x1, x2, x3, x4) = x23 + x24,

h3(x1, x2, x3, x4) = x21 + x22.

(6.2)

Fix h1(x1, x2, x3, x4) = 1 and the system is defined on the standard S
3.

Consider the MB function F = h2 then the singularities on F are two
center periodic orbits:

• I1(F ) in the orbit x21 + x22 = 0 where the family of tori x23 + x24 = ǫ
concentrate;

• I0(F ) in the orbit x21 + x22 = 1 where the family of tori x21 + x22 = ǫ
concentrate.
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From this it follows that the reduced Reeb graph associated has two
vertex and one edge. Moreover the link L(F ) is the link of Hopf since
each periodic orbit is sending to a trivial unknot.

This system also has the periodic orbit x1 = 1
2 , x2 = 0 on I 3

4

(F ) as

a singularity of the vector field. It is important to observe that this is
not a MB completely integrable because any additional first integral is
constant over the torus I 3

4

(F ).

Example 2: The hat function. Consider the vector field defined
in R

4:
dx1
dt

= x2 −
23

2
x21x2 − 9x32,

dx2
dt

= −
7

2
x1 + 14x31 +

23

2
x1x

2
2,

dx3
dt

= x4g(x1, x2, x3, x4),

dx4
dt

= −x3g(x1, x2, x3, x4),

(6.3)

where g = g(x1, x2, x3, x4) is a strictly positive function.
Then

h1(x1, x2) = −21x21(−1 + x21 + x22)− 27(x21 + x22)
2 + 6(x41 + (1 + x21)x

2
2),

h2(x3, x4) = x23 + x24

are two first integrals for system (6.3).

Proposition 24. The subset ζ3 defined implicitly on R
4 by

h1(x1, x2) + x23 + x24 = −21

is a manifold homeomorphic to S
3 and invariant for the system defined

by (6.1).

Proof: The set ζ3 projects on the (x1, x2)-plane on the domain D

h1(x1, x2) + 21 ≥ 0.

Since h1(x1, x2)+ 21 simplifies to −3(−1+x21+x22)(7+14x21+9x22) and
7 + 14x21 + 9x22 is always positive, the domain D is the unit disk.

Fix a point p = (x1, x2) in the interior of D. ζ3 on the fixed point is
the S

1 sphere x23 + x24 = −21− h1(p). On ∂D the sphere collapses to a
point. Then ζ3 is a pinched fibration of S1 on the unit disk, i.e. a S

3.
The second assertion is a consequence of h1(x1, x2) and x

2
3 + x24 be first

integrals of the vector field.
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We restrict the domain of definition of the system (6.1) to the mani-
fold ζ3 and consider the Morse–Bott first integral:

F (x1, x2, x3, x4) = (h1(x1, x2) + 21)2, (x1, x2, x3, xfa4) ∈ ζ3.

In Figure 9 we have represented this function.

−1.0

−0.5

0.0

0.5

1.0

1.0

0.5

0.0

−0.5

−1.0

0

100

200

Figure 9. MB function for system (6.1).

On D, the subsystem:

dx1
dt

= x2 −
23

2
x21x2 − 9x32,

dx2
dt

= −
7

2
x1 + 14x31 +

23

2
x1x

2
2

(6.4)

has three center equilibrium points (− 1
2 , 0), (0, 0) and (12 , 0) and two

saddle equilibrium points (0, 13 ), (0,− 1
3 ). The flow is represented in

Figure 10.
Moreover, in an increasing sense of F , the singularities that we meet

are:

• ς1 periodic orbit with x3 = x4 = 0, F = 0.
• ς2 center periodic orbit at x1 = 0, x2 = 0, F = 441.
• σ1, σ2 saddle periodic orbits at x1 = 0, x2 = ± 1

3 , F = 4096
9

∼=
455.111.

• ς1, ς2 center periodic orbits at x1 = ± 1
2 , x2 = 0, F = 35721

64
∼=

558.141.
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Figure 10. The flow of system (6.4).

We can re-write system (6.3) in coordinates (x1, x2, α) in the interior
ofD, where α is the angle of the circle defined by the coordinates (x3, x4)
after fixing a point in the plane defined by (x1, x2).

Let τ(h1) the period of the orbit given by h1 = C, where C is a
constant. The period of this orbit in the coordinates (x3, x4) depends
on α and α̇ = −g. So choosing g = g(x1, x2, x3, x4) in such way that
g(x1, x2, x3, x4) = (p/q).τ(h1(x1, x2)), p, q integers, the system (6.3) is
a MB completely integrable system. All periodic orbits are (p, q) torus
knots.
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ICMC - USP
C.P 668, 13.560-970, São Carlos, SP
Brazil
E-mail address: regilene@icmc.usp.br

http://dx.doi.org/10.1112/jtopol/jtr004
http://dx.doi.org/10.1007/s12346-008-0023-0
http://dx.doi.org/10.2969/jmsj/04130405

	1. Introduction
	2. Level sets of Morse–Bott first integral
	3. Handles
	4. Link of singular periodic orbits
	5. Vector fields completely integrable
	6. Examples
	Example 1: Two center singularities and a singularity of the vector field
	Example 2: The hat function

	Acknowledgements
	References

