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Abstract: We give a characterization of hyperbolic Kato surfaces in terms of the

existence of an automorphic Green function on a cyclic covering. This is achieved by
analysing a naturally defined Levi-flat foliation, and by perturbing certain Levi-flat

leaves to strictly pseudoconvex hypersurfaces.
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1. Introduction

Kato surfaces are important examples of compact complex surfaces
with first Betti number equal to 1, discovered by Kato more that 30
years ago [Kat], see also [Dlo] and [Nak, §5]. They occupy a central
place in the current speculative theory of non-Kählerian surfaces. It is
customary today to divide the class of Kato surfaces into three disjoint
subclasses:

(1) Enoki surfaces (σn = 2n in the terminology of [Dlo]), which can
be also described as exceptional compactifications of affine bundles
over elliptic curves [Nak, §4.5];

(2) Kato surfaces of intermediate type (2n < σn < 3n);
(3) Inoue-Hirzebruch surfaces (σn = 3n), discovered by Inoue prior to

Kato by a very different construction [Nak, §4.1 and §4.3].

There is a fundamental difference between class (1) and classes (2)
and (3), coming from the results of [D-O]. If S belongs to class (2) or (3),
then S admits a Green function, i.e. a multiplicatively automorphic nega-

tive function on the universal covering S̃ which is pluriharmonic outside

an analytic subset Z ⊂ S̃, along which the function has logarithmic

†Note of the editors: this paper was submitted after Marco Brunella had passed away,
following his family’s will. We added four footnotes including referee’s remarks. We
thank Laurent Meersseman for his help.
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poles. Such a function, which is moreover unique up to a multiplicative
constant, cannot exist on surfaces of class (1).

Due to this dichotomy, we shall refer to surfaces of class (2) or (3)
as hyperbolic Kato surfaces, and to those of class (1) as parabolic Kato
surfaces.

Our aim is to give a characterization of hyperbolic Kato surfaces in
terms of existence of a Green function with nonempty polar set. This
is analogous to the result of [Br2] giving a characterization of Inoue
surfaces (another important class of non-Kählerian surfaces, see [Nak,
§3]) in terms of existence of a Green function without poles.

Theorem 1.1. Let S be a compact connected complex surface of alge-
braic dimension zero. Suppose that there exists an infinite cyclic covering

π : S̃ → S and a negative plurisubharmonic function F : S̃ → [−∞, 0)
such that:

(i) F ◦ ϕ = λ · F for some positive λ, where ϕ : S̃ → S̃ is a generator
of the group of deck transformations;

(ii) ddcF is supported on an analytic subset Z ⊂ S̃;
(iii) Z 6= ∅.

Then S is a (possibly blown up) Kato surface.

Even if this statement is formally close to [Br2] (where Z = ∅), its
proof follows a completely different path. The main idea is the follow-
ing. The function F induces on S a (singular) codimension one real
foliation H, the leaves of which are noncompact Levi-flat hypersurfaces,
spiralling around an arboreal cycle of rational curves. Using the non-
emptyness of Z, we shall be able to “approximate” such a Levi-flat leaf
by a compact strictly pseudoconvex hypersurface in S, not homologous
to zero. Then the conclusion will be a consequence of [Br1].

The main technical point is therefore a result on the approximation
of Levi-flat hypersurfaces with corners by smooth strictly pseudoconvex
hypersurfaces, whose statement and proof will be given in the last part of
the paper (Theorem 3.1), under a degree of generality going far beyond
the context of Theorem 1.1.

2. Proof of Theorem 1.1 modulo Theorem 3.1

Let S satisfy the assumptions of Theorem 1.1. As in [Br2, §1], we
may also suppose that S is minimal, and then Enriques-Kodaira classi-
fication leads to see that S belongs to the class VII0, that is b1(S) = 1
and kod(S) = −∞. Moreover, S cannot be a Hopf surface nor an Enoki
surface: indeed, those surfaces contain a Zariski-open subset uniformised
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by C2, and this fact clearly prevents the existence of a nonconstant neg-
ative plurisubharmonic function on some covering (Liouville’s theorem).

