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1. Introduction

An important problem of the theory of singularities of holomorphic
foliations in the complex plane is the construction of a geometric inter-
pretation of the so-called moduli of Mattei of these foliations [10]. These
moduli appear when one considers a very special kind of deformations
called the unfoldings. Basically, the moduli of Mattei are precisely the
moduli of germs of unfoldings of a given singular foliation: these nearly
correspond to the set of analytical invariants once the topology is fixed.
One of the major difficulty when looking at the mentionned geometric
description is the lack of basic examples of unfoldings in the literature.
Actually, except when the foliation is given by the level of a function,
there exists no example. The purpose of the following article is not to
solve the problem of Mattei even for the small class of singularities we
consider here, but rather to describe the latter as accuratly as possible
in order to start the study of the problem of moduli of Mattei.

The absolutely dicritical foliations of cusp type are good candidates
to begin this study for the following reasons:

(1) Their transversal structure, which usually is a very rich dynamic
invariant [9], is very poor and can be completely understood.

(2) Their number of Mattei moduli is 1.
(3) The topology of their leaves is more or less trivial.
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Some results in the article might be quite easily extended to a larger
class of absolutely dicritical foliations up to some technical and confusing
additions. We exclude to formally present them. The risk would have
been to miss the very first objective of this paper, that is, to give an
example.

A germ of singularity of foliation F in
(
C2, 0

)
is said to be absolutely

dicritical if there exists a sequence of blow-ups E such that E∗F is
regular and transverse to each irreducible component of the exceptional
divisor E−1 (0). It is of cusp type if two successive blow-ups are sufficient.
In that case the exceptional divisor E−1 (0) is the union of two irreducible
components P1 (C) of respective self-intersection −2 and −1. We denote
them respectively D−2 and D−1.

D−1

D−2
−1

−2

σ
D−2

D−1

p

Figure 1.1. An absolutely dicritical foliation of cusp
type and its transversal structure.

The expression cusp type insists on the fact that the special leaf that
passes through the singular point of the divisor is analytically equiva-
lent to the cuspidal singularity y2 + x3 = 0. The simplest examples of
an absolutely dicritical foliation are given by the levels of the rational
functions near (0, 0)

f =
y

x
or f =

y2 + x3

xy
.

The second example is of cusp type.
We associate to F a germ σ ∈ Diff ((D−2, p) , (D−1, p)) as in the

picture above. It is defined by the property that x ∈ D−2 and σ (x) ∈
D−1 belong to the same local leaf. This germ is called the transversal
structure of F . This is the very first invariant of such a foliation. For
the second rational function above, the transversal structure σ reduces
to the identity map in the standard coordinates associated to E.



Classification of Absolutely Dicritical Foliations of Cusp Type 335

The main result of this article is the following one: for any folia-
tion F that is absolutely dicritical of cusp type we consider its topolog-
ical class Top (F) , that is the set of all foliations topologically equiva-

lent to F . The moduli space Top (F)/∼ of F is defined as the quotient
of Top (F) by the analytical equivalence relation. Now we have,

Theorem 1. The class Top (F) is equal to the set of all absolutely di-

critical foliations of cusp type and its moduli space Top (F)/∼ can be
identified with the functional space C {z} up to the action of C∗ defined
by

ε · (z 7→ f (z)) = ε2f (εz) .

In this theorem, the germ of convergent series f is the image of the

transversal structure σ by the schwarzian derivative S (σ) = 3
2

(
σ′′′

σ′

)
−(

σ′′

σ′

)2

. A quick lecture of the theorem would suggest that the transversal

structure σ is the sole invariant of the foliation, which is not exactly true
as it is highlighted in Proposition 9.

We have to mention that there exist a lot of absolutely dicritical folia-
tions. Following a result due to F. Cano and N. Corral [3], the process E
does not contain any obstruction to the existence of absolutely dicritical
foliations. In other words, for any sequence of blow-ups E, there exists
an absolutely dicritical foliation whose associated process of blow-ups is
exactly E.

2. Topological classification

The topological classification is trivial as stated in Proposition 3 in the
sense that two absolutely dicritical foliations of cusp type are topologi-
cally equivalent. To prove that, we describe below the model foliations
from which the absolutely dicritical foliations are built.

2.1. Model foliations. Let us consider the following model radial fo-
liations

• R−2 is given by the gluing of two copies of C2

C2 = (x1, y1) , C2 = (x2, y2)

glued by x2 = 1
y1

and y2 = y2
1x1. The neighborhood of x1 = y2 = 0

is transversaly foliated by y1 = cst and x2 = cst. Topologically,
this is a foliated neighborhood of a Riemann surface of genus 0
whose self-intersection is −2.
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• R−1 is given by the gluing of two copies of C2

C2 = (x3, y3) , C2 = (x4, y4)

glued by x4 = 1
y3

and y4 = y3x3. The neighborhood of x3 = y4 = 0

is transversaly foliated by y3 = cst and x4 = cst. Topologically,
this is a foliated neighborhood of a Riemann surface of genus 0
whose self-intersection is −1.

Following [2], any neighborhood of a Riemann surface A of genus 0 em-
bedded in a manifold of dimension two with A · A = −2 (resp. −1)
and foliated by a transverse codimension 1 foliation is equivalent to R−2

(resp. R−1). Moreover any
(
C0, C∞, Cω

)
-isomorphism between two Rie-

mann surfaces A1 and A2 as before can be extended in a neighborhood
of A1 and A2 as a

(
C0, C∞, Cω

)
-conjugacy of the foliations.

2.2. Topological classification. Let us first recall the following lem-
ma:

Lemma 2. Let σ be a germ in Diff
(
P1, a

)
, i.e., a germ of automorphism

of a neighborhood of a in P1. Then there exists h a global homeomorphism
of P1 such that h and σ coincide in a neighborhood of a.

