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PARAPRODUCTS AND t-HAAR MULTIPLIERS WITH
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Abstract: We extend the definitions of dyadic paraproduct and t-Haar multipliers to

dyadic operators that depend on the complexity (m,n), for m and n natural numbers.
We use the ideas developed by Nazarov and Volberg to prove that the weighted

L2(w)-norm of a paraproduct with complexity (m,n), associated to a function b ∈
BMOd, depends linearly on the Ad

2-characteristic of the weight w, linearly on the

BMOd-norm of b, and polynomially on the complexity. This argument provides a
new proof of the linear bound for the dyadic paraproduct due to Beznosova. We

also prove that the L2-norm of a t-Haar multiplier for any t ∈ R and weight w is a

multiple of the square root of the Cd
2t-characteristic of w times the square root of the

Ad
2-characteristic of w2t, and is polynomial in the complexity.
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1. Introduction

In the past decade, many mathematicians have devoted their attention
to finding out how the norm of an operator T on a weighted space Lp(w)
depends on the so called Ap-characteristic of the weight w. More pre-
cisely, is there some optimal growth function ϕ : [0,∞) → R such that
for all functions f ∈ Lp(w),

‖Tf‖Lp(w) ≤ Cp,Tϕ([w]Ap
)‖f‖Lp(w),

where Cp,T > 0 is a suitable constant?
The first result of this type was due to Buckley [Bu] in 1993; he

showed that ϕ(t) = t1/(p−1) for the Hardy-Littlewood maximal func-
tion. Starting in 2000, one at a time, some dyadic model operators
and some important singular integral operators (Beurling, Hilbert and
Riesz transforms) were shown to obey a linear bound with respect to
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the A2-characteristic of w in L2(w), meaning that for p = 2, the func-
tion ϕ(t) = t is the optimal one, see [Wi1], [Wi2], [HTV], [PV], [Pt2],
[Pt3], [Be2]. These linear estimates in L2(w) imply Lp(w)-bounds for
1 < p <∞, by the sharp extrapolation theorem of Dragičević, Grafakos,
Pereyra, and Petermichl, [DGPP]. All these papers used the Bellman
function technique, see [Vo] for more insights and references.

The linear bound for H, the Hilbert transform, is based on a repre-
sentation of H as an average of Haar shift operators of complexity (0, 1),
see [Pt1]. Haar shift operators with complexity (m,n) were introduced
in [LPR]. Hytönen obtained a representation valid for any Calderón-
Zygmund operator as an average of Haar shift operators of arbitrary
complexity, paraproducts and their adjoints, and used this representa-
tion to prove the A2-conjecture, see [Hy]. Thus, he showed that for all
Calderón-Zygmund operators T in RN , and all weights w ∈ Ap, there is
a constant Cp,N,T > 0 such that,

‖Tf‖Lp(w) ≤ Cp,N,T [w]
max{1,1/p−1}
Ap

‖f‖Lp(w).

See [La2] for a survey of the A2-conjecture including a rather com-
plete history of most results that appeared up to November 2010, and
that contributed to the final resolution of this mathematical puzzle. A
crucial part of the proof was to obtain bounds for Haar shifts operators
that depended linearly on the A2-characteristic and at most polynomi-
ally on the complexity (m,n). In 2011, Nazarov and Volberg [NV1]
provided a beautiful new proof that still uses Bellman functions, al-
though minimally, and that can be transferred to geometric doubling
metric spaces [NV2], [NRV]. Treil [Tr], independently Hytönen et
al. [HLM+] obtained linear dependence on the complexity. Similar
Bellman function techniques have been used to prove the Bump Conjec-
ture in L2, see [NRTV].

It seems natural to study other dyadic operators with complex-
ity (m,n), and examine if we can recover the same dependence on the
A2-characteristic that we have for the original operator (the one with
complexity (0, 0)) times a factor that depends at most polynomially on
the complexity of these operators. We will do this analysis for the dyadic
paraproduct and for the t-Haar multipliers.

For b ∈ BMOd, a function of dyadic bounded mean oscillation, m,n ∈
N, the dyadic paraproduct of complexity (m,n) is defined by,

πm,nb f(x) =
∑
L∈D

∑
I∈Dn(L)
J∈Dm(L)

cLI,JmIf〈b, hI〉hJ(x),
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where |cLI,J | ≤
√
|I| |J |/|L|, and mIf is the average of f on the inter-

val I. Here D denotes the dyadic intervals, |I| the length of interval I,
Dm(L) denotes the dyadic subintervals of L of length 2−m|L|, hI are the
Haar functions, and 〈f, g〉 denotes the L2-inner product on R.

We prove that the dyadic paraproduct of complexity (m,n) obeys
the same linear bound as obtained by Beznosova [Be2] for the dyadic
paraproduct of complexity (0, 0) (see [Ch] for the result in RN , N > 1),
multiplied by a factor that depends polynomially on the complexity.

Theorem 1.1. If w ∈ Ad2, b ∈ BMOd, then

‖πm,nb f‖L2(w) ≤ C(m+ n+ 2)5[w]Ad
2
‖b‖BMOd‖f‖L2(w).

Our proof of Theorem 1.1 shows how to use the ideas in [NV1] for this
setting, explicitly displaying the dependence on ‖b‖BMOd and bypassing
the more complicated Sawyer two-weight testing conditions present in
other arguments [HPTV], [La2], [HLM+]. From our point view, this
makes the proof more transparent.

For t ∈ R, m,n ∈ N, and weight w, the t-Haar multiplier of complexity
(m,n) is defined by

Tm,nt,w f(x) =
∑
L∈D

∑
I∈Dn(L)
J∈Dm(L)

cLI,J
wt(x)

(mLw)t
〈f, hI〉hJ(x),

where |cLI,J | ≤
√
|I| |J |/|L|. When (m,n) = (0, 0) and cLI,J = cL = 1

for all L ∈ D, we denote the corresponding Haar multiplier by T tw. In
addition, if t = 1, we denote the multiplier simply by Tw. A necessary
condition for the boundedness of T tw on L2(R) is that w ∈ Cd2t, that is,

[w]Cd
2t

:= sup
I∈D

(
1

|I|

∫
I

w2t(x) dx

)(
1

|I|

∫
I

w(x) dx

)−2t

<∞.

This condition is also sufficient for t < 0 and t > 1/2. For 0 ≤ t ≤ 1/2
the condition Cd2t is always fulfilled; in this case, boundedness of T tw is
known when w ∈ Ad∞, see [KP]. The Haar multipliers Tw are closely
related to the resolvent of the dyadic paraproduct [Pe1], and appeared
in the study of Sobolev spaces on Lipschitz curves [Pe3]. It was proved
in [Pe2] that the L2-norm for the Haar multiplier Tw depends linearly
on the Cd2 -characteristic of the weight w. We show the following theorem
that generalizes a result of Beznosova for T tw [Be1, Chapter 5].
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Theorem 1.2. If w ∈ Cd2t and w2t ∈ Ad2, then

‖Tm,nt,w f‖2 ≤ C(m+ n+ 2)3[w]
1
2

C2t
[w2t]

1
2

Ad
2
‖f‖2.

The condition w ∈ Cd2t is necessary for the boundedness of Tm,nt,w when

cLI,J =
√
|I| |J |/|L|.

The result is optimal for T
±1/2
w , see [Be1], [Pe2] and [BMP]. We

expect that, for both the paraproducts and t-Haar multipliers with com-
plexity (m,n), the dependence on the complexity can be strengthened
to be linear, in line with the best results for the Haar shift operators.
However our methods yield polynomials of degree 5 and 3 respectively.