Denote by {Zj}j∈I the irreducible components of Z, so that

ddcF =
∑
j∈I

µj · δZj

for suitable positive real numbers {µj}j∈I . Here, as usual, δZj
denotes

the integration current on Zj . The function F is equal to −∞ on Z

(logarithmic poles) and is finite and pluriharmonic on S̃ \ Z.
Since F ◦ϕ = λ·F , the set Z is ϕ-invariant, and so it projects to an an-

alytic subset C ⊂ S. By results of Kodaira, Enoki and Nakamura [Nak,
§6 and §7], each irreducible component of C is a rational curve, and
each connected component is either a tree of rational curves or a cycle
of rational curves with possibly some trees attached (an arboreal cycle).
Moreover, the intersection form of such a component is negative definite,
so that the component is contractible to a normal singularity.

Lemma 2.1. Every connected component of C is a (arboreal) cycle of
rational curves.

Proof: Suppose, by contradiction, that C0 is a connected component of
tree type. Then C0 is simply connected, and some neighbourhood U

of C0 lifts isomorphically to S̃. We obtain from F a function F0 : U →
[−∞, 0) such that ddcF0 is supported on C0. This means that a non-
trivial linear combination of the irreducible components of C0 is ddc-co-
homologous to zero. But this contradicts the fact that the intersection
form of C0 is negative definite.

In particular, and since C 6= ∅, it follows from a result of Naka-
mura [Nak, §8] that S is a degeneration of blown up Hopf surfaces, i.e.
there exists a family of surfaces over the disc {S}t∈D such that S0 = S
and St is a blown up Hopf surface for every t 6= 0. This fact will allow
later to use the result of [Br1].

Still by Nakamura’s results [Nak, §7] we may (and will) suppose that
C is connected, and that the inclusion of C into S induces an isomor-
phism between fundamental groups (otherwise S is an Inoue-Hirzebruch
surface and the proof is done).

Referee’s note: this is obtained from a suitable version of the so-called “Federer
Support Theorem”, cf. Corollary 2.14, p. 143 in: J. P. Demailly, Complex Ana-
lytic and Differential Geometry, http://www-fourier.ujf-grenoble.fr/∼demailly/
manuscripts/agbook.pdf.
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The function F |S̃\Z induces a real analytic (singular) fibration

f = log(−F ) : S \ C −→ S1 = R/(log λ) · Z.

The level sets of f and the curve C may be informally thought as a
singular codimension one foliation H on S. A regular level set of f is
a leaf (or a union of leaves) which is properly embedded in S \ C and
accumulates to the full C, by spiralling around it.

Let us be more precise. Take an embedded real analytic circle γ ⊂
C, not passing through the singularities (nodes) of C, such that C \
γ is connected. This is possible since C is an arboreal cycle; thus γ is
contained in one of the irreducible components of C which compose
the cycle inside C, and in that component γ separates the two nodes
corresponding to the intersection with the other components of the cycle.
Because γ is homotopic to zero in S (being contained in a rational curve),
the function F induces a function F0 on a neighbourhood of γ, uniquely
defined up to multiplication by λn, n ∈ Z. This function F0 has a
logarithmic pole along C, and we can find holomorphic coordinates (z, w)
on a neighbourhood V of γ such that:

(1) C ∩ V = {w = 0};
(2) γ = {w = 0, |z| = 1};
(3) F0 = µ · log |w|+ β · log |z|, for some µ > 0 and β ∈ R.

Here z takes values in an annulus {1 − ε < |z| < 1 + ε} and w in
a disc {|w| < ε}, for some ε > 0 (and ε < 1, since F0 is negative).
The existence of those coordinates follows from the easy fact that a
closed logarithmic 1-form with poles on C can be put in the normal
form µdww + β dzz , around γ.

Let Γ denote the solid torus embedded in V corresponding to the
points with |z| = 1. Remark that it is a Levi-flat hypersurface, foliated
by the holomorphic discs {z = c}, c ∈ γ.

Take now a regular level set of f , W = Wt = f−1(t). Since F is pluri-

harmonic on S̃ \Z, W is a real analytic Levi-flat hypersurface, properly
embedded in S \ C. It intersects V along the level sets F−10 (−λnet),
n ∈ Z, and Γ along the countable collection of tori

Tn = {|z| = 1, |w| = rn}, n ≥ 0,

where {rn} ⊂ (0, ε) is a sequence decreasing to 0 (and, more explicitely,
given recursively by log rn = λ±n · log r0, with the sign ± chosen depend-
ing on the sign of λ− 1).



