Publ. Mat. **58** (2014), 251–261 DOI: 10.5565/PUBLMAT\_58114\_13

# A CHARACTERIZATION OF HYPERBOLIC KATO SURFACES

#### Marco Brunella<sup>†</sup>

**Abstract:** We give a characterization of hyperbolic Kato surfaces in terms of the existence of an automorphic Green function on a cyclic covering. This is achieved by analysing a naturally defined Levi-flat foliation, and by perturbing certain Levi-flat leaves to strictly pseudoconvex hypersurfaces.

2010 Mathematics Subject Classification: Kato surfaces, Levi-flat foliations, plurisubharmonic functions.

Key words: 32J15, 32U05, 32V40.

#### 1. Introduction

Kato surfaces are important examples of compact complex surfaces with first Betti number equal to 1, discovered by Kato more that 30 years ago [Kat], see also [Dlo] and [Nak, §5]. They occupy a central place in the current speculative theory of non-Kählerian surfaces. It is customary today to divide the class of Kato surfaces into three disjoint subclasses:

- (1) Enoki surfaces ( $\sigma_n = 2n$  in the terminology of [**Dlo**]), which can be also described as exceptional compactifications of affine bundles over elliptic curves [**Nak**, §4.5];
- (2) Kato surfaces of intermediate type  $(2n < \sigma_n < 3n)$ ;
- (3) Inoue-Hirzebruch surfaces  $(\sigma_n = 3n)$ , discovered by Inoue prior to Kato by a very different construction [Nak, §4.1 and §4.3].

There is a fundamental difference between class (1) and classes (2) and (3), coming from the results of  $[\mathbf{D}\text{-}\mathbf{O}]$ . If S belongs to class (2) or (3), then S admits a *Green function*, i.e. a multiplicatively automorphic negative function on the universal covering  $\widetilde{S}$  which is pluriharmonic outside an analytic subset  $Z \subset \widetilde{S}$ , along which the function has logarithmic

 $<sup>^{\</sup>dagger}$ Note of the editors: this paper was submitted after Marco Brunella had passed away, following his family's will. We added four footnotes including referee's remarks. We thank Laurent Meersseman for his help.

poles. Such a function, which is moreover unique up to a multiplicative constant, cannot exist on surfaces of class (1).

Due to this dichotomy, we shall refer to surfaces of class (2) or (3) as *hyperbolic* Kato surfaces, and to those of class (1) as *parabolic* Kato surfaces.

Our aim is to give a characterization of hyperbolic Kato surfaces in terms of existence of a Green function with *nonempty* polar set. This is analogous to the result of [**Br2**] giving a characterization of Inoue surfaces (another important class of non-Kählerian surfaces, see [**Nak**, §3]) in terms of existence of a Green function *without* poles.

**Theorem 1.1.** Let S be a compact connected complex surface of algebraic dimension zero. Suppose that there exists an infinite cyclic covering  $\pi \colon \widetilde{S} \to S$  and a negative plurisubharmonic function  $F \colon \widetilde{S} \to [-\infty, 0)$  such that:

- (i)  $F \circ \varphi = \lambda \cdot F$  for some positive  $\lambda$ , where  $\varphi \colon \widetilde{S} \to \widetilde{S}$  is a generator of the group of deck transformations;
- (ii)  $dd^c F$  is supported on an analytic subset  $Z \subset \widetilde{S}$ ;
- (iii)  $Z \neq \emptyset$ .

Then S is a (possibly blown up) Kato surface.

Even if this statement is formally close to [**Br2**] (where  $Z = \emptyset$ ), its proof follows a completely different path. The main idea is the following. The function F induces on S a (singular) codimension one real foliation  $\mathcal{H}$ , the leaves of which are noncompact Levi-flat hypersurfaces, spiralling around an arboreal cycle of rational curves. Using the nonemptyness of Z, we shall be able to "approximate" such a Levi-flat leaf by a compact strictly pseudoconvex hypersurface in S, not homologous to zero. Then the conclusion will be a consequence of [**Br1**].

The main technical point is therefore a result on the approximation of Levi-flat hypersurfaces with corners by smooth strictly pseudoconvex hypersurfaces, whose statement and proof will be given in the last part of the paper (Theorem 3.1), under a degree of generality going far beyond the context of Theorem 1.1.