To simplify notation, and to shorten the exposition we analyze the
one-dimensional case. Some of the building blocks in our arguments can
be found in the literature in the case of RN , or even in the geometric
doubling metric space case. As we go along we will note where such
results can be found. For a complete presentation of these results in the
geometric doubling metric spaces (in particular in RN ) see [Mo2].

The paper is organized as follows. In Section 2 we provide the basic
definitions and results that are used throughout this paper. In Section 3
we prove the lemmas that are essential for the main results. In Section 4
we prove the main estimate for the dyadic paraproduct with complex-
ity (m,n) and present a new proof of the linear bound for the dyadic
paraproduct. In Section 5 we prove the main estimate for the t-Haar
multipliers with complexity (m,n), also discussing necessary conditions
for these operators to be bounded in Lp(R), for 1 < p <∞.

Acknowledgements. The authors would like to thank Carlos Pérez,
Rafael Espinola and Carmen Ortiz-Caraballo for organizing the Doc-
course: Harmonic analysis, metric spaces and applications to PDE, held
in Seville, at the Instituto de Matemáticas de la Universidad de Sevilla
(IMUS) during the Summer of 2011. We are grateful to our thoughtful
referees who pointed out multiple ways for improving this paper.

2. Preliminaries

2.1. Weights, maximal function and dyadic intervals. A weight w
is a locally integrable function in RN taking values in (0,∞) almost ev-
erywhere. The w-measure of a measurable set E, denoted by w(E), is
w(E) =

∫
E
w(x) dx. For a measure σ, σ(E) =

∫
E
dσ, and |E| stands for

the Lebesgue measure of E. We define mσ
Ef to be the integral average
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of f on E, with respect to σ,

mσ
Ef :=

1

σ(E)

∫
E

f(x) dσ.

When dσ = dx we simply write mEf ; when dσ = v dx we write mv
Ef .

Given a weight w, a measurable function f : RN → C is in Lp(w) if

and only if ‖f‖Lp(w) :=
(∫

R |f(x)|pw(x) dx
)1/p

<∞.
For a weight v we define the weighted maximal function of f by

(Mvf)(x) := sup
Q3x

mv
Q|f |,

where Q is a cube in RN with sides parallel to the axes. The opera-
tor Mv is bounded in Lq(v) for all q > 1. Furthermore,

(2.1) ‖Mvf‖Lq(v) ≤ CNq′‖f‖Lq(v),

where q′ is the dual exponent of q, that is 1/q + 1/q′ = 1. A proof
of this fact can be found in [CMP2]. When v = 1, Mv is the usual
Hardy-Littlewood maximal function, which we will denote by M . It is
well-known that M is bounded on Lp(w) if and only if w ∈ Ap [Mu].

We work with the collection of all dyadic intervals, D, given by: D =
∪n∈ZDn, where Dn := {I ⊂ R : I = [k2−n, (k + 1)2−n), k ∈ Z}. For a
dyadic interval L, let D(L) be the collection of its dyadic subintervals,
D(L) := {I ⊂ L : I ∈ D}, and let Dn(L) be the nth-generation of dyadic
subintervals of L, Dn(L) := {I ∈ D(L) : |I| = 2−n|L|}. Any two dyadic
intervals I, J ∈ D are either disjoint or one is contained in the other.
Any two distinct dyadic intervals I, J ∈ Dn are disjoint, furthermore
Dn is a partition of R, and Dn(L) is a partition of L. For every dyadic

interval I ∈ Dn there is exactly one Î ∈ Dn−1, such that I ⊂ Î; Î is
called the parent of I. Each dyadic interval I in Dn is the union of two
disjoint intervals in Dn+1, the right and left halves, denoted I+ and I−
respectively, and called the children of I.

A weight w is dyadic doubling if w(Î)/w(I) ≤ C for all I ∈ D. The
smallest constant C is called the doubling constant of w and is denoted
by D(w). Note that D(w) ≥ 2, and that in fact the ratio between the
length of a child and the length of its parent is comparable to one; more

precisely, D(w)−1 ≤ w(I)/w(Î) ≤ 1−D(w)−1.

2.2. Dyadic Ad
p, reverse Hölder RHd

p and Cd
s classes. A weight w

is said to belong to the dyadic Muckenhoupt Adp-class if and only if

[w]Ad
p

:= sup
I∈D

(mIw)(mIw
−1
p−1 )p−1 <∞, for 1 < p <∞,



270 J. C. Moraes, M. C. Pereyra

where [w]Ad
p

is called the Adp-characteristic of the weight. If a weight is

in Adp then it is dyadic doubling. These classes are nested: Adp ⊂ Adq for

all p ≤ q. The class Ad∞ is defined by Ad∞ :=
⋃
p>1A

d
p.

A weight w is said to belong to the dyadic reverse Hölder RHd
p -class

if and only if

[w]RHd
p

:= sup
I∈D

(mIw
p)

1
p (mIw)−1 <∞, for 1 < p <∞,

where [w]RHd
p

is called the RHd
p -characteristic of the weight. If a weight

is in RHd
p then it is not necessarily dyadic doubling (in the non-dyadic

setting reverse Hölder weights are always doubling). Also these classes
are nested, RHd

p ⊂ RHd
q for all p ≥ q. The class RHd

1 is defined by

RHd
1 :=

⋃
p>1RH

d
p . In the non-dyadic setting A∞ = RH1. In the

dyadic setting the collection of dyadic doubling weights in RHd
1 is Ad∞,

hence Ad∞ is a proper subset of RHd
1 . See [BR] for some recent and very

interesting results relating these classes.
Given s ∈ R, a weight w is said to satisfy the Cds -condition if

[w]Cd
s

:= sup
I∈D

(
mIw

s
)(
mIw

)−s
<∞.

The quantity defined above is called the Cds -characteristic of w. The
class Cds was defined in [KP]. Let us analyze this definition. For 0 ≤
s ≤ 1, we have that any weight satisfies the condition with Cds -character-
istic 1, being just a consequence of Hölder’s inequality (cases s = 0, 1 are
trivial). When s > 1, the condition is equivalent to the dyadic reverse

Hölder condition and [w]
1/s

Cd
s

= [w]RHd
s
. For s < 0, we have that w ∈ Cds

if and only if w ∈ Ad1−1/s. Moreover [w]Cd
s

= [w]−s
Ad

1−1/s

.

2.3. Weighted Haar functions. For a given weight v and an inter-
val I define the corresponding weighted Haar function by

(2.2) hvI (x) =
1

v(I)

(√
v(I−)

v(I+)
χI+(x)−

√
v(I+)

v(I−)
χI−(x)

)
,

where χI is the characteristic function of the interval I.
If v is the Lebesgue measure on R, we will denote the Haar function

simply by hI . It is an important fact that {hvI}I∈D is an orthonormal

system in L2(v), with the inner product 〈f, g〉v =
∫
R f(x) g(x) v(x) dx.

It is a simple exercise to verify that the weighted and unweighted Haar
functions are related linearly as follows:
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Proposition 2.1. For any weight v, there are numbers αvI , βvI such that

hI(x) = αvI h
v
I (x) + βvI χI(x)/

√
|I|

where (i) |αvI | ≤
√
mIv, (ii) |βvI | ≤ |∆Iv|/mIv, ∆Iv := mI+v −mI−v.

For a weight v and a dyadic interval I, |∆Iv|/mIv=2
∣∣1−mI−v/mIv

∣∣≤
2. If the weight v is dyadic doubling then we get an improvement on the
above upper bound, |∆Iv|/mIv ≤ 2 (1− 2/D(v)) .