Hyperbolic Kato Surfaces 255

Lemma 2.2. We have

W \
⋃
n≥0

Tn =
⋃
n≥0

Ωn,

where each Ωn is open and relatively compact in W , and moreover:

(i) ∂Ω0 = T0;
(ii) Ωn is connected and ∂Ωn = Tn − Tn−1 for every n ≥ 1.

Proof: Let η : [0, 1]→ C be a closed path generating π1(C), starting and
ending at some point of γ. It can be lifted to W , as a (nonclosed) path
starting at some point of Tn (n large) and ending at some point of Tn+`:
this is just the holonomy of H along η, in a mildly singular context.
Now, η is also a generator of π1(S), and this means that if we prolonge
F0 along η then, when we return to V , we get λ±1F0. In other words,
we must have ` = ±1. It follows that Tn and Tn−1 bound a relatively
compact domain Ωn ⊂ W , and T0 bounds a relatively compact open
subset Ω0 ⊂W .

Ω1

Ω0

T0
T1

C

Γ

γ

It is also easy to control the topology of the domains Ωn, n ≥ 1: each
one is diffeomorphic to the boundary of a small tubular neighbourhood
of C from which the intersection with Γ has been removed. This topology
may be relatively complicated, because of the possible presence of the
arborification of C (if C is just a cycle, without attached trees, then
Ωn is diffeomorphic to T2 × (0, 1), for every n ≥ 1). Remark that we
do not claim, in the previous lemma, that Ω0 is connected too: W
could have a compact connected component, far from C. But, anyway,
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Ω0 contains precisely one noncompact connected component, the one
with boundary T0, and this component will be denoted by N .

Consider now the Levi foliation on W , restricted to the compact con-
nected threefold with boundary

N = N ∪ T0.

Denote this foliation by F , and note that it is transverse to the boundary,
where it restricts to a linear foliation with slope β/µ (see (3) above).

Lemma 2.3. Every leaf of F intersects the boundary.

Proof: On a neighbourhood of N in S the function F induces a func-
tion F1 (as usual, unique up to multiplication by a power of λ). The
Levi foliation on N is then defined by the closed 1-form ω = dcF1|N . It
is then a standard fact that, depending on the periods of ω, either F is
a proper fibration over the circle, or every leaf of F is dense in N . In
both cases the conclusion is evident.

The torus T0 is also boundary of a solid torus B0 ⊂ Γ ⊂ S. Take now

M = N ∪ T0 ∪B0.

It is a compact Levi-flat hypersurface with corners, which satisfies all
the requirements of Theorem 3.1 of the next section. Hence, we deduce
from that theorem that M can be perturbed to a smooth strictly pseu-

doconvex hypersurface M̃ . Moreover, M̃ is certainly not homologous to
zero in S: its intersection number with a generator of π1(C) (the loop η
of Lemma 2.2) is equal to ±1. We can therefore apply the result of [Br1]
and conclude that S is a Kato surface (of hyperbolic type, since we have
already excluded the Enoki case).

3. Levi-flat hypersurfaces with corners

Here we switch to a more general context, and work on an arbitrary
(not necessarily compact) complex surface X.

We shall say that a closed connected subset M ⊂ X is a Levi-flat
hypersurface with corners if for every p ∈ M there exists a neighbour-
hood Up of p in X, with coordinates (z, w), such that M∩Up is expressed
either by

{Im z = 0}

Referee’s note: the one whose closure has T0 as boundary.
Referee’s note: cf. Theorem 9.1.4, p. 206 in: A. Candel, L. Conlon, Foliations I, GSM
vol. 23, Amer. Math. Soc., 2000.
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or by

{Im z = 0, Imw ≤ 0} ∪ {Imw = 0, Im z ≤ 0}.
Thus, there is a smooth part M0, where the first representation holds,
and a singular part M1. If M1

j is a connected component of M1, then

we have locally (on M1
j ) two smooth pieces of M adjacent to M1

j . To
simplify the matter, we shall suppose that even globally we have two
different connected components of M0 adjacent to M1

j (instead of only

one adjacent two times). Therefore, the closure M0
k of a connected com-

ponent M0
k of M0 is an embedded connected threefold with boundary

∂M0
k = ∪j∈IkM1

j .