Proof: Let S1 be a small circle around a in a domain where σ is defined.
Its image σ (S1) is a topological circle. Consider S2 a second circle such
that the disc bounded by S2 contains S1 and σ (S1) . The two coronas
bounded respectively by S1 and S2 and σ (S1) and S2 are homeomorphic.

Actually, there exists an homeomorphism h̃ of the two coronas such that

h̃
∣∣∣
S2

= Id,

h̃
∣∣∣
S1

= σ.

Therefore, we can define the homeomorphism h in the following way: in
the disc bounded by S1, we set h = σ; in the corona bounded by S1

and S2, h = h̃; everywhere else we set h = Id. Clearly, h satifies the
properties in the lemma.

Proposition 3. Two absolutely dicritical foliations of cusp type are
topologically equivalent.

Proof: Let us consider F and G two absolutely dicritical foliations of
cusp type. Applying if necessary a linear change of coordinates to F for
instance, we can suppose that both foliations are reduced by exactly the
same sequence of two blow-ups E. Let us write E−1 (0) = D−2∪D−1 and
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D−2∩D−1 = {p} . Let us consider σF and σG in Diff ((D−2, p) , (D−1, p))
the transversal structures of F and G. According to the previous lemma,
there exists h an homeomorphism of D−2 such that h = σ−1

F ◦ σG in
a neighborhood of p in D−2. Since, along D−2 or D−1 the foliations
are transverse, there exist two homeomorphisms H−2 and H−1 defined
respectively in a neighborhood of D−2 and D−1 such that

H∗−2 (E∗F) = E∗G, H∗−1 (E∗F) = E∗G

and H−2|D−2
= h and H−1|D−1

= Id. Since h = σ−1
F ◦ σG , the auto-

morphism H−1 ◦H(−1)
−2 of E∗F lets each leaf invariant. Now, adapting

the argument of the previous lemma yields the existence of H, a global
homeomorphism of E∗F , defined in a neighborhood of D−1 letting each

leaf invariant such that H and H−1 ◦H(−1)
−2 coincide in a neighborhood

of p. Therefore the collection H−1 ◦H−1 and H−2 glue in a global home-
omorphism between E∗F and E∗G. This homeomorphism can be blown
down in a neighborhood of C2 and is a C0- conjugacy of the foliations F
and G.

As a consequence of the above result and the topological invariance
of the process of reduction [1], we obtain the following

Corollary 4. The class Top (F) is equal to the set of all absolutely
dicritical foliations of cusp type.

3. Moduli space

Consider a germ of biholomorphism φ written in the coordinates of
the model foliations

(x3, y3) = φ (x1, y1) , φ (0, 0) = (0, 0) .

Suppose that it sends the foliation defined by y1 = cst to the one defined
by y3 = cst and that the curve x1 = 0 is sent to a curve transverse
to x3 = 0. With such a biholomorphism, we can consider the foliation
obtained by gluing the two models foliations R−2 and R−1 with the
application φ denoted by

R−1

∐R−2/(φ).
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Figure 3.1. Gluing of the model foliations.

Following a classical result due to Castelnuovo (see [8]), this gluing is
analytically equivalent to the neighborhood of the exceptional divisor
obtained by a standard process of two successive blow-ups . The obtained
foliation can be blown down in an absolutely dicritical foliation of cusp
type at the origin of C2.

Remark 5 (Key Remark). Two foliations obtained by such a gluing with
the respective biholomorphisms φ and ψ are analytically equivalent if
and only if there exist an automorphism Φ2 of the foliation R−2 and Φ1

of the foliation R−1 such that

φ = Φ1 ◦ ψ ◦ Φ2.

Let us now consider σ ∈ Diff (C, 0), α ∈ C and the following biholo-
morphisms

gσ (x1, y1) = (x1 + σ (y1) , σ (y1)) and φα (x1, y1) = (x1 (1 + αy1) , y1) .

The composition gσ ◦ φα sends the foliation y1 = cst on it-self and
the curve x1 = 0 on the first bisectrix {y1 = x1}. Thus, we can denote
by Fσ,α the foliation obtained by the following gluing

Fσ,α := R−1

∐R−2/(gσ ◦ φα)

where a point p of R−1 is identified with the point gσ ◦ φα (p) of R−2.
Now, moving the parameter α, we obtain an analytical family of ab-

solutely dicritical foliations. Actually, the following property holds.

Theorem 6. The germ of deformation (Fσ,α)α∈(C,α0) for α in a neigh-

borhood of α0 in C is a germ of equisingular semi-universal unfolding
of Fσ,α0 in the sense of Mattei [10]. In particular, for any germ of eq-
uisingular unfolding (Ft)t∈(Cp,0) with p parameters such that Ft|t=0 ∼
Fσ,α0

, there exists a map α : (Cp, 0) → (C, α0) such that for all t,
Ft ∼ Fσ,α(t).
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Before proving the above result, let us recall that an unfolding of a
given foliation F is a germ F of codimension 1 foliation in

(
C2+p, 0

)
transversal to the fiber of the projection

π :

{(
C2+p, 0

)
→ (Cp, 0)

(x, t)→ t

such that F|π−1(0) ∼ F . The equisingularity property is a quite difficult

property to state. However, we can say that it means that the topology
of the process of desingularization of the family of foliations F|t=α does
not depend on α. For the details, we refer to [10].

Proof: Step 1: Let us prove that the deformation (Fσ,α)α∈(C,α0) of Fσ,α0

is induced by an unfolding. We can make the following thick gluing

F := R−1 × (C, α0)
∐R−2 × (C, α0)/(Ψ)

where R−i × (C, α0) stands for the product foliation – its leaves are the
product of a leaf of R−i and of an open neighborhood of α0 in C –
and Ψ is defined by

Ψ (x1, y1, α)→
(
(gσ ◦ φα0) ◦

(
φ−1
α0
◦ φα

)
(x1, y1) , α

)
.