2.4. Dyadic BMO and Carleson sequences. A locally integrable
function b is a function of dyadic bounded mean oscillation, b ∈ BMOd,
if and only if

(2.3) ‖b‖BMOd :=

sup
J∈D

1

|J |
∑

I∈D(J)

|〈b, hI〉|2
 1

2

<∞.

Note that if bI := 〈b, hI〉 then |bI | |I|−
1
2 ≤ ‖b‖BMOd , for all I ∈ D.

If v is a weight, a positive sequence {αI}I∈D is called a v-Carleson
sequence with intensity B if for all J ∈ D,

(2.4) (1/|J |)
∑

I∈D(J)

λI ≤ BmJv.

When v = 1 we call a sequence satisfying (2.4) for all J ∈ D a Carleson

sequence with intensity B. If b ∈ BMOd then {|bI |2}I∈D is a Carleson
sequence with intensity ‖b‖2

BMOd .

Proposition 2.2. Let v be a weight, {λI}I∈D and {γI}I∈D be two
v-Carleson sequences with intensities A and B respectively then for any
c, d > 0 we have that

(i) {cλI + dγI}I∈D is a v-Carleson sequence with intensity cA+ dB.

(ii) {
√
λI
√
γI}I∈D is a v-Carleson sequence with intensity

√
AB.

(iii) {(c
√
λI+d

√
γI)

2}I∈D is a v-Carleson sequence with intensity 2c2A+

2d2B.

The proof of these statements is quite simple. To prove the first one
we just need properties of the supremum, for the second one we apply
the Cauchy-Schwarz inequality, and the third one is a consequence of the
first two statements combined with the fact that 2cd

√
A
√
B ≤ c2A+d2B.
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3. Main tools

In this section, we state and prove the lemmas and theorems necessary
to obtain the estimates for the paraproduct and the t-Haar multipliers
of complexity (m,n). The Weighted Carleson Lemma 3.1, α-Lemma 3.4
and Lift Lemma 3.7 are fundamental for all our estimates.

3.1. Carleson lemmas. We present some weighted Carleson lemmas
that we will use. Lemma 3.3 was introduced and used in [NV1], it
was called a folklore lemma in reference to the likelihood of having
been known before. Here we obtain Lemma 3.3 as an immediate corol-
lary of the Weighted Carleson Lemma 3.1 and what we call the Little
Lemma 3.2, introduced by Beznosova in her proof of the linear bound
for the dyadic paraproduct.

3.1.1. Weighted Carleson Lemma. The Weighted Carleson Lemma
we present here is a variation in the spirit of other weighted Carleson em-
bedding theorems that appeared before in the literature [NV1], [NTV2].
All the lemmas in this section hold in RN or even geometric doubling
metric spaces, see [Ch], [NRV].

Lemma 3.1 (Weighted Carleson Lemma). Let v be a dyadic doubling
weight, then {αL}L∈D is a v-Carleson sequence with intensity B if and
only if for all non-negative v-measurable functions F on the line,

(3.1)
∑
L∈D

αL inf
x∈L

F (x) ≤ B
∫
R
F (x) v(x) dx.

Proof: (⇒) Assume that F ∈ L1(v) otherwise the first statement is
automatically true. Setting γL = inf

x∈L
F (x), we can write

∑
L∈D

γLαL =
∑
L∈D

∫ ∞
0

χ(L, t) dt αL =

∫ ∞
0

(∑
L∈D

χ(L, t)αL

)
dt,

where χ(L, t) = 1 for t < γL and zero otherwise, and the last equality
follows by the monotone convergence theorem. Define Et = {x ∈ R :
F (x) > t}. Since F is assumed to be a v-measurable function, Et is a
v-measurable set for every t. Moreover, since F ∈ L1(v) we have, by
Chebychev’s inequality, that the v-measure of Et is finite for all real t.
If χ(L, t) = 1 then L ⊂ Et. Moreover, there is a collection of maximal
disjoint dyadic intervals Pt that are contained in Et. Then we can write

(3.2)
∑
L∈D

χ(L, t)αL≤
∑
L⊂Et

αL=
∑
L∈Pt

∑
I∈D(L)

αI≤B
∑
L∈Pt

v(L)≤Bv(Et),
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where, in the second inequality, we used the fact that {αI}I∈D is a
v-Carleson sequence with intensity B. Thus we can estimate∑

L∈D
γLαL ≤ B

∫ ∞
0

v(Et) dt = B

∫
R
F (x) v(x) dx.

The last equality follows from the layer cake representation.

(⇐) Assume (3.1) is true; in particular it holds for F (x) = χJ(x)/|J |.
Since infx∈I F (x) = 0 if I ∩ J = ∅, and infx∈I F (x) = 1/|J | otherwise,

1

|J |
∑

I∈D(J)

αI ≤
∑
I∈D

αI inf
x∈I

F (x) ≤
∫
R
F (x) v(x) dx = mJv.

3.1.2. Little Lemma. The following lemma was proved by Beznosova
in [Be2] using the Bellman function B(u, v, l) = u− 1/v(1 + l).

Lemma 3.2 (Little Lemma [Be2]). Let v be a weight, such that v−1 is a
weight as well, and let {λI}I∈D be a Carleson sequence with intensity B.
Then {λI/mIv

−1}I∈D is a v-Carleson sequence with intensity 4B, that
is for all J ∈ D,

(1/|J |)
∑

I∈D(J)

λI/mIv
−1 ≤ 4BmJv.

For a proof of this result we refer [Be1, Proposition 3.4], or [Be2,
Proposition 2.1]. For an RN version of this result see [Ch, Proposi-
tion 4.6].

Lemma 3.2 together with Lemma 3.1 immediately yield the following:

Lemma 3.3 ([NV1]). Let v be a weight such that v−1 is also a weight.
Let {λJ}J∈D be a Carleson sequence with intensity B, and let F be a
non-negative measurable function on the line. Then∑

J∈D
(λJ/mJv

−1) inf
x∈J

F (x) ≤ C B
∫
R
F (x) v(x) dx.

Note that Lemma 3.2 can be deduced from Lemma 3.3 with F (x) =
χJ(x).

3.2. α-Lemma. The following lemma was proved by Beznosova for α =
1/4 in [Be1], and by Nazarov and Volberg for 0 < α < 1/2 in [NV1],
using the Bellman function B(u, v) = (uv)α.
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Lemma 3.4 (α-Lemma). Let w ∈ Ad2 and then for any α ∈ (0, 1/2), the
sequence {µαI }I∈D, where

µαI := (mIw)α(mIw
−1)α|I|

(
|∆Iw|2

(mIw)2
+
|∆Iw

−1|2

(mIw−1)2

)
,

is a Carleson sequence with intensity Cα[w]αA2
, with Cα = 72/(α− 2α2).

A proof of this lemma that works in RN (for α = 1/4) can be found
in [Ch, Proposition 4.8], and one that works in geometric doubling met-
ric spaces can be found in [NV2], [Vo].

The following lemmas simplify the exposition of the main theorems
(this was pointed to us by one of our referees). We deduce these lemmas
from the α-Lemma. According to our kind anonymous referee, one can
also deduce Lemma 3.5 from a pure Bellman-function argument without
reference to the α-Lemma.

Lemma 3.5. Let w ∈ Ad2 and let νI = |I|(mIw)2(∆Iw
−1)2. The se-

quence {νI}I∈D is a Carleson sequence with intensity at most C[w]2
Ad

2

for some numerical constant C (C = 288 works).