## 2. Proof of Theorem 1.1 modulo Theorem 3.1

Let S satisfy the assumptions of Theorem 1.1. As in [**Br2**, §1], we may also suppose that S is minimal, and then Enriques-Kodaira classification leads to see that S belongs to the class VII<sub>0</sub>, that is  $b_1(S) = 1$  and  $kod(S) = -\infty$ . Moreover, S cannot be a Hopf surface nor an Enoki surface: indeed, those surfaces contain a Zariski-open subset uniformised

by  $\mathbb{C}^2$ , and this fact clearly prevents the existence of a nonconstant negative plurisubharmonic function on some covering (Liouville's theorem).

Denote by  $\{Z_i\}_{i\in I}$  the irreducible components of Z, so that

$$dd^c F = \sum_{j \in I} \mu_j \cdot \delta_{Z_j}$$

for suitable positive real numbers  $\{\mu_j\}_{j\in I}$ . Here, as usual,  $\delta_{Z_j}$  denotes the integration current on  $Z_j$ . The function F is equal to  $-\infty$  on Z (logarithmic poles) and is finite and pluriharmonic on  $\widetilde{S}\setminus Z$ .

Since  $F \circ \varphi = \lambda \cdot F$ , the set Z is  $\varphi$ -invariant, and so it projects to an analytic subset  $C \subset S$ . By results of Kodaira, Enoki and Nakamura [Nak,  $\S 6$  and  $\S 7$ ], each irreducible component of C is a rational curve, and each connected component is either a tree of rational curves or a cycle of rational curves with possibly some trees attached (an *arboreal* cycle). Moreover, the intersection form of such a component is negative definite, so that the component is contractible to a normal singularity.

**Lemma 2.1.** Every connected component of C is a (arboreal) cycle of rational curves.

Proof: Suppose, by contradiction, that  $C_0$  is a connected component of tree type. Then  $C_0$  is simply connected, and some neighbourhood U of  $C_0$  lifts isomorphically to  $\widetilde{S}$ . We obtain from F a function  $F_0: U \to [-\infty, 0)$  such that  $dd^cF_0$  is supported on  $C_0$ . This means that a nontrivial linear combination of the irreducible components of  $C_0$  is  $dd^c$ -cohomologous to zero. But this contradicts the fact that the intersection form of  $C_0$  is negative definite.

In particular, and since  $C \neq \emptyset$ , it follows from a result of Nakamura [Nak, §8] that S is a degeneration of blown up Hopf surfaces, i.e. there exists a family of surfaces over the disc  $\{S\}_{t\in\mathbb{D}}$  such that  $S_0 = S$  and  $S_t$  is a blown up Hopf surface for every  $t \neq 0$ . This fact will allow later to use the result of [Br1].

Still by Nakamura's results [Nak,  $\S 7$ ] we may (and will) suppose that C is connected, and that the inclusion of C into S induces an isomorphism between fundamental groups (otherwise S is an Inoue-Hirzebruch surface and the proof is done).

Referee's note: this is obtained from a suitable version of the so-called "Federer Support Theorem", cf. Corollary 2.14, p. 143 in: J. P. Demailly, Complex Analytic and Differential Geometry, http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf.

The function  $F|_{\widetilde{S}\backslash Z}$  induces a real analytic (singular) fibration

$$f = \log(-F) \colon S \setminus C \longrightarrow \mathbb{S}^1 = \mathbb{R}/(\log \lambda) \cdot \mathbb{Z}.$$

The level sets of f and the curve C may be informally thought as a singular codimension one foliation  $\mathcal{H}$  on S. A regular level set of f is a leaf (or a union of leaves) which is properly embedded in  $S \setminus C$  and accumulates to the full C, by spiralling around it.