The codimension 1-foliation F comes with a fibration defined by the
quotient of the map π : (p, α) → α whose fibers are transverse to the
foliation. Thus, the above gluing is an unfolding. Now, the restriction

F|π−1(α0) = R−1

∐R−2/(gσ ◦ φα0
) is equal to Fσ,α0

. Finally, it is equi-

singular by construction. Therefore, it satisfies all the properties of an
equisingular unfolding in the sense of Mattei.

Step 2: Let us consider the sheaf Θ whose base is the exceptional di-
visor E−1 (0) = D = D−2 ∪ D−1 of tangent vector fields to the fo-
liation E∗Fσ,α0

and to the divisor E−1 (0). The Cech cohomological
group H1 (D,Θ) represents the finite dimensional C-space of infinitesi-
mal unfoldings. Following [10], there exists a Kodaira-Spencer map like
that associates to any unfolding with parameters in (Cp, 0), its Kodaira
Spencer derivative which is a linear map from Cp to H1 (D,Θ). The
unfolding is semi-universal as in the theorem above if and only if its
Kodaira Spencer derivative is a linear isomorphism [10].

We consider the covering of the exceptional divisor E−1 (0) by two
open sets U1 and U2 where U1 and U2 correspond to tubular neighbor-
hoods of D−1 and D−2. It is known that this covering is acyclic with
respect to the sheaf Θ, i.e, H1 (D−i, Ui,Θ) = 0. Therefore, following [7]
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to compute the cohomological group H1 (D,Θ) we can use this covering,
that is to say, the following isomorphism

(3.1) H1 (D,Θ) ' H0 (U1 ∩ U2,Θ)

H0 (U1,Θ)⊕H0 (U2,Θ)
.

In view of the glued construction of Fσ,α0 , a 0-cocycle X12 in H0 (U1∩
U2,Θ) is trivial in H1 (D,Θ) if and only if the cohomological equation

(3.2) X12 = X2 − (gσ ◦ φα0
)
∗
X1

admits a solution where X1 ∈ H0 (U1,Θ) and X2 ∈ H0 (U2,Θ). Now,
it is known [10], [3] that the dimension of the C space H1 (D,Θ) is 1.
Thus, to prove the result, it is enough to show that the image of the
deformation (Fσ,α)α∈(C,α0) by the Kodaira-Spencer map is not trivial in

H1 (D,Θ). The foliation Fσ,α is obtained from Fσ,α0
by gluing with the

automorphism

φ−1
α0
◦ φα (x1, y1) =

(
x1

1 + αy1

1 + α0y1
, y1

)
.

Thus, its image by the Kodaira-Spencer map is the cocycle

∂

∂α
φ−1
α0
◦ φα

∣∣∣∣
α=α0

=
x1y1

1 + α0y1

∂

∂x1
= x1y1

∂

∂x1
+ · · ·

Hence, the unfolding is semi-universal if and only if the equation

(3.3) x1y1
∂

∂x1
+ · · · = X2 − (gσ ◦ φα0

)
∗
X1

has no solution. This equation can be more precisely written in the
following way

x1y1
∂

∂x1
+ · · · = A2 (x1, y1)x1

∂

∂x1
− (gσ ◦ φα0

)
∗
(
A1 (x3, y3)x3

∂

∂x3

)
where A1 and A2 are functions respectively defined in U1 and U2. Let
us write the Taylor expansion of A2 =

∑
ij a

2
ijx

i
1y
j
1. In the coordi-

nates (x2, y2), the function A2 is written A2 =
∑
ij a

2
ijx

2i−j
2 yi2 and has

to be extendable at (x2, y2) = (0, 0) . Therefore, if a2
ij 6= 0 then 2i−j ≥ 0

and the monomial term y1 cannot appear in the Taylor expansion of A2.
In the same way, the Taylor expansion of A1 =

∑
ij a

1
ijx

i
3y
j
3, satisfies

a1
ij 6= 0⇒ i ≥ j. Since X1 vanishes along the exceptional divisor whose

trace in U1 is the diagonal x3 = y3, we have A1 = (x3 − y3) Ã1. Thus,
in the coordinates (x1, y1), X1 is written

X1 = Ã1 (x1 (1 + α0y1) + σ (y1) , σ (y1)) (x1 (1 + α0y1) + σ (y1))x1
∂

∂x1
.
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If Ã1 (0, 0) = 0 then the term y1x1
∂
∂x1

of the Taylor expansion of the

cocycle (3.3) cannot come from X1. However, if Ã1 (0, 0) 6= 0 then X1

cannot be global. Therefore, the equation (3.3) cannot be solved, which
proves the result.

We observe that Fσ,α is an unfolding over the whole set of parame-
ters C. Actually, from the above proof, we obtain a more precise result

Corollary 7. More generally, for any germ of function A (x, y) with
A (0, 0) 6= 0, the C-space H1 (D,Θ) for the glued foliation

R−1

∐R−2/(x1, y1)→ (x1A (x1, y1) + σ (y1) , σ (y1))

is generated by the cocycle image of x1y1
∂
∂x1

through the isomor-

phism (3.1). In particular, any deformation of the form

ε→ R−1

∐R−2/(x1, y1)→ (x1Aε (x1, y1) + σ (y1) , σ (y1))

where ∂Aε
∂y1

(0, 0) does not depend on ε is locally analytically trivial.

As a consequence, we obtain a theorem of normalization of the con-
struction of absolutely dicritical foliations of cusp type.