Every M0
k is a Levi-flat hypersurface with boundary. We shall de-

note by Fk its Levi foliation; note that it is transverse to the boundary.
Moreover, if M1

j is a commont component of ∂M0
k and ∂M0

h , then the
two boundary foliations Fk|M1

j
and Fh|M1

j
are mutually transverse.

Example 3.1. Take the standard totally real torus T = {|z| = |w| =
1} ⊂ C2. Take two real analytic mutually transverse foliations L1 and L2

on T . These foliations can be complexified: there exists, on some neigh-
bourhood V of T , two holomorphic foliations F1 and F2 whose traces
on T are L1 and L2. Let now Mj be the saturation of T by Fj , i.e. the
union of the leaves of Fj intersecting T . Then, if V is sufficiently small,
M1 and M2 are real analytic Levi-flat hypersurfaces in V , intersecting
transversely along T . By taking only “half” of M1 and M2 we get a
Levi-flat hypersurface with corners in V .

Remark that a Levi-flat hypersurface with corners is, in particular, a
topological manifold, and so the notion of orientability makes sense. If
M is orientable, then every connected component of M1 is also orientable
(being two-sided in M), and hence, when compact, it is a totally real
torus. It is then not difficult to see that the previous example gives a
universal local model for M around such a component of M1.

If M is orientable and U ⊂ X is a tubular neighbourhood, then U \M
has two connected components. If Vj ⊂ U is a tubular neighbourhood
of M1

j , then Vj \ (M ∩ Vj) has also two connected components, a “pseu-

doconvex” one V +
j and a “pseudoconcave one” V −j : if M is locally ex-

pressed by {Im z = 0, Imw ≤ 0} ∪ {Imw = 0, Im z ≤ 0} around a point
of M1

j , then V +
j is the component containing {Im z < 0, Imw < 0}. We

shall say that M has a pseudoconvex side if all the {V +
j } are contained

in the same connected component of U \M , which will henceforth be
denoted by U+ (and the other by U−).
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It is rather evident that if M does not have a pseudoconvex side, then
there is no hope for approximating M by strictly pseudoconvex smooth
hypersurfaces. In order to do such an approximation when a pseudo-
convex side exists, we shall need an additional dynamical assumption,
which will allow to propagate the strict pseudoconvexity concentrated
on M1 to the full M . This is somewhat related to the approximation of
confoliations by contact structures [E-T].

Theorem 3.1. Let M ⊂ X be a compact, connected, orientable, Levi-
flat hypersurface with corners, admitting a pseudoconvex side. Suppose

that for every smooth piece M0
k the Levi foliation Fk has the following

property: every leaf of Fk intersects the boundary ∂M0
k . Then M can be

C0-approximated by smooth strictly pseudoconvex hypersurfaces.

For the proof we shall need the following general fact.

Proposition 3.1. Let N be a compact, connected, orientable manifold
with boundary (of arbitrary dimension n), equipped with a smooth foli-
ation by Riemann surfaces F , transverse to the boundary and such that
every leaf intersects the boundary. Then there exists a smooth function ϕ
on N which is strictly subharmonic along the leaves of F .

Proof: It is sufficient to prove the following: for every p ∈ N there exists
ϕ ∈ C∞(N) such that ∆Fϕ ≥ 0 and (∆Fϕ)(p) > 0. Here ∆F is the
foliated laplacian with respect to a hermitian metric on the leaves.

Set P = {z ∈ C | |z| < 2, Re z ≥ 0}, Q = {z ∈ C | |z| < 1, Re z ≥
0}. Since the leaf through p intersects ∂N , we can find an embedding
(foliated chart) j : P ×Rn−2 → N , sending boundary to boundary, such
that j∗(F) is the horizontal foliation (with leaves P × {t}, t ∈ Rn−2)
and j( 1

2 , 0) = p. We may also require that j|P×{t} is holomorphic for
every t, with respect to the complex structure on the leaves of F .

Take on P a smooth function ϕ0 such that:

(i) Supp(ϕ0) ⊂ Q;
(ii) ∆ϕ0 ≥ 0 on P ;
(iii) (∆ϕ0)( 1

2 ) > 0.

It is evident that such a function exists. Let χ ∈ C∞cpt(Rn−2) be a
nonnegative function with χ(0) > 0. Set ϕ1(z, t) = χ(t) · ϕ0(z). Then
j∗ϕ1 can be extended, by zero, to the full N . The resulting ϕ ∈ C∞(N)
satisfies ∆Fϕ ≥ 0 and (∆Fϕ)(p) > 0.