Proof: Multiply and divide νI by (mIw
−1)2 to get for any 0 < α < 1/2,

νI = |I|(mIw)2(mIw
−1)2

(
|∆Iw

−1|/mIw
−1
)2 ≤ [w]2−αA2

µαI .

But {µαI }D is a Carleson sequence with intensity Cα[w]αA2
by Lemma 3.4,

therefore by Proposition 2.2(i) {νI}D is a Carleson sequence with inten-
sity at most Cα[w]2

Ad
2

as claimed.

It is well known that if w ∈ Ad2 then {|I||∆Iw|2/(mIw)2}I∈D is a Car-
leson sequence with intensity log[w]Ad

2
, see [Wi1]. This estimate together

with Proposition 2.2(i), give intensities [w]α
Ad

2
log[w]Ad

2
and [w]2

Ad
2

log[w]Ad
2

respectively for the sequences {µαI }I∈D and {νI}I∈D. The lemmas show
we can improve the intensities by dropping the logarithmic factor. Even
more generally, we can show the following lemma, which extends the
α-Lemma 3.4 to the range α ≥ 1/2. It also refines it for the range
α ∈ (1/4, 1/2) and shows that the blow up of the constant Cα for α = 1/2
is an artifact of the proof.

Lemma 3.6. Let w ∈ Ad2, s > 0, and

τsI := |I|(mIw)s(mIw
−1)s

(
|∆Iw|2

(mIw)2
+
|∆Iw

−1|2

(mIw−1)2

)
.
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Then for 0 < α < min{1/2, s}, the sequence {τsI }I∈D is a Carleson
sequence with intensity at most Cα[w]s

Ad
2

where Cα is the constant in

Lemma 3.4 (when s > 1/4 can choose α = 1/4 and Cα = 576).

3.3. Lift Lemma. Given a dyadic interval L, and weights u, v, we
introduce a family of stopping time intervals ST mL such that the averages
of the weights over any stopping time interval K ∈ ST mL are comparable
to the averages on L, and |K| ≥ 2−m|L|. This construction appeared
in [NV1] for the case u = w, v = w−1. We also present a lemma
that lifts w-Carleson sequences on intervals to w-Carleson sequences on
“m-stopping intervals”. We present the proofs for the convenience of the
reader.

Lemma 3.7 (Lift Lemma [NV1]). Let u and v be weights, L be a dyadic
interval and m, n be fixed natural numbers. Let ST mL be the collection of
maximal stopping time intervals K ∈ D(L), where the stopping criteria
are either (i) |∆Ku|/mKu+ |∆Kv|/mKv ≥ 1/(m+ n+ 2), or (ii) |K| =
2−m|L|. Then for any stopping interval K ∈ ST mL , e−1mLu ≤ mKu ≤
emLu, also e−1mLv ≤ mKv ≤ emLv.

Note that the roles of m and n can be interchanged and we get the
family ST nL using the same stopping condition (i) as above, but with
(ii) replaced by |K| = 2−n|L|. Notice that ST mL is a partition of L in
dyadic subintervals of length at least 2−m|L|. Any collection of subin-
tervals of L with this property will be an m-stopping time for L.

Proof: Let K be a maximal stopping time interval; thus no dyadic in-
terval strictly bigger than K can satisfy either stopping criteria. If F is
a dyadic interval strictly bigger than K and contained in L, then neces-
sarily |∆Fu|/mFu ≤ (m + n + 2)−1 and |∆F v|/mF v ≤ (m + n + 2)−1.

This is particularly true for the parent of K. Let us denote by K̂ the
parent of K, then |mKu −mK̂u|2 ≤ mK̂u/2(m+ n+ 2). So, mK̂u

(
1 −

1/2(m+ n+ 2)
)
≤ mKu ≤ mK̂u

(
1 + 1/2(m+ n+ 2)

)
. Iterating this

process until we reach L, we will get that

mLu

(
1− 1

2(m+ n+ 2)

)m
≤ mKu ≤ mLu

(
1 +

1

2(m+ n+ 2)

)m
.

Remember that |K| = 2−j |L| where 0 ≤ j ≤ m so we will iterate at most
m times. We can obtain the same bounds for v. These clearly imply the
estimates in the lemma, since limk→∞(1 + 1/k)k = e.

The following lemma lifts a w-Carleson sequence to m-stopping time
intervals with comparable intensity. The lemma appeared in [NV1]
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for the particular stopping time ST mL given by the stopping criteria (i)
and (ii) in Lemma 3.7, and w = 1. This is a property of any stopping
time that stops once the mth-generation is reached.

Lemma 3.8. For each L ∈ D, let ST mL be a partition of L in dyadic
subintervals of length at least 2−m|L| (in particular it could be the stop-
ping time intervals defined in Lemma 3.7). Assume {νI}I∈D is a w-Car-
leson sequence with intensity at most A, let νmL :=

∑
K∈STm

L
νK . Then

{νmL }L∈D is a w-Carleson sequence with intensity at most (m+ 1)A.

Proof: In order to show that {νmL }L∈D is a w-Carleson sequence with
intensity at most (m+ 1)A, it is enough to show that for any J ∈ D∑

L∈D(J)

νmL < (m+ 1)Aw(J).

Observe that for each dyadic interval K inside a fixed dyadic interval J
there exist at most m + 1 dyadic intervals L such that K ∈ ST mL . Let
us denote by Ki the dyadic interval that contains K and such that
|Ki| = 2i|K|. If K ∈ D(J) then L must be K0,K1, . . . or Km. We just
have to notice that if L = Ki, for i > m then K cannot be in ST mL
because |K| < 2−m|L|. Therefore,∑

L∈D(J)

νmL =
∑

L∈D(J)

∑
K∈ST m

L

νK =
∑

K∈D(J)

∑
L∈D(J) s.t. K∈STm

L

νK

≤
∑

K∈D(J)

(m+ 1)νk ≤ (m+ 1)Aw(J).

The last inequality follows by the definition of w-Carleson sequence with
intensity A. The lemma is proved.

4. Paraproduct

For b ∈ BMOd, and m,n ∈ N, a dyadic paraproduct of complex-
ity (m,n) is the operator defined by

(4.1)
(
πm,nb f

)
(x) :=

∑
L∈D

∑
(I,J)∈Dn

m(L)

cLI,JmIf〈b, hI〉hJ(x),

where |cLI,J | ≤
√
|I| |J |/|L| for all dyadic intervals L and (I, J) ∈ Dnm(L),

where Dnm(L) = Dn(L)×Dm(L).
A dyadic paraproduct of complexity (0, 0) is the usual dyadic para-

product πb known to be bounded in Lp(R) if and only if b ∈ BMOd.
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A Haar shift operator of complexity (m,n), m,n ∈ N, is defined by(
Sm,nf

)
(x) :=

∑
L∈D

∑
(I,J)∈Dn

m(L)

cLI,J〈f, hI〉hJ(x),

where |cLI,J | ≤
√
|I| |J |/|L|. Notice that the Haar shift operators are

automatically uniformly bounded on L2(R), with operator norm less
than or equal to one [LPR], [CMP1].

The dyadic paraproduct of complexity (m,n) is the composition

of Sm,n and πb. Therefore, if b ∈ BMOd then πm,nb is bounded in L2(R),
since πm,nb = Sm,nπb, and both πb (the dyadic paraproduct) and Sm,n

(the Haar shift operators) are bounded in L2(R).
Furthermore, πb and Sm,n are bounded in L2(w) whenever w ∈Ad2.