Theorem 8. Any absolutely dicritical foliation of cusp type is equivalent
to some Fσ,α.
Proof: Let us consider F an absolutely dicritical foliation of cusp type
and let E be its associated reduction. Since along each component of
the exceptional divisor the foliation is purely radial, following [2], there
exist two automorphisms Φ1 and Φ2 that conjugate F respectively to the
models R−1 and R−2 in the neighborhood of respectively D−1 and D−2.
The cocycle of gluing is thus written Φ1 ◦ Φ−1

2 . Applying if necessary a
global automorphism ofR−1 that lets each leaf invariant, we can suppose
that Φ1 ◦ Φ−1

2 sends the exceptional divisor x1 = 0 on the line x3 =
y3. Since the cocycle conjugates the foliations R−2 and R−1, it can be
written

(x1, y1) 7→ (x1A (x1, y1) + σ (y1) , σ (y1))

for some σ ∈ Diff (C, 0) and some A ∈ C {x1, y1} with A (0, 0) 6= 0.
Applying if necessary an automorphism of R−2 defined by (εx3, εy3) for
some ε 6= 0, we can suppose that A (0, 0) = 1. Now we can write the
cocycle

(x1, y1) 7→
(
x1

(
1 + αy1 + Ã (x1, y1)

)
+ σ (y1) , σ (y1)

)
,
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where no term of the form ay1 appears in Ã. According to the corollary,
the deformation parametrized by ε and defined by the gluing cocycle

(x1, y1) 7→
(
x1

(
1 + αy1 + εÃ (x1, y1)

)
+ σ (y1) , σ (y1)

)
is locally analytically trivial. Thus the foliations obtained setting ε = 1
and ε = 0 are analytically equivalent and setting ε = 0 yields a cocycle
of the desired form.

The couple (σ, α) is unique up to conjugacies that fix any point of the
exceptional divisor. However, once we authorize any kind of conjugacies,
this couple is not unique anymore. But the ambiguity can be described.

Proposition 9. Two normal forms Fσ,α and Fγ,α′ are conjugated if
and only if there are two homographies h0 and h1 such that

(3.4)

σ = h1 ◦ γ ◦ h0

2
5

(
α− 3

2
σ′′(0)
σ′(0)

)
= 2

5

(
α′ − 3

2
γ′′(0)
γ′(0)

)
h′0 (0)− h′′0 (0)

h′0(0) .

Proof: Step 1: In view of our gluing construction and following the
Key Remark 5, the existence of a conjugacy implies that there exist two
automorphisms of respectivelyR−2 andR−1 written Φ2 =(x1A2(x1, y1),
h0 (y1)) and Φ1 = (x3A1 (x3, y3) , h1 (y3)) such that

(x1 (1 + αy1) + σ (y1) , σ (y1))=Φ1 ◦ (x1 (1 + α′y1)+γ (y1) , γ (y1)) ◦ Φ2.

First, we obviously get the following relation σ = h1 ◦ γ ◦ h0. Moreover,
if we look at the first component of the above relation we get

x1 (1+αy1)+σ (y1)=(x1A2 (x1, y1) (1 + α′h0) + γ ◦ h0)

×A1 (x1A2 (x1, y1) (1 + α′h0)+γ ◦ h0, γ ◦ h0) .

If we compute the derivative ∂
∂x1

of the above relation and then set
x1 = 0, we get

(3.5) 1 + αy1 = A2 (0, y1) (1 + α′h0)

×
(
γ ◦ h0

∂A1

∂x1
(γ ◦ h0, γ ◦ h0) +A1 (γ ◦ h0, γ ◦ h0)

)
.

(1) Now, since Φ1 preserves the curve y = x, we obtain

A1 (x, x) =
h1 (x)

x
.

Thus, A1 (0, 0) = h′1 (0) . Setting y1 = 0 in the relation above, we
get 1 = A2 (0, 0)A1 (0, 0) . Therefore, A2 (0, 0) = 1

h′1(0) . Now, let us
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write the Taylor expansion of A1

A1 (x3, y3) = h′1 (0) + rx3 + sy3 + · · ·

Since, A1 (x, x) = h1(x)
x , we have r + s =

h′′1 (0)
2 . Now, the bi-

holomorphism (x3A1 (x3, y3) , h1 (y3)) is global: therefore, it can
be pushed down and extended at the origin of C2 as a local auto-
morphism written

(x, y) 7→
(
xA1

(
x,
y

x

)
, h1

(y
x

)
xA1

(
x,
y

x

))
.

The second component of this expression is written

y

αx+ βy

(
h′1 (0)x+ rx2 + sy + · · ·

)
where α = 1

h′1(0) and β = − h′′1 (0)

2h′1(0)2
. It is extendable at (0, 0) if

and only if the expression in parenthesis can be holomorphically
divided by αx + βy. Looking at the first jet of these expressions
leads to ∣∣∣∣β α

s h′1 (0)

∣∣∣∣ = 0 =⇒ s =
βh′1 (0)

α
= −h

′′
1 (0)

2
.

Finally, we have r = h′′1 (0) .

(2) In the same way, let us write the Taylor expansion of A2 (x1, y1) =
1

h′1(0) +uy1+vy2
1+· · · The second component of the expression of Φ2

in the coordinates (x2, y2) is y2x
2
2h

2
0

(
1
x2

)
A2

(
y2x

2
2,

1
x2

)
which is

equal to

y2

(α′x2 + β′)2

(
αx2

2 + ux2 + v + y2 (· · · )
)

where α′ = 1
h′0(0) and β′ = − h′′0 (0)

2h′0(0)2
. Since it is extendable at

x2 = −β′

α′ , there exists a constant Γ such that (α′x2 + β′)2
=

Γ
(
αx2

2+ux2+v
)

Hence, we have the equality u=2αβ
′

α′ =− h′′0 (0)
h′0(0)h′1(0) .

Now, we can identify the coefficient of the equation (3.5).
It is

α=A2 (0, 0)

(
γ′(0)h′0 (0)

∂A1

∂x1
(0, 0)+

h′′1 (0)

2
γ′(0)h′0 (0)+α′h′0 (0)h′1 (0)

)
+ uh′1 (0)

=
3

2
γ′ (0)h′0 (0)

h′′1 (0)

h′1 (0)
− h′′0 (0)

h′0 (0)
+ α′h′0 (0) .
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Using the relation σ = h1 ◦ γ ◦ h0, the above equality can be formulated
as in the theorem.