Let us be more precise. Take an embedded real analytic circle  $\gamma \subset C$ , not passing through the singularities (nodes) of C, such that  $C \setminus \gamma$  is connected. This is possible since C is an arboreal cycle; thus  $\gamma$  is contained in one of the irreducible components of C which compose the cycle inside C, and in that component  $\gamma$  separates the two nodes corresponding to the intersection with the other components of the cycle. Because  $\gamma$  is homotopic to zero in S (being contained in a rational curve), the function F induces a function  $F_0$  on a neighbourhood of  $\gamma$ , uniquely defined up to multiplication by  $\lambda^n$ ,  $n \in \mathbb{Z}$ . This function  $F_0$  has a logarithmic pole along C, and we can find holomorphic coordinates (z, w) on a neighbourhood V of  $\gamma$  such that:

- (1)  $C \cap V = \{w = 0\};$
- (2)  $\gamma = \{w = 0, |z| = 1\};$
- (3)  $F_0 = \mu \cdot \log |w| + \beta \cdot \log |z|$ , for some  $\mu > 0$  and  $\beta \in \mathbb{R}$ .

Here z takes values in an annulus  $\{1-\varepsilon<|z|<1+\varepsilon\}$  and w in a disc  $\{|w|<\varepsilon\}$ , for some  $\varepsilon>0$  (and  $\varepsilon<1$ , since  $F_0$  is negative). The existence of those coordinates follows from the easy fact that a closed logarithmic 1-form with poles on C can be put in the normal form  $\mu \frac{dw}{w} + \beta \frac{dz}{z}$ , around  $\gamma$ .

Let  $\Gamma$  denote the solid torus embedded in V corresponding to the

Let  $\Gamma$  denote the solid torus embedded in V corresponding to the points with |z|=1. Remark that it is a Levi-flat hypersurface, foliated by the holomorphic discs  $\{z=c\}$ ,  $c\in\gamma$ .

Take now a regular level set of f,  $W = W_t = f^{-1}(t)$ . Since F is pluriharmonic on  $\widetilde{S} \setminus Z$ , W is a real analytic Levi-flat hypersurface, properly embedded in  $S \setminus C$ . It intersects V along the level sets  $F_0^{-1}(-\lambda^n e^t)$ ,  $n \in \mathbb{Z}$ , and  $\Gamma$  along the countable collection of tori

$$T_n = \{|z| = 1, |w| = r_n\}, \quad n \ge 0,$$

where  $\{r_n\} \subset (0, \varepsilon)$  is a sequence decreasing to 0 (and, more explicitely, given recursively by  $\log r_n = \lambda^{\pm n} \cdot \log r_0$ , with the sign  $\pm$  chosen depending on the sign of  $\lambda - 1$ ).

#### Lemma 2.2. We have

$$W\setminus\bigcup_{n\geq 0}T_n=\bigcup_{n\geq 0}\Omega_n,$$

where each  $\Omega_n$  is open and relatively compact in W, and moreover:

- (i)  $\partial \Omega_0 = T_0$ ;
- (ii)  $\Omega_n$  is connected and  $\partial \Omega_n = T_n T_{n-1}$  for every  $n \ge 1$ .

Proof: Let  $\eta \colon [0,1] \to C$  be a closed path generating  $\pi_1(C)$ , starting and ending at some point of  $\gamma$ . It can be lifted to W, as a (nonclosed) path starting at some point of  $T_n$  (n large) and ending at some point of  $T_{n+\ell}$ : this is just the holonomy of  $\mathcal{H}$  along  $\eta$ , in a mildly singular context. Now,  $\eta$  is also a generator of  $\pi_1(S)$ , and this means that if we prolonge  $F_0$  along  $\eta$  then, when we return to V, we get  $\lambda^{\pm 1}F_0$ . In other words, we must have  $\ell = \pm 1$ . It follows that  $T_n$  and  $T_{n-1}$  bound a relatively compact domain  $\Omega_n \subset W$ , and  $T_0$  bounds a relatively compact open subset  $\Omega_0 \subset W$ .



It is also easy to control the topology of the domains  $\Omega_n$ ,  $n \geq 1$ : each one is diffeomorphic to the boundary of a small tubular neighbourhood of C from which the intersection with  $\Gamma$  has been removed. This topology may be relatively complicated, because of the possible presence of the arborification of C (if C is just a cycle, without attached trees, then  $\Omega_n$  is diffeomorphic to  $\mathbb{T}^2 \times (0,1)$ , for every  $n \geq 1$ ). Remark that we do not claim, in the previous lemma, that  $\Omega_0$  is connected too: W could have a compact connected component, far from C. But, anyway,

 $\Omega_0$  contains precisely one noncompact connected component, the one with boundary  $T_0$ , and this component will be denoted by N.