Both of them obey bounds on L2(w) that are linear in the A2-charac-
teristic of the weight, immediately providing a quadratic bound in the
A2-characteristic of the weight for πm,nb . We will show that in fact, the
dyadic paraproduct of complexity (m,n) obeys the same linear bound
in L2(w) with respect to [w]Ad

2
obtained by Beznosova [Be2] for the

dyadic paraproduct of complexity (0, 0), multiplied by a polynomial fac-
tor that depends on the complexity.

The proof given by Nazarov and Volberg, in [NV1], of the fact that
Haar shift operators with complexity (m,n) are bounded in L2(w) with
a bound that depends linearly on the Ad2-characteristic of w, and poly-
nomially on the complexity, works, with appropriate modifications, for
the dyadic paraproducts of complexity (m,n). Below we describe those
modifications. Beforehand, however, we will present this new and con-
ceptually simpler (in our opinion) proof for the linear bound on the
Ad2-characteristic for the dyadic paraproduct, which will allow us to
highlight certain elements of the general proof without dealing with the
complexity.

4.1. Complexity (0, 0). The dyadic paraproduct of complexity (0, 0)
is defined by (πbf)(x) :=

∑
I∈D cI mIf〈b, hI〉hI(x), where |cI | ≤ 1.

It is known that πb obeys a linear bound in L2(w) both in terms of
the Ad2-characteristic of the weight w and the BMO-norm of b.

Theorem 4.1 ([Be2]). There exists C > 0, such that for all b ∈ BMOd

and for all w ∈ Ad2,

‖πbf‖L2(w) ≤ C[w]Ad
2
‖b‖BMOd‖f‖L2(w).

Beznosova’s proof is based on the α-Lemma, the Little Lemma (these
were the new Bellman function ingredients that she introduced), and
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Nazarov-Treil-Volberg’s two-weight Carleson embedding theorem, which
can be found in [NTV1]. Below, we give another proof of this result;
this proof is still based on the α-Lemma 3.4 (via Lemma 3.5) however
it does not make use of the two-weight Carleson embedding theorem.
Instead we will use properties of Carleson sequences such as the Little
Lemma 3.2, and the Weighted Carleson Lemma 3.1, following the ar-
gument in [NV1] for Haar shift operators of complexity (m,n). The
extension of Theorem 4.1 to RN can be found in [Ch], and the meth-
ods used there can be adapted to extend our proof to RN even in the
complexity (m,n) case, see [Mo2].

Remark 4.2. Throughout the proofs a constant C will be a numerical
constant that may change from line to line.

Proof of Theorem 4.1: Fix f ∈ L2(w) and g ∈ L2(w−1). Define bI =
〈b, hI〉, then {b2I}I∈D is a Carleson sequence with intensity ‖b‖2

BMOd .
By duality, it suffices to prove:

(4.2) |〈πb(fw), gw−1〉| ≤ C‖b‖BMOd [w]A2
‖f‖L2(w)‖g‖L2(w−1).

Note that 〈πb(fw), gw−1〉| =
〈∑

I∈D cIbImI(fw)hI , gw
−1
〉
. Write hI =

αIh
w−1

I + βIχI/
√
|I| where αI = αw

−1

I and βI = βw
−1

I as described in
Proposition 2.1. Then

(4.3) |〈πb(fw), gw−1〉|≤
∑
I∈D
|bI |mI(|f |w)

∣∣∣∣∣
〈
gw−1, αIh

w−1

I +βI
χI√
|I|

〉∣∣∣∣∣ .
Use the triangle inequality to break the sum in (4.3) into two sums to
be estimated separately, |〈πb(fw), gw−1〉| ≤ Σ1 + Σ2. Where, using the
estimates |αI | ≤

√
mIw−1, and |βI | ≤ |∆Iw

−1|/mIw
−1,

Σ1 :=
∑
I∈D
|bI |mI(|f |w)|〈gw−1, hw

−1

I 〉|
√
mIw−1

Σ2 :=
∑
I∈D
|bI |mI(|f |w)|〈gw−1, χI〉|

|∆Iw
−1|

mIw−1

1√
|I|
.

Estimating Σ1: First using that mI(|f |w)/mIw ≤ infx∈IMwf(x), and
that 〈gv, f〉 = 〈g, f〉v; second using the Cauchy-Schwarz inequality and
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mIwmIw
−1 ≤ [w]Ad

2
, we get

Σ1 ≤
∑
I∈D
|bI |

infx∈IMwf(x)√
mIw−1

∣∣〈g, hw−1

I 〉w−1

∣∣mIw
−1mIw

≤ [w]Ad
2

(∑
I∈D
|bI |2

infx∈IM
2
wf(x)

mIw−1

) 1
2
(∑
I∈D

∣∣〈g, hw−1

I 〉w−1

∣∣2) 1
2

.

Using Weighted Carleson Lemma 3.1, with F (x) = M2
wf(x), v = w,

and αI = |bI |2/mIw
−1 (which is a w-Carleson sequence with inten-

sity 4‖b‖2
BMOd , according to Lemma 3.2), together with the fact that

{hw−1

I }I∈D is an orthonormal system in L2(w−1), we get

Σ1 ≤ 4[w]Ad
2
‖b‖BMOd

(∫
R
M2
wf(x)w(x) dx

) 1
2

‖g‖L2(w−1)

≤ C[w]Ad
2
‖b‖BMOd‖f‖L2(w)‖g‖L2(w−1).

In the last inequality we used the fact that Mw is bounded in L2(w)
with operator norm independent of w.

Estimating Σ2: Using arguments similar to the ones used for Σ1, we
conclude that,

Σ2 =
∑
I∈D
|bI |mw

I |f |mw−1

I |g|
√
νI ≤

∑
I∈D
|bI |
√
νI inf

x∈I
Mwf(x)Mw−1g(x),

where νI = |I|(mIw)2(∆Iw
−1)2 as defined in Lemma 3.5, and in the last

inequality we used that for any I ∈ D and all x ∈ I,

mw
I |f |mw−1

I |g| ≤Mwf(x)Mw−1g(x).

Since {|bI |2}I∈D and {νI}I∈D are Carleson sequences with intensi-
ties ‖b‖2

BMOd and C[w]2
Ad

2
, respectively, by Proposition 2.2, the sequence

{|bI |
√
νI}I∈D is a Carleson sequence with intensity C‖b‖BMOd [w]Ad

2
.

Thus, by Lemma 3.1 with F (x) = Mwf(x)Mw−1g(x), αI = |bI |
√
νI ,

and v = 1,

Σ2 ≤ C‖b‖BMOd [w]Ad
2

∫
R
Mwf(x)Mw−1g(x) dx.



280 J. C. Moraes, M. C. Pereyra

Using the Cauchy-Schwarz inequality and w
1
2 (x)w

−1
2 (x) = 1 we get

Σ2 ≤C[w]Ad
2
‖b‖BMOd

(∫
R
M2
wf(x)w(x) dx

)1
2
(∫

R
M2
w−1g(x)w−1(x) dx

)1
2

=C[w]Ad
2
‖b‖BMOd‖Mwf‖L2(w)‖Mw−1g‖L2(w−1)

≤C[w]Ad
2
‖b‖BMOd‖f‖L2(w)‖g‖L2(w−1).

These estimates together give (4.2), and the theorem is proved.

4.2. Complexity (m,n). In this section, we prove an estimate for the
dyadic paraproduct of complexity (m,n) that is linear in the A2-char-
acteristic and polynomial in the complexity. The proof will follow the
general lines of the argument presented in Subsection 4.1 for the com-
plexity (0, 0) case, with the added refinements devised by Nazarov and
Volberg [NV1], adapted to our setting, to handle the general complexity.