Step 2: We suppose now that the relations (3.4) are satisfied. Let us
write

h1 (z) =
z

α+ βz
h0 (z) =

z

a+ bz
.

Then we set

A2 (x1, y1) = α+ 2
αb

a
y1 +

αb

a2
y2

1

A1 (x3, y3) =
α+ βy3

(α+ βx3)
2 .

In view of the computations done in the first step, the two automor-
phisms Φ1 and Φ2 associated to A1 and A2 can be extended on tubular
neighborhoods of D−1 and D−2. Moreover, we obtain the following re-
lation

(x1 (1 + αy1 + ∆ (x1, y1)) + σ (y1) , σ (y1))

= Φ1 ◦ (x1 (1 + α′y1) + γ (y1) , γ (y1)) ◦ Φ2

where ∆ does not contain any monomial term in y1. Now, using the
Corollary 7, we see that the deformation defined by the gluing

ε→ (x1 (1 + αy1 + ε∆ (x1, y1)) + σ (y1) , σ (y1))

is analytically trivial, which ensures the theorem.

Theorem 10. The moduli space of absolutely dicritical foliations of cusp
type can be identified with the functional space C {z} up to the action
of C∗ defined by the gluing

ε · (z 7→ σ (z)) = ε2σ (εz) .

Proof: We can consider the following family parametrized by Diff (C, 0)

σ ∈ Diff (C, 0)→ F
σ, 32

σ′′(0)
σ′(0)

.

It is a complete family for absolutely dicritical foliations of cusp type: in
any class of absolutely dicritical foliation of cusp type there is one that is
analytically equivalent to one of the form F

σ, 32
σ′′(0)
σ′(0)

. Indeed, considering

the foliation Fγ,α′ , we can choose h0 such that 2
5

(
α′ − 3

2
γ′′(0)
γ′(0)

)
h′0 (0)−

h′′0 (0)
h′0(0) = 0. Therefore, setting σ = γ ◦h0 ensures that Fγ,α′ and F

σ, 32
σ′′(0)
σ′(0)

are analytically equivalent. Moreover, if F
σ0,

3
2

σ′′0 (0)

σ′0(0)

and F
σ1,

3
2

σ′′1 (0)

σ′1(0)

are
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analytically equivalent then there exist ε ∈ C∗ and an homography h1

such that

(3.6) σ0 (z) = h1 ◦ σ1 ◦ (εz) .

Indeed, the second homography h0 that appears in the Proposition 9 has
to be linear for the relations (3.4) ensure that h′′0 (0) = 0. Thus, h0 is
written z 7→ εz for some ε. To simplify the relation (3.6), we use the
Schwarzian derivative which is a surjective operator defined by

S :

Diff (C, 0)→ C {z}
y 7→ 3

2

(
y′′′

y′

)
−
(
y′′

y′

)2

and satisfying the following property: the relation (3.6) is equivalent
to S (σ0) (z) = ε2S (σ1) (εz). Therefore, the moduli space of absolutely
dicritical foliations of cusp type is identified via the schwarzian derivative
to the quotient of C {z} up to the action of C∗ ε · (z 7→ σ (z)) = ε2σ (εz) .

As mentioned in the introduction, this theorem does not state that
the transversal structure σ is the only analytical invariant of an abso-
lutely dicritical foliation of cusp type. Indeed, the group of conjugacies
acts transversaly to the transversal structures σ and to the moduli of
Mattei α. The family F

σ, 32
σ′′(0)
σ′(0)

is a complete tranversal set for this

action.

α ∈ C

σ ∈ Diff(C, 0)

Orbits of the action of
the group of conjugacies.

F
σ, 32

σ′′(0)
σ′(0)

Figure 3.2. Moduli space of absolutely dicritical foliations.
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As a consequence of the above description of the moduli space of
absolutely dicritical foliations, we should be able to prove the existence of
a non algebrizable absolutely dicritical foliation using technics developed
in [6].

4. Formal normal forms for 1-forms

It is known [3] that the multiplicity of a 1-form ω with an isolated
singularity defining an absolutely dicritical foliation of cusp type is 3. Up
to some linear change of coordinates, we can suppose that the singular
point of the foliation after one blow-up has (0, 0) for coordinates in the
standard coordinates associated to the blow-up. Moreover, since the
foliation is generically transverse to the exceptional divisor of the blow-
up of 0 ∈

(
C2, 0

)
, the homogeneous part of degree 3 of ω is tangent to

the radial form ωR = x dy − y dx. Thus there exists an homogeneous
polynomial function of degree 2, P2 such that

ω = P2ωR +
∑
i≥4

(Ai (x, y) dx+Bi (x, y) dy) .

After the blow-up, the singular locus is given by the solutions of P2(1,y)=
0 and P2 (x, 1) = 0 in each chart. Thus P2 is simply written ay2 for
some constant a 6= 0. After one blow-up (x, t) 7→ (x, tx), the linear part
near (0, 0) of the pull-back form is written(
A4 (1, 0) + t

∂A4

∂t
(1, 0) + tB4 (1, 0)

)
dx+ xB4 (1, 0) dt+ xA5 (1, 0) dx.

The absolutely dicritical property ensures that this linear part is non
trivial and tangent to the radial form t dx − x dt. Hence, the following
relations hold

A4 (1, 0) = A5 (1, 0) = 0 and
∂A4

∂t
(1, 0) + 2B4 (1, 0) = 0.

Finally, the form ω is written

ω = y2ωR +
(
−2αx3 + yQ2 (x, y)

)
y dx+

(
αx4 + yQ3 (x, y)

)
dy

+ (A5 (x, y) dx+B5 (x, y) dy) + · · ·

where α 6= 0.
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Proposition 11. The 1-form ω is formally equivalent to a 1-form writ-
ten

y2ωR + αx3 (x dy − 2y dx) + ax3y dy

+
∑
n≥5

xn−1 ((anx+ bny) dx+ (cnx+ dny) dy)

where a5 = 0. Moreover, this formal normal form is unique up to a
change of coordinates tangent to Id.