Consider now the Levi foliation on W, restricted to the compact connected threefold with boundary

$$\overline{N} = N \cup T_0.$$

Denote this foliation by  $\mathcal{F}$ , and note that it is transverse to the boundary, where it restricts to a linear foliation with slope  $\beta/\mu$  (see (3) above).

### **Lemma 2.3.** Every leaf of $\mathcal{F}$ intersects the boundary.

Proof: On a neighbourhood of  $\overline{N}$  in S the function F induces a function  $F_1$  (as usual, unique up to multiplication by a power of  $\lambda$ ). The Levi foliation on  $\overline{N}$  is then defined by the closed 1-form  $\omega = d^c F_1|_{\overline{N}}$ . It is then a standard fact that, depending on the periods of  $\omega$ , either  $\mathcal{F}$  is a proper fibration over the circle, or every leaf of  $\mathcal{F}$  is dense in  $\overline{N}$ . In both cases the conclusion is evident.

The torus  $T_0$  is also boundary of a solid torus  $B_0 \subset \Gamma \subset S$ . Take now

$$M = N \cup T_0 \cup B_0$$
.

It is a compact Levi-flat hypersurface with corners, which satisfies all the requirements of Theorem 3.1 of the next section. Hence, we deduce from that theorem that M can be perturbed to a smooth strictly pseudoconvex hypersurface  $\widetilde{M}$ . Moreover,  $\widetilde{M}$  is certainly not homologous to zero in S: its intersection number with a generator of  $\pi_1(C)$  (the loop  $\eta$  of Lemma 2.2) is equal to  $\pm 1$ . We can therefore apply the result of [Br1] and conclude that S is a Kato surface (of hyperbolic type, since we have already excluded the Enoki case).

## 3. Levi-flat hypersurfaces with corners

Here we switch to a more general context, and work on an arbitrary (not necessarily compact) complex surface X.

We shall say that a closed connected subset  $M \subset X$  is a Levi-flat hypersurface with corners if for every  $p \in M$  there exists a neighbourhood  $U_p$  of p in X, with coordinates (z, w), such that  $M \cap U_p$  is expressed either by

$$\{\operatorname{Im} z = 0\}$$

Referee's note: the one whose closure has  $T_0$  as boundary.

Referee's note: cf. Theorem 9.1.4, p. 206 in: A. Candel, L. Conlon, Foliations I, GSM vol. 23, Amer. Math. Soc., 2000.

or by

$$\{\operatorname{Im} z = 0, \operatorname{Im} w \le 0\} \cup \{\operatorname{Im} w = 0, \operatorname{Im} z \le 0\}.$$

Thus, there is a smooth part  $M^0$ , where the first representation holds, and a singular part  $M^1$ . If  $M_j^1$  is a connected component of  $M^1$ , then we have locally (on  $M_j^1$ ) two smooth pieces of M adjacent to  $M_j^1$ . To simplify the matter, we shall suppose that even globally we have two different connected components of  $M^0$  adjacent to  $M_j^1$  (instead of only one adjacent two times). Therefore, the closure  $\overline{M_k^0}$  of a connected component  $M_k^0$  of  $M^0$  is an embedded connected threefold with boundary  $\partial M_k^0 = \bigcup_{j \in I_k} M_j^1$ .

Every  $\overline{M_k^0}$  is a Levi-flat hypersurface with boundary. We shall denote by  $\mathcal{F}_k$  its Levi foliation; note that it is transverse to the boundary. Moreover, if  $M_j^1$  is a commont component of  $\partial M_k^0$  and  $\partial M_h^0$ , then the two boundary foliations  $\mathcal{F}_k|_{M_j^1}$  and  $\mathcal{F}_h|_{M_j^1}$  are mutually transverse.