Theorem 4.3. Let b ∈ BMOd and w ∈ Ad2. Then there is C > 0 such
that

‖πm,nb f‖L2(w) ≤ C(n+m+ 2)5[w]Ad
2
‖b‖BMOd‖f‖L2(w).

Proof: Fix f ∈ L2(w) and g ∈ L2(w−1), define bI = 〈b, hI〉 and let
Cnm := (m+ n+ 2). By duality, it is enough to show that

|〈πm,nb (fw), gw−1〉| ≤ C(Cnm)5[w]Ad
2
‖b‖BMOd‖g‖L2(w−1)‖f‖L2(w).

We write the left-hand side as a double sum, that we will estimate as

|〈πm,nb (fw), gw−1〉| ≤
∑
L∈D

∑
(I,J)∈Dn

m(L)

|bI |
√
|I| |J |
|L|

mI(|f |w)|〈gw−1, hJ〉|.

As before, we write hJ = αJh
w−1

J + βJχJ/
√
|J |, with αJ = αw

−1

J ,

βJ = βw
−1

J , and break the double sum into two terms to be estimated
separately. Then |〈πm,nb (fw), gw−1〉| ≤ Σm,n1 + Σm,n2 , where

Σm,n1 :=
∑
L∈D

∑
(I,J)∈Dn

m(L)

|bI |
√
|I| |J |
|L|

mI(|f |w)|〈g, hw
−1

J 〉w−1 |
√
mJw−1,

Σm,n2 :=
∑
L∈D

∑
(I,J)∈Dn

m(L)

|bI |
√
|I|
|L|

mI(|f |w)|〈gw−1, χJ〉|
|∆Jw

−1|
mJw−1

.
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For a weight v, and a locally integrable function φ we define the following
quantities,

Sv,mL φ :=
∑

J∈Dm(L)

|〈φ, hvJ〉v|
√
mJv

√
|J |/|L|,(4.4)

Rv,mL φ :=
∑

J∈Dm(L)

|∆Jv|
mJv

mJ(|φ|v) |J |/
√
|L|,(4.5)

Pbv,nL φ :=
∑

I∈Dn(L)

|bI | mI(|φ|v)
√
|I|/|L|.(4.6)

For s = 1, 2 and w ∈ Ad2, we also define the following Carleson sequences
(see Lemma 3.8 and Lemma 3.6):

µsK := (mKw)s(mKw
−1)s

(
|∆Kw

−1|2

(mKw−1)2
+
|∆Kw|2

(mKw)2

)
|K|,

with intensity C[w]sAd
2
,

µm,sL :=
∑

K∈STm
L

µK , with intensity C(m+ 1)[w]sAd
2
,

µn,sL :=
∑

K∈ST n
L

µK , with intensity C(n+ 1)[w]sAd
2
,

µb,sK := |bK |2(mKwmKw
−1)s, with intensity ‖b‖2BMOd [w]sAd

2
,

and

µb,n,sL :=
∑

K∈ST n
L

µb,sK , with intensity (n+ 1)‖b‖2BMOd [w]sAd
2
.

Note that

Σm,n1 ≤
∑
L∈D

Pbw,nL f Sw
−1,m

L g and Σm,n2 ≤
∑
L∈D

Pbw,nL f Rw
−1,m

L g.
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In order to estimate Σm,n1 and Σm,n2 we will use the following estimates

for Sw
−1,m

L g, Rw
−1,m

L g, and Pbw,nL f ,

Sw
−1,m

L g≤

 ∑
J∈Dm(L)

|〈g, hw
−1

J 〉w−1 |2
1

2

(mLw
−1)

1
2 ,(4.7)

Rw
−1,m

L g≤C Cnm(mLw)
−s
2 (mLw

−1)1− s
2 inf
x∈L

(
Mw−1(|g|p)(x)

)1
p

√
µm,sL ,(4.8)

Pbw,nL f≤C Cnm(mLw)1− s
2 (mLw

−1)
−s
2 inf
x∈L

(
Mw(|f |p)(x)

) 1
p νn,sL ,(4.9)

where νn,sL = ‖b‖BMOd

√
µn,sL +

√
µb,n,sL , and p = 2− (Cnm)−1 (note that

1 < p < 2). In the proof it will become clear why this is a good choice;
the reader is invited to assume first that p = 2 and reach a point of no
return in the argument.

Estimate (4.7) is easy to show. We just use the Cauchy-Schwarz
inequality and the fact that Dm(L) is a partition of L.

Sw
−1,m

L g ≤

 ∑
J∈Dm(L)

|〈g, hw
−1

J 〉w−1 |2
 1

2 (
mLw

−1
) 1

2 .

Estimate (4.8) was obtained in [NV1]. With a variation on their
argument we prove estimate (4.9) in Lemma 4.4. Let us first use esti-
mates (4.7), (4.8) and (4.9) to estimate Σm,n1 and Σm,n2 .

Estimate for Σm,n1 : Use estimates (4.7) and (4.9) with s = 2, the Cauchy-

Schwarz inequality and the fact that {hw−1

J }J∈D is an orthonormal sys-
tem in L2(w−1) and D = ∪L∈DDm(L). Then

Σm,n1 ≤ C Cnm

(∑
L∈D

(νn,2L )2

mLw−1
inf
x∈L

(
Mw(|f |p)(x)

) 2
p

) 1
2

‖g‖L2(w−1).

We will now use the Weighted Carleson Lemma 3.1 with

F (x) =
(
Mw(|f |p)(x)

)2/p
, v = w, and αL = (νn,2L )2/mLw

−1. Recall

that νn,2L = ‖b‖BMOd

√
µn,2L +

√
µb,n,2L . By Proposition 2.2, {(νn,2L )2}L∈D

is a Carleson sequence with intensity at most C Cnm‖b‖2BMOd [w]2
Ad

2
. By
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Lemma 3.2, {(νn,2L )2/mLw
−1}L∈D is a w-Carleson sequence with com-

parable intensity. Thus we will have that

Σm,n1 ≤ C (Cnm)
3
2 [w]Ad

2
‖b‖BMOd‖g‖L2(w−1)

∥∥∥Mw(|f |p)
∥∥∥ 1

p

L
2
p (w)

≤ C
[
(2/p)′

] 1
p (Cnm)

3
2 [w]Ad

2
‖b‖BMOd‖g‖L2(w−1)

∥∥|f |p∥∥ 1
p

L
2
p (w)

= C(Cnm)
5
2 [w]Ad

2
‖b‖BMOd‖g‖L2(w−1)‖f‖L2(w).

We used in the first inequality that Mw is bounded in Lq(w) for all q > 1,
more specifically we used that ‖Mwf‖Lq(w) ≤ Cq′‖f‖Lq(w). In our case
q = 2/p and q′ = 2/(2− p) = 2Cnm.

Estimate for Σm,n2 : Use estimates (4.8) and (4.9) with s = 1 in both
cases, together with the facts that (mIwmIw

−1)−1 ≤ 1, and that the
product of the infimum of positive quantities is smaller than the infimum
of the product. Then

Σm,n2 ≤ C(Cnm)2
∑
L∈D

νn,1L

√
µm,1L inf

x∈L

(
Mw(|f |p)(x)

) 1
p
(
Mw−1(|g|p)(x)

) 1
p .