Proof: A change of coordinates φn : (x, y)→ (x, y) + (Pn, Qn) where Pn
and Qn are homogeneous polynomial functions of degree n does not mod-
ify the jet of order n+ 1 of ω. Moreover, the action on the homogeneous
part of degree n+ 2 is written

Jn+2
(
φ∗
n
ω
)

=Jn+2ω

+y2

((
x
∂Qn
∂x
− y ∂Pn

∂x
+Qn

)
dx+

(
x
∂Qn
∂y
−y ∂Pn

∂y
+Pn

)
dy

)
.

We are going to verify that the linear morphism defined by

L : (Pn, Qn) 7→
(
x
∂Qn
∂x
− y ∂Pn

∂x
+Qn, x

∂Qn
∂y
− y ∂Pn

∂y
+ Pn

)
from the set of couples of homogeneous polynomial functions of degree n
to itself is a one to one correspondence. To do so, let us compute the
kernel of this morphism and let us write Pn =

∑n
i=0 pix

iyn−i and Qn =∑n
i=0 qix

iyn−i. The coefficients of the components of L (Pn, Qn) on the
monomial term xiyn−i are

qi (i− 1)− pi+1 (i+ 1) i = 0, . . . , n− 1

qn (n− 1) i = n

and

−pi (n− i− 1) + qi−1 (n− i+ 1) i = 1, . . . , n

p0 (n− 1) i = 0.

If (Pn, Qn) is in the kernel then qn = 0 and p0 = 0. Moreover, applying
the above relation with i = 1 and i = n− 1 yields p2 = 0 and qn−2 = 0.
Now for i = 1, . . . , n − 1 but i 6= n − 2, a combination of the relations
above ensures that

0 = qi (i− 1)− qi (i+ 1)
n− i

n− i− 2
=

qi
n− i− 2

(2− 2n) .
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Thus qi = 0 for i = 0, . . . , n − 1. Therefore (Pn, Qn) = 0 and L is an
isomorphism. Thus, we can choose φn such that

Jn+2
(
φ∗
n
ω
)

= xn−1 ((anx+ bny) dx+ (cnx+ dny) dy) .

Clearly the composition φ2◦φ3◦· · · is formally convergent, which proves
the proposition.

5. Absolutely dicritical foliation admitting a first
integral

In this section, we study absolutely dicritical foliations that admit a
meromorphic first integral. Such an existence can be completely read on
the transversal structure.

Theorem 12. Let F be an absolutely dicritical foliation of cusp type
with σ as transversal structure. Then F admits a first integral if and
only if there exist two non constant rational functions R1 and R2 such
that

R1 ◦ σ = R2.

Notice that the existence of R1 and R2 does not depend on the equiv-
alence class of σ modulo homographies.

Proof: Let us suppose first that F admits a meromorphic first integral f .
After blow-up, the function f is a non constant rational function in
restriction to each component of the divisor. Since for any point p,
p and σ (p) belong to the same leaf, we have

f |D1
(p) = f |D2

(σ (p)) .

Now, suppose there exist two rational functions as in the theorem. Ac-
cording to Theorem 8, there exist α and γ such that the foliation F is
analytically equivalent to Fγ,α. The application σ and γ are linked by a
relation of the form

h0 ◦ σ ◦ h1 = γ

where h0 and h1 are homographies. Thus, setting R̃1 = R1 ◦ h−1
0 and

R̃2 = R2 ◦ h1 yields R̃1 ◦ γ = R̃2 where R̃1 and R̃2 are still rational.
Now, let us remind the construction of Fγ,α. We glue the models R−1

and R−2 around (x1, y1) = 0 and (x3, y3) = 0 by

(x1, y1) 7→ (x3 = x1 (1 + αy1) + γ (y1) , y3 = γ (y1)) .

Consider for R−1 the first integral F1 (x1, y1) = R̃2 (y1) and for R−2 the

first integral F2 (x3, y3) = R̃1 (y3). Then these two meromorphic first
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integrals can be glued in a global meromorphic first integral since

F2 (x3, y3) = F2 (x1 (1 + αy1) + γ (y1) , γ (y1))

= R̃1 (γ (y1)) = R̃2 (y1) = F1 (x1, y1) .

Thus the absolutely dicritical foliation admits a meromorphic first inte-
gral.

In view of this result, it is easy to produce a lot of examples of abso-
lutely dicritical foliations admitting no meromorphic first integral setting
for instance

σ (z) = ez − 1.

Notice that the existence of the first integral only depends on the
transversal structure σ and not on the value of the moduli of Mattei α.
This is consistent with the fact that, along an equireducible unfolding,
the existence of a meromorphic first integral for one foliation in the de-
formation ensures the existence of such a first integral for any foliation
in the deformation.

Finally, since the topological classification of absolutely dicritical foli-
ations is trivial, the above result produces a lot of examples of couples of
conjugated foliations such that only one of them admits a meromorphic
first integral.

Hereafter we focus on a particular case, that is when the transversal
structure σ is an homography.

Proposition 13. Let F be an absolutely dicritical foliation of cusp type
with an homographic transversal structure. Then, up to some analyti-
cal change of coordinates, F admits one of the following rational first
integrals:

(1) f = y2+x3

xy .

(2) f = y2+x3

xy + x.

Proof: Let us consider the following germ of family of meromorphic func-
tions with (x, y, z) ∈

(
C3, (0, 0, 0)

)
defined by

fz =
y2 + x3 + zx2y

xy
=
a

b
.