Remark 3.1. A variant of this construction produces ϕ ∈ C∞(N \ ∂N)
strictly subharmonic along the leaves and exhaustive (ϕ(p)→ +∞ as p
tends to ∂N).
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Let us now turn to the proof of Theorem 3.1.

Take a smooth piece M0
k and a small tubular neighbourhood Uk ⊂ X

of it; we may assume that M0
k prolonges to a real analytic hypersur-

face M̃0
k (without boundary) properly embedded in Uk, so that M0

k is a

relatively compact domain in M̃0
k . Up to shrinking Uk around M0

k (an
operation that we will do again without further noticing), we dispose
on Uk of a strictly plurisubharmonic function: it is sufficient to take

ψ = g20 + εϕ,

where g0 is any defining function of M̃0
k , ϕ is the function provided by

Proposition 3.1, smoothly extended to Uk in any way, and ε > 0 is

sufficiently small. Indeed, at points of M0
k we have ddcg0 = 2dg0 ∧ dcg0,

which is semipositive with Kernel TCM0
k , and ddcϕ is strictly positive

on that Kernel.

Lemma 3.1. There exists a defining function g of M̃0
k such that − log |g|

is strictly plurisubharmonic on Uk \ M̃0
k .

Proof: Start with the defining function g0 already used before. Around

a point of M̃0
k choose coordinates (z, w) such that M̃0

k corresponds to

{Im z=0}, so that g0 =e−h·Im z for some h smooth. Then ddc(− log|g0|)=
ddch + ddc(− log |Im z|) admits a lower bound outside Im z = 0, since
the first term is bounded and the second one is positive. Thus, by com-

pactness of M0
k , there exists a (possibly negative) constant C such that

ddc(− log |g0|) > C · ddcψ on Uk \ M̃0
k . It is then sufficient to take

g = e−|C|·ψ · g0.

The level sets

M̃0
k,ε = {g = ε}, ε 6= 0

are therefore smooth strictly pseudoconvex hypersurfaces converging

to M̃0
k as ε→ 0, from both sides.

Remark 3.2. The domains {|g| < ε}, ε > 0, constitute a basis of strictly

pseudoconcave neighbourhoods of M̃0
k . As observed in [F-L], the exis-

tence of a basis of strictly pseudoconvex neighbourhoods is a more subtle
problem, involving for instance the holonomy of the foliation.

We apply Lemma 3.1 to every piece M0
k of M , getting strictly pseu-

doconvex hypersurfaces M̃0
k,ε in the pseudoconvex side of M .

Referee’s note: ddc(g20) = 2dg0 ∧ dcg0.
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Uk

Uh

M0
h

M0
h,ε

M0
k,ε

M0
k

M1
j,ε

M1
j

If M̃0
k and M̃0

h intersect along some torus M1
j , then M̃0

k,ε and M̃0
h,ε

intersect along some still totally real torus M1
j,ε. We define M0

k,ε ⊂ M̃0
k,ε

as the relatively compact domain bounded by those tori, so that the
subset

Mε =

(⋃
k

M0
k,ε

)
∪

⋃
j

M1
j,ε


is a topological manifold with corners close to M , strictly pseudoconvex
in its smooth part.

It remains to smooth the corners of Mε. To do so, observe that in
some neighbourhood W of M1

j,ε the hypersurface Mε can be expressed
by

{Max(gk, gh) = 0},

where gk and gh are smooth strictly plurisubharmonic functions defin-

ing M̃0
k,ε and M̃0

h,ε. Let Maxδ : R2 → R be a regularized maximum

function (i.e. a smooth convex function equal to Max outside an eu-
clidean δ-neighbourhood of the diagonal). Then Maxδ(gk, gh) is smooth
and strictly plurisubharmonic, and for δ sufficiently small its zero set is
a smooth and strictly pseudoconvex hypersurface in W , close to Mε∩W
and equal to it ouside a compact subset of W . It is sufficient now to
replace Mε ∩W with that smooth hypersurface.
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Institut de Mathématiques de Bourgogne
UMR 5584

9 Avenue Savary
21078 Dijon
France

Primera versió rebuda el 8 de març de 2013,
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