Since (νn,1L )2 and µm,1L have intensity at most C(n+1)[w]Ad
2
‖b‖2BMO and

C(m+1)[w]Ad
2
, by Proposition 2.2, we have that νn,1L

√
µm,1L is a Carleson

sequence with intensity at most C Cmn ‖b‖BMOd [w]Ad
2
. If we now apply

Lemma 3.1 with F p(x) = Mw(|f |p)(x)Mw−1(|g|p)(x), αL = νn,1L

√
µm,1L ,

and v = 1, we will have, by the Cauchy-Schwarz inequality and the
boundedness of Mv in Lq(v) for q = p/2 > 1,

Σm,n2 ≤ C(Cnm)3[w]Ad
2
‖b‖BMOd

∫
R

(
Mw(|f |p)(x)

) 1
p
(
Mw−1(|g|p)(x)

) 1
p dx

≤ C(Cnm)3[w]Ad
2
‖b‖BMOd

∥∥Mw(|f |p)
∥∥ 1

p

L
2
p (w)

∥∥∥∥Mw−1(|g|p)
∥∥ 1

p

L
2
p (w−1)

≤ C
[
(2/p)′

] 2
p (Cnm)3[w]Ad

2
‖b‖BMOd

∥∥|f |p∥∥ 1
p

L
2
p (w)

∥∥|g|p∥∥ 1
p

L
2
p (w−1)

= C(Cnm)5[w]Ad
2
‖b‖BMOd‖f‖L2(w)‖g‖L2(w−1).

Together these estimates prove the theorem, under the assumption that
estimate (4.9) holds.
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4.3. Key Lemma. The missing step in the previous proof is esti-
mate (4.9), which we now prove. The argument we present is an adap-
tation of the argument used in [NV1] to obtain estimate (4.8).

Lemma 4.4. Let b ∈ BMOd, and let φ be a locally integrable function.
Then

Pbw,nL φ ≤ C Cnm(mLw)1− s
2 (mLw

−1)
−s
2 inf
x∈L

(
Mw(|φ|p)(x)

) 1
p νn,sL ,

where νn,sL = ‖b‖BMOd

√
µn,sL +

√
µb,n,sL , and p = 2− (Cnm)−1.

Proof: Let ST nL be the collection of stopping time intervals defined in
Lemma 3.7. Noting that Dn(L) = ∪K∈ST n

L

(
D(K) ∩ Dn(L)

)
, we get

Pbw,nL φ =
∑

K∈ST n
L

∑
I∈D(K)

⋂
Dn(L)

|bI |mI(|φ|w)
√
|I|/|L|.

Note that if K is a stopping time interval by the first criterion then

Pbw,nL φ ≤ ‖b‖BMOd mK(|φ|w)|K|/
√
|L|

≤ Cnm‖b‖BMOd mK(|φ|w)(
√
|K|/|L|)

√
2µsK (mKwmKw

−1)
−s
2 .

The first inequality is true because |bI |/
√
|I| ≤ ‖b‖BMOd and the second

one because

1 ≤ Cnm
(
|∆Kw|
mKw

+
|∆Kw

−1|
mKw−1

)√
|K| ≤ Cnm

√
2µsK(mKwmKw

−1)
−s
2 .

Now we use the fact, proved in Lemma 3.7, that we can compare the
averages of the weights on the stopping intervals with their averages in L,
paying a price of a constant e, and continue estimating by

√
2Cmn e

s‖b‖BMOdmK(|φ|w)
√
|K|/|L|

√
µsK(mLwmLw

−1)
−s
2 .

If K is a stopping time interval by the second criterion, then the sum
collapses to just one term∑

I∈D(K)
⋂
Dn(L)

|bI |mI(|φ|w)
√
|I|/|L|

= |bK |mK(|φ|w)
√
|K|/|L|

= mK(|φ|w)
√
|K|/|L|

√
µb,sK (mKwmKw

−1)
−s
2

≤ Cmn esmK(|φ|w)
√
|K|/|L|

√
µb,sK (mLwmLw

−1)
−s
2 .
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Let Ξ1(L) := {K ∈ ST nL : K is a stopping time interval by criterion 1},
and Ξ2(L) := {K ∈ ST nL : K is a stopping time interval by criterion 2}.
Note that Ξ1(L)

⋃
Ξ2(L) is a partition of L. We then have

(4.10) Pbw,nL ≤
√

2Cmn e
s (mLwmLw

−1)
−s
2

(
‖b‖BMOdΣ1

Pb + Σ2
Pb

)
,

where the terms Σ1
Pb and Σ2

Pb are defined as follows,

Σ1
Pb :=

∑
K∈Ξ1(L)

mK(|φ|w)
√
|K|/|L|

√
µsK ,

Σ2
Pb :=

∑
K∈Ξ2(L)

mK(|φ|w)
√
|K/|L|

√
µb,sK .

Now estimate Σ1
Pb using the Cauchy-Schwarz inequality, noting that

we can move a power p/2 < 1 from outside to inside the sum, and that
µn,sL :=

∑
I∈ST n

L
µsK ≥

∑
I∈Ξ1(L) µ

s
K ,

Σ1
Pb ≤

 ∑
K∈Ξ1(L)

(mK(|φ|w))2|K|/|L|

 1
2
 ∑
K∈Ξ1(L)

µsK

 1
2

≤

 ∑
K∈Ξ1(L)

(mK(|φ|w))p
(
|K|/|L|

) p
2

 1
p √

µn,sL .

(4.11)

By the second stopping criterion |K|/|L| = 2−j for 0 ≤ j ≤ m, then

(4.12)
(
|K|/|L|

) p
2 = 2−j+

j
2(m+n+2) < 2 · 2−j = 2|K|/|L|.

Plugging (4.12) into (4.11) gives

Σ1
Pb ≤

2
∑

K∈Ξ1(L)

(mK(|φ|w))p|K|/|L|

 1
p √

µn,sL .

Use Hölder’s inequality inside the sum, then Lift Lemma 3.7, to get

Σ1
Pb ≤

 ∑
K∈Ξ1(L)

(mK(|φ|pw))(mKw)p−1|K|/|L|

 1
p √

µn,sL

≤ 2
1
p (emLw)1− 1

p

 1

|L|
∑

K∈Ξ1(L)

∫
K

|φ(x)|pw(x) dx

 1
p √

µn,sL .



286 J. C. Moraes, M. C. Pereyra

Observe that the intervals K ∈ Ξ1(L) are disjoint subintervals of L,
therefore,

∑
K∈Ξ1(L)

∫
K
|φ(x)|pw(x) dx ≤

∫
L
|φ(x)|pw(x) dx, thus,

(4.13) Σ1
Pb ≤ 2emLw inf

x∈L

(
Mw(|φ|p)(x)

) 1
p

√
µn,sL .

Similarly we estimate Σ2
Pb, to get

Σ2
Pb ≤

( ∑
K∈Ξ2

(mK(|φ|w))2|K|/|L|

) 1
2
( ∑
K∈Ξ2

µb,sK

) 1
2

≤

 ∑
K∈ST n

L

(mK(|φ|w))p
(
|K|/|L|

) p
2

 1
p √

µb,n,sL .

Following the same steps as we did in the estimate for Σ1
Pb, we will have

(4.14) Σ2
Pb ≤ 2emLw inf

x∈L

(
Mw(|φ|p)(x)

) 1
p

√
µb,n,sL .

Insert estimates (4.13) and (4.14) into (4.10). Altogether, we can
bound Pbw,nL by

C Cmn e
s+1 (mLw)1− s

2 (mLw
−1)

−s
2 inf
x∈L

(
Mw(|φ|p)(x)

) 1
p

νn,sL .