For any z, the foliation associated to fz is absolutely dicritical of cusp
type. Let us prove that this family is an equireducible unfolding. We
consider the integrable 1-form Ω = adb− bda. It is written(

2x3y + zx2y2 − y3
)
dx+

(
xy2 − x4

)
dy + x3y2 dz.
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It defines an unfolding of the foliation given by f0 with one parameter.
Its singular locus is the z-axes and it is transverse to the fibers of the
fibration (x, y, z) 7→ z. Once we blow-up the z-axe, in the chart E :
(x, t, z) = (x, tx, z), the 1-form Ω is written

Ω̃ = t (1 + zt) dx+
(
t2 − x

)
dt+ t2x dz.

Therefore, the singular locus of the pull-back foliation is still the z-axe in
the coordinates (x, t, z) and in a neighborhood of x = 0, the foliation Ω̃
is transverse to the fibration z = cst . If we blow-up the z-axe again, we
find

(1 + zx) dt+ (1 + zt) dx+ tx dz

which is smooth. Since the curve x = t = 0 is invariant and since
the foliation is still transverse to the fibration z = cst, the unfolding
is equisingular. Now, this unfolding is analytically trivial if and only
if the monomial term x3y2 belongs to the ideal generated by 2x3y +
zx2y2 − y3 and xy2 − x4 [5]. Setting z = 0 this would imply that
x3y2 ∈

(
2x3y − y3, xy2 − x4

)
which is impossible. Thus, this unfolding

is not analytically trivial and since the moduli space of unfolding of
absolutely dicritical foliations is of dimension 1, it is also semi-universal.

Now, let us consider a foliation F as in the proposition. Up to some
linear change of coordinates, we can suppose that after the reduction
process its singular point and its transversal structure are the same as

the function y2+x3

xy that is to say (0, 0) and Id in the standard coordinates

associated to the reduction process. Let us denote by F0 the foliation

given by y2+x3

xy . We are going to construct an unfolding from F0 to F .

As always since the beginning of this article, we denote by D−1 and D−2

the two exceptional components of the divisor. In the neighborhood of
each of them, both foliations are purely radial. Thus there exist two
conjugacies Φ1 and Φ2 defined in the neighborhood of respectively D−1

and D−2 such that

Φ∗1F0 = F Φ∗2F0 = F

Φ1|D−1∪D−2
= Id Φ2|D−1∪D−2

= Id .

Since, F0 and F have the same transversal structures, the cocycle Φ1 ◦
Φ−1

2 is a germ of automorphism of F0 near the singular point of the
divisor that lets the points of the divisor fixed and that globally lets each
leaf fixed. One can build an isotopy from Φ1 ◦Φ−1

2 to Id in the group of
germs of automorphisms of F0 near the singular point of the divisor that
let each point of the divisor fixed and that globally let each leaf fixed.
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Let us denote by Ht an isotopy satisfying H0 = Id and H1 = Φ1 ◦ Φ−1
2 .

The unfolding defined by the following glued construction

((F0, D1)× U)
∐

((F0, D2)× U)/(x, t) ∼ (Ht (x) , t),

where U is an open neighborhood of {|t| ≤ 1} links F0 and F . The
meromophic first integral f0 of F0 can be extended in a meromorphic first
integral F of the whole unfolding [5]. Thus F |t=1 is a meromorphic first
integral of F . By equisingularityF |t=0 and F |t=1 must have exactly the
same number of irreducible components in their zeros and in their poles,
which is the same number of irreducible components in the zeros and in
the poles of F . They also must have the same topology since an unfolding
is topologically trivial. Thus the foliation F admits a meromorphic first
integral whose zeros are exactly the leaf passing through the singular
point of the exceptional divisor and whose poles are the union of two
smooth curves respectively attached to D−1 and D−2. Therefore up to
some changes of coordinates, we can suppose that F has a meromorphic
first integral of the form

f =

(
y2 + x3 + ∆ (x, y)

)a
xbyc

where the Taylor expansion of ∆ (x, y) only admits monomial terms xiyj

with 2i + 3j > 6. The absolutely dicritical property ensures that a =
b = c. Therefore, we can suppose that a = b = c = 1. Let us denote
by Λλ (x, y) the homothecy Λλ (x, y) =

(
λ2x, λ3y

)
. Composing by Λλ at

the right of f yields

f ◦ Λλ
λ

=
y2 + x3 + ∆λ (x, y)

xy
.

For any λ 6= 0, the foliations given by f and by f◦Λλ
λ are analytically

conjugated. Furthermore, the deformation λ → f◦Λλ
λ is an equisingu-

lar unfolding of f0 since ∆λ goes to 0 when λ → 0. Using the semi-
universality of the family introduced at the beginning of the proof, for
λ small enough, there exists some α such that the following conjugacies
hold

f ∼ f ◦ Λλ
λ

∼ fα.

Now if α = 0 then f is of type (1). If α 6= 0, applying some well chosen
homothecy, we can suppose α = 1 and f is of type (2).
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Remark 14. In the last part of this article, we will prove that the two
meromorphic functions (1) and (2) define actually two analytically equiv-
alent foliations.

It is possible to construct some others examples of absolutely dicrit-
ical foliations of cusp type with a rational first integral: to do so, let
us consider a foliation of degree 1 on P2. These are well-known [4]:
they have three singular points counted with multiplicities and admit
an integrating factor. For instance, the foliation given in homogeneous
coordinates by the multivalued functions

[x : y : z]→ xαyβ

zα+β
or [x : y : z] 7→ Q

z2

where Q is a non-degenerate quadratic form is of degree 1. When α
and β are rational numbers, the foliation admits a rational first integral.
Now two generic lines L1 and L2 are each tangent to one leaf of the
foliation. We can suppose that the tangency point is different from the
intersection point of L1 and L2. Now, blow-up twice the tangency point
on L1 and thrice the tangency point on L2. The final configuration is
the following

−2

−1
L1

L2

−2

−2
−2

−1

−1

Figure 5.1. Configuration of the exceptional divisor.