**Example 3.1.** Take the standard totally real torus  $T = \{|z| = |w| = 1\} \subset \mathbb{C}^2$ . Take two real analytic mutually transverse foliations  $\mathcal{L}_1$  and  $\mathcal{L}_2$  on T. These foliations can be complexified: there exists, on some neighbourhood V of T, two holomorphic foliations  $\mathcal{F}_1$  and  $\mathcal{F}_2$  whose traces on T are  $\mathcal{L}_1$  and  $\mathcal{L}_2$ . Let now  $M_j$  be the saturation of T by  $\mathcal{F}_j$ , i.e. the union of the leaves of  $\mathcal{F}_j$  intersecting T. Then, if V is sufficiently small,  $M_1$  and  $M_2$  are real analytic Levi-flat hypersurfaces in V, intersecting transversely along T. By taking only "half" of  $M_1$  and  $M_2$  we get a Levi-flat hypersurface with corners in V.

Remark that a Levi-flat hypersurface with corners is, in particular, a topological manifold, and so the notion of orientability makes sense. If M is orientable, then every connected component of  $M^1$  is also orientable (being two-sided in M), and hence, when compact, it is a totally real torus. It is then not difficult to see that the previous example gives a universal local model for M around such a component of  $M^1$ .

If M is orientable and  $U \subset X$  is a tubular neighbourhood, then  $U \setminus M$  has two connected components. If  $V_j \subset U$  is a tubular neighbourhood of  $M_j^1$ , then  $V_j \setminus (M \cap V_j)$  has also two connected components, a "pseudoconvex" one  $V_j^+$  and a "pseudoconcave one"  $V_j^-$ : if M is locally expressed by  $\{\operatorname{Im} z = 0, \operatorname{Im} w \leq 0\} \cup \{\operatorname{Im} w = 0, \operatorname{Im} z \leq 0\}$  around a point of  $M_j^1$ , then  $V_j^+$  is the component containing  $\{\operatorname{Im} z < 0, \operatorname{Im} w < 0\}$ . We shall say that M has a pseudoconvex side if all the  $\{V_j^+\}$  are contained in the same connected component of  $U \setminus M$ , which will henceforth be denoted by  $U^+$  (and the other by  $U^-$ ).

It is rather evident that if M does not have a pseudoconvex side, then there is no hope for approximating M by strictly pseudoconvex smooth hypersurfaces. In order to do such an approximation when a pseudoconvex side exists, we shall need an additional dynamical assumption, which will allow to propagate the strict pseudoconvexity concentrated on  $M^1$  to the full M. This is somewhat related to the approximation of confoliations by contact structures  $[\mathbf{E}\mathbf{-T}]$ .

**Theorem 3.1.** Let  $M \subset X$  be a compact, connected, orientable, Leviflat hypersurface with corners, admitting a pseudoconvex side. Suppose that for every smooth piece  $\overline{M_k^0}$  the Levi foliation  $\mathcal{F}_k$  has the following property: every leaf of  $\mathcal{F}_k$  intersects the boundary  $\partial M_k^0$ . Then M can be  $C^0$ -approximated by smooth strictly pseudoconvex hypersurfaces.

For the proof we shall need the following general fact.

**Proposition 3.1.** Let N be a compact, connected, orientable manifold with boundary (of arbitrary dimension n), equipped with a smooth foliation by Riemann surfaces  $\mathcal{F}$ , transverse to the boundary and such that every leaf intersects the boundary. Then there exists a smooth function  $\varphi$  on N which is strictly subharmonic along the leaves of  $\mathcal{F}$ .

*Proof:* It is sufficient to prove the following: for every  $p \in N$  there exists  $\varphi \in C^{\infty}(N)$  such that  $\Delta_{\mathcal{F}}\varphi \geq 0$  and  $(\Delta_{\mathcal{F}}\varphi)(p) > 0$ . Here  $\Delta_{\mathcal{F}}$  is the foliated laplacian with respect to a hermitian metric on the leaves.

Set  $P = \{z \in \mathbb{C} \mid |z| < 2, \text{Re } z \geq 0\}, \ Q = \{z \in \mathbb{C} \mid |z| < 1, \text{Re } z \geq 0\}$ . Since the leaf through p intersects  $\partial N$ , we can find an embedding (foliated chart)  $j \colon P \times \mathbb{R}^{n-2} \to N$ , sending boundary to boundary, such that  $j^*(\mathcal{F})$  is the horizontal foliation (with leaves  $P \times \{t\}, \ t \in \mathbb{R}^{n-2}$ ) and  $j(\frac{1}{2}, 0) = p$ . We may also require that  $j|_{P \times \{t\}}$  is holomorphic for every t, with respect to the complex structure on the leaves of  $\mathcal{F}$ .