Thus, the divisor L1∪L2 can be contracted toward a smooth algebraic
manifold. The obtained singularity is naturally absolutely dicritical of
cusp type and admits a rational first integral. For instance, if we consider
the foliation given in affine coordinates by xy = cst and L1 : x+y = 1 and
L2 : x− y = 1, the transverse structure is equivalent to σ (t) = t+ 1 and
thus the foliation is equivalent to the functions of Proposition 13. How-
ever, considering the foliation given by x2 +y = cst yields the transversal

structure t 7→ −3+
√

9+4t+4t2

2 which is not an homography.
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6. Moduli of Mattei

6.1. The parameter space of the unfoldings. As already explained,
the deformation α→ Fσ,α is an unfolding with a set of paramaters equal
to C. It is a natural question to ask when two parameters define two
foliations analytically equivalent. In order to do so, we introduce the
following definition:

Definition 15. Let σ be an element of Diff (C, 0). An homography h
with h (0) = 0 is called an homographic symmetry of σ if and only if
there exists an homography h0 such that

(6.1) h0 ◦ σ ◦ h = σ.

We denote by H (σ) the group of homographic symmetries of σ.

The following result is probably known but we cannot find any refer-
ence in the litterature.

Lemma 16. If H (σ) is infinite then σ is an homography and H (σ) is
the whole set of homographies fixing the origin.

Proof: Applying the schwarzian derivative at the relation (6.1) yields

S (σ) = S (h1 ◦ σ ◦ h) = S (σ ◦ h) = (h′)
2
S (σ) ◦ h.

Therefore, we are led to the functional equation

(6.2) f ◦ h (z) =
1

(h′)
2 f (z)

where f = S (σ) is the schwarzian derivative of σ. Let us write h (z) =
z

a+bz and f (z) =
∑
n≥1 fnz

n.

(1) Suppose that h′ (0) is not a root of unity. Then applying the above
relation at z = 0 leads to f (0) = 0. Now, we have

a2
∑
n≥1

fn
zn

(a+ bz)
n = (a+ bz)

4
∑
n≥1

fnz
n.

An induction on n shows that for any n fn = 0, thus f = 0 and
σ is an homography because the homographies are characterized
by the relation S (σ) = 0.

(2) Suppose now that h′ (0) = 1 then∑
n≥0

fn
zn

(1 + bz)
n = (1 + bz)

4
∑
n≥0

fnz
n.
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Suppose that b 6= 0. If for any n ≤ N − 1 we have fn = 0, let us
have a look at the terms in xN+1 in the above equality. It is

−NbfN + fN+1 = 4bfN + fN+1.

Thus fN = 0, which proves by induction that f is still equal to
zero.

(3) If H (σ) is infinite, let us suppose that it contains two elements h
and g that do not commute, then [h, g] is tangent to Id but is not
the Id . Thus using the previous point yields f = 0.

(4) Finally, if h′ (0) is a root of unity, it can be seen that h◦(n) = Id
where n is the smallest integer such that h′ (0)

n
= 1. Thus, suppose

that the group H (σ) is abelian and any element of H (σ) is of finite
order. We have an embedding

H (σ) −→ Aff (C)

since the only element tangent to Id is the identity itself. Therefore,
H (σ) can be seen as an abelian subgroup of Aff (C). Hence, the
whole group has a fixed point and can be seen as a subgroup of
the linear transformations of C. Now let us write the relation (6.2)
seen at ∞

f (1/ (1/h (1/z))) =
1

h′
(

1
z

)2 f (1

z

)
.

Setting, u (z) = 1
z4 f

(
1
z

)
yields u (az + b) = 1

a2u (z) . Since, u =
α
z4 + · · · we can consider the double primitive function U =

∫∫
u

with U (∞) = 0. This is a univalued holomorphic function defined
near ∞. Finally, the function U satisfies the following functional
relation

U (az + b) = U (z) .

But in view of the dynamics of Lin (C), it is clear that if H (σ) is
infinite then U = cst and thus u = 0.

In the course of the proof of the above result, we obtain the following
result

Corollary 17. Let M be the quotient of C by the relation α ∼ α′ if and
only if Fσ,α ∼ Fσ,α′ then there are only two possibilities
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(1) M = {0} when σ is an homography. The foliation Fσ,α is then

analytically equivalent to y2+x3

xy .

(2) M = C/H where H is a finite subgroup of Aff (C).

Generically, H is reduced to {Id}.
As an obvious consequence, the functions obtained in Proposition 13

define two analytically equivalent foliations.

6.2. Toward a geometric description of the moduli of Mattei.
It remains us to give a geometric interpretation of the parameter α.
A promising approach is the following. Near the singular point of the
divisor, the leaf is conformally equivalent to a disc minus two points
which are the intersections between the leaf and the exceptional divisor.
If we consider in the leaf a path linking these two points, we obtain after
taking the image of this path by E an asymptotic cycle γ as defined
in [11] which is not asymptotically topologically trivial.

γ

Figure 6.1. Asymptotic vanishing cycle.

Therefore, considering the family of these cycles parametrized by a
transversal parameter to the foliation yields a vanishing asymptotic cy-
cle. We claim that the moduli of Mattei should be linked to the length of
this vanishing asymptotic cycle: more precisely, it should be computed
by the integral of some form along this vanishing cycle. Actually, it is
easy to prove the following property: let ω be a 1-form defining an ab-
solutely dicritical foliation of cusp type and let η be any germ of 1 form.
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Then η is relatively exact with respect to ω, i.e., there exist two germs
of holomorphic functions f and g such that

η = df + gω

if and only if the integral of η along the asymptotic cycle γ vanishes.
Thus, we think that in a sense that has to be worked out, the moduli
of Mattei should be computed by the integral of some generators of the
relative cohomology group of ω along the asymptotic vanishing cycles.
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