Take on P a smooth function  $\varphi_0$  such that:

- (i) Supp $(\varphi_0) \subset Q$ ;
- (ii)  $\Delta \varphi_0 \geq 0$  on P;
- (iii)  $(\Delta \varphi_0)(\frac{1}{2}) > 0$ .

It is evident that such a function exists. Let  $\chi \in C^{\infty}_{\mathrm{cpt}}(\mathbb{R}^{n-2})$  be a nonnegative function with  $\chi(0) > 0$ . Set  $\varphi_1(z,t) = \chi(t) \cdot \varphi_0(z)$ . Then  $j_*\varphi_1$  can be extended, by zero, to the full N. The resulting  $\varphi \in C^{\infty}(N)$  satisfies  $\Delta_{\mathcal{F}}\varphi \geq 0$  and  $(\Delta_{\mathcal{F}}\varphi)(p) > 0$ .

Remark 3.1. A variant of this construction produces  $\varphi \in C^{\infty}(N \setminus \partial N)$  strictly subharmonic along the leaves and exhaustive  $(\varphi(p) \to +\infty$  as p tends to  $\partial N$ ).

Let us now turn to the proof of Theorem 3.1.

Take a smooth piece  $\overline{M_k^0}$  and a small tubular neighbourhood  $U_k \subset X$  of it; we may assume that  $\overline{M_k^0}$  prolonges to a real analytic hypersurface  $\widetilde{M_k^0}$  (without boundary) properly embedded in  $U_k$ , so that  $M_k^0$  is a relatively compact domain in  $\widetilde{M_k^0}$ . Up to shrinking  $U_k$  around  $\overline{M_k^0}$  (an operation that we will do again without further noticing), we dispose on  $U_k$  of a strictly plurisubharmonic function: it is sufficient to take

$$\psi = g_0^2 + \varepsilon \varphi,$$

where  $g_0$  is any defining function of  $M_k^0$ ,  $\varphi$  is the function provided by Proposition 3.1, smoothly extended to  $U_k$  in any way, and  $\varepsilon > 0$  is sufficiently small. Indeed, at points of  $\overline{M_k^0}$  we have  $dd^cg_0 = 2dg_0 \wedge d^cg_0$ , which is semipositive with Kernel  $T^{\mathbb{C}}\overline{M_k^0}$ , and  $dd^c\varphi$  is strictly positive on that Kernel.

**Lemma 3.1.** There exists a defining function g of  $\widetilde{M_k^0}$  such that  $-\log|g|$  is strictly plurisubharmonic on  $U_k \setminus \widetilde{M_k^0}$ .

Proof: Start with the defining function  $g_0$  already used before. Around a point of  $\widetilde{M_k^0}$  choose coordinates (z,w) such that  $\widetilde{M_k^0}$  corresponds to  $\{\operatorname{Im} z=0\}$ , so that  $g_0=e^{-h}\cdot\operatorname{Im} z$  for some h smooth. Then  $dd^c(-\log|g_0|)=dd^ch+dd^c(-\log|\operatorname{Im} z|)$  admits a lower bound outside  $\operatorname{Im} z=0$ , since the first term is bounded and the second one is positive. Thus, by compactness of  $\overline{M_k^0}$ , there exists a (possibly negative) constant C such that  $dd^c(-\log|g_0|)>C\cdot dd^c\psi$  on  $U_k\setminus\widetilde{M_k^0}$ . It is then sufficient to take  $g=e^{-|C|\cdot\psi}\cdot g_0$ .

The level sets

$$\widetilde{M_{k\,\varepsilon}^0} = \{g = \varepsilon\}, \quad \varepsilon \neq 0$$

are therefore smooth strictly pseudoconvex hypersurfaces converging to  $\widetilde{M_k^0}$  as  $\varepsilon \to 0$ , from both sides.

Remark 3.2. The domains  $\{|g| < \varepsilon\}$ ,  $\varepsilon > 0$ , constitute a basis of strictly pseudoconcave neighbourhoods of  $\widetilde{M_k^0}$ . As observed in [F-L], the existence of a basis of strictly pseudoconvex neighbourhoods is a more subtle problem, involving for instance the holonomy of the foliation.

We apply Lemma 3.1 to every piece  $\overline{M_k^0}$  of M, getting strictly pseudoconvex hypersurfaces  $\widetilde{M_{k,\varepsilon}^0}$  in the *pseudoconvex side* of M.

Referee's note:  $dd^c(g_0^2) = 2dg_0 \wedge d^c g_0$ .



If  $\widetilde{M_k^0}$  and  $\widetilde{M_h^0}$  intersect along some torus  $M_j^1$ , then  $\widetilde{M_{k,\varepsilon}^0}$  and  $\widetilde{M_{h,\varepsilon}^0}$  intersect along some still totally real torus  $M_{j,\varepsilon}^1$ . We define  $M_{k,\varepsilon}^0 \subset \widetilde{M_{k,\varepsilon}^0}$  as the relatively compact domain bounded by those tori, so that the subset

$$M_{\varepsilon} = \left(\bigcup_{k} M_{k,\varepsilon}^{0}\right) \cup \left(\bigcup_{j} M_{j,\varepsilon}^{1}\right)$$

is a topological manifold with corners close to M, strictly pseudoconvex in its smooth part.

It remains to smooth the corners of  $M_{\varepsilon}$ . To do so, observe that in some neighbourhood W of  $M_{j,\varepsilon}^1$  the hypersurface  $M_{\varepsilon}$  can be expressed by

$$\{\operatorname{Max}(g_k, g_h) = 0\},\$$

where  $g_k$  and  $g_h$  are smooth strictly plurisubharmonic functions defining  $M_{k,\varepsilon}^0$  and  $M_{h,\varepsilon}^0$ . Let  $\operatorname{Max}_\delta\colon\mathbb{R}^2\to\mathbb{R}$  be a regularized maximum function (i.e. a smooth convex function equal to Max outside an euclidean  $\delta$ -neighbourhood of the diagonal). Then  $\operatorname{Max}_\delta(g_k,g_h)$  is smooth and strictly plurisubharmonic, and for  $\delta$  sufficiently small its zero set is a smooth and strictly pseudoconvex hypersurface in W, close to  $M_\varepsilon\cap W$  and equal to it ouside a compact subset of W. It is sufficient now to replace  $M_\varepsilon\cap W$  with that smooth hypersurface.

#### References

- [Br1] M. Brunella, Un complément à l'article de Dloussky sur le colmatage des surfaces holomorphes, Ann. Inst. Fourier (Grenoble) 58(5) (2008), 1723–1732. DOI: 10.5802/aif.2396.
- [Br2] M. Brunella, A characterization of Inoue surfaces, Comment. Math. Helv. 88(4) (2013), 859–874. DOI: 10.4171/CMH/305.
- [Dlo] G. Dloussky, Structure des surfaces de Kato, Mém. Soc. Math. France (N.S.) 14 (1984), 120 pp.
- [D-O] G. DLOUSSKY AND K. OELJEKLAUS, Vector fields and foliations on compact surfaces of class VII<sub>0</sub>, Ann. Inst. Fourier (Grenoble) 49(5) (1999), 1503–1545.
- [E-T] Y. M. ELIASHBERG AND W. P. THURSTON, "Confoliations", University Lecture Series 13, American Mathematical Society, Providence, RI, 1998.
- [F-L] F. FORSTNERIČ AND C. LAURENT-THIÉBAUT, Stein compacts in Levi-flat hypersurfaces, *Trans. Amer. Math. Soc.* **360(1)** (2008), 307–329 (electronic). DOI: 10.1090/S0002-9947-07-04263-8.
- [Kat] MA. KATO, Compact complex manifolds containing "global" spherical shells. I, in: "Proceedings of the International Symposium on Algebraic Geometry" (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store, Tokyo, 1978, pp. 45–84.
- [Nak] I. NAKAMURA, Classification of non-Kähler complex surfaces, (Japanese), Sügaku 36(2) (1984), 110–124; Translated in Sugaku Expositions 2(2) (1989), 209–229.

Institut de Mathématiques de Bourgogne UMR 5584 9 Avenue Savary 21078 Dijon France

Primera versió rebuda el 8 de març de 2013, darrera versió rebuda el 18 de juliol de 2013.