The lemma is proved.

Remark 4.5. In [NV2], Nazarov and Volberg extend the results that they
had for Haar shift operators in [NV1] to metric spaces with geometric
doubling. One can extend Theorem 4.3 to this setting as well, see [Mo2].

5. Haar Multipliers

For a weight w, t ∈ R, and m,n ∈ N, a t-Haar multiplier of complex-
ity (m,n) is the operator defined as

(5.1) Tm,nt,w f(x) :=
∑
L∈D

∑
(I,J)∈Dn

m(L)

cLI,J

(
w(x)

mLw

)t
〈f, hI〉hJ(x),

where |cLI,J | ≤
√
|I| |J |/|L|.

Note that these operators have symbols, namely cLI,J
(
w(x)/mLw

)t
,

that depend on: the space variable x, the frequency encoded in the
dyadic interval L, and the complexity encoded in the subintervals I ∈
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Dn(L) and J ∈ Dm(L). This makes these operators akin to pseudodif-
ferential operators where the trigonometric functions have been replaced
by the Haar functions.

Observe that Tm,nt,w is different from both Sm,nT tw and T twS
m,n and,

that, unlike Tm,nt,w , both Sm,nT tw and T twS
m,n obey the same bound that

T tw obeys in L2(R), because the Haar shift multipliers have L2-norm less
than or equal to one.

5.1. Necessary conditions. Let us first show a necessary condition on
the weight w so that the Haar multiplier Tm,nw,t with cLI,J =

√
|I| |J |/|L| is

bounded on Lp(R). This necessary Cdtp-condition is the same condition
found in [KP] for the t-Haar multiplier of complexity (0, 0).

Theorem 5.1. Let w be a weight, m, n positive integers and t a real
number. If Tm,nt,w is the t-Haar multiplier with cLI,J =

√
|I| |J |/|L| and is

a bounded operator in Lp(R), then w is in Cdtp.

Proof: Assume that Tm,nt,w is bounded in Lp(R) for 1 < p < ∞. Then

there exists C > 0 such that for any f ∈ Lp(R) we have ‖Tm,nt,w f‖p ≤
C‖f‖p. Thus for any I0 ∈ D we should have

(5.2) ‖Tm,nt,w hI0‖pp ≤ Cp‖hI0‖pp.

Let us compute the norm on the left-hand side of (5.2). Observe that

(5.3) Tm,nt,w hI0(x)=
∑
L∈D

∑
(I,J)∈Dn

m(L)

√
|I| |J |/|L|

(
w(x)

mLw

)t
〈hI0 , hI〉hJ(x).

We have 〈hI0 , hI〉 = 1 if I0 = I and 〈hI0 , hI〉 = 0 otherwise. Also,
there exists just one dyadic interval L0 such that I0 ⊂ L0 and |I0| =
2−n|L0|. Therefore we can collapse the sums in (5.3) to just one sum,
and calculate the Lp-norm as follows,

‖Tm,nt,w hI0‖pp =

∫
R

∣∣∣∣∣∣
∑

J∈Dm(L0)

√
|I0| |J |/|L0|

(
w(x)

mL0w

)t
hJ(x)

∣∣∣∣∣∣
p

dx.

Furthermore, since Dm(L0) is a partition of L0, the power p can be put
inside the sum, and we get

(5.4) ‖Tm,nt,w hI0‖pp =
(
|I0|

p
2 /|L0|p−1

)(
mL0w

tp/(mL0w)pt
)
.

Inserting ‖hI0‖pp = |I0|1−
p
2 and (5.4) in (5.2), we will have that for

any dyadic interval I0 there exists C such that(
|I0|

p
2 /|L0|p−1

)(
mL0

wtp/(mL0
w)pt

)
≤ Cp|I0|1−

p
2 .
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Thus, mL0
wtp/(mL0

w)pt ≤ Cp|I0|1−p|L0|p−1 = Cp2n(p−1) =: Cn,p. Now
observe that this inequality should hold for any L0 ∈ D, we just have
to choose as I0 any of the descendants of L0 in the n-th generation, and
that n is fixed. Therefore,

[w]Cd
2t

= sup
L∈D

(mLw
tp)(mLw)−pt ≤ Cn,p.

We conclude that w ∈ Cdtp; moreover [w]Cd
tp
≤ 2n(p−1)||Tm,nt,w ||pp.

5.2. Sufficient condition. For most t ∈ R, the Cd2t-condition is not
only necessary but also sufficient for a t-Haar multiplier of complex-
ity (m,n) to be bounded on L2(R); this was proved in [KP] for the
case m = n = 0. Here we are concerned not only with the boundedness
but also with the dependence of the operator norm on the Cd2t-constant.
For the case m = n = 0 and t = 1,±1/2 this was studied in [Pe2].
Beznosova [Be1] was able to obtain estimates, under the additional con-
dition on the weight: w2t ∈ Adp for some p > 1, for the case of complex-

ity (0, 0) and for all t ∈ R. We generalize her results when w2t ∈ Ad2
for complexity (m,n). Our proof differs from hers in that we are adapt-
ing the methods of Nazarov and Volberg [NV1] to this setting as well.
Both proofs rely on the α-Lemma (Lemma 3.4) and on the Little Lemma
(Lemma 3.2). See also [BMP].

Theorem 5.2. Let t be a real number and w a weight in Cd2t, such that
w2t ∈ Ad2. Then Tm,nt,w , a t-Haar multiplier with depth (m,n), is bounded

in L2(R). Moreover,

‖Tm,nt,w f‖2 ≤ C(m+ n+ 2)3[w]
1
2

Cd
2t

[w2t]
1
2

Ad
2
‖f‖2.

Proof: Fix f, g ∈ L2(R). By duality, it is enough to show that

|〈Tm,nt,w f, g〉| ≤ C(m+ n+ 2)3[w]
1
2

Cd
2t

[w2t]
1
2

Ad
2
‖f‖2‖g‖2.

The inner product on the left-hand-side can be expanded into a double
sum that we now estimate,

|〈Tm,nt,w f, g〉| ≤
∑
L∈D

∑
(I,J)∈Dn

m(L)

(
√
|I| |J |/|L|) |〈f, hI〉|

(mLw)t
|〈gwt, hJ〉|.

Decompose hJ into a linear combination of a weighted Haar function

and a characteristic function, hJ = αJh
w2t

J + βJχJ/
√
|J |, where αJ =

αw
2t

J , βJ = βw
2t

J , |αJ | ≤
√
mJw2t, and |βJ | ≤ |∆J(w2t)|/mJw

2t. Now
we break this sum into two terms to be estimated separately so that,

|〈Tm,nt,w f, g〉| ≤ Σm,n3 + Σm,n4 ,
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where

Σm,n3 :=
∑
L∈D

∑
(I,J)∈Dn

m(L)

√
|I| |J |
|L|

√
mJ(w2t)

(mLw)t
|〈f, hI〉| |〈gwt, hw

2t

J 〉|,

Σm,n4 :=
∑
L∈D

∑
(I,J)∈Dn

m(L)

|J |
√
|I|

|L|(mLw)t
|∆J(w2t)|
mJ(w2t)

|〈f, hI〉|mJ(|g|wt).

Again, let p = 2 − (Cmn )−1, and define as in (4.4) and (4.5), the
quantities Sv,mL φ and Rv,mL φ, with v = w2t. Let

PnLφ :=
∑

I∈Dn(L)

|〈f, hI〉|
√
|I|/|L|,

and

ηI := mI(w
2t)mI(w

−2t)

(
|∆I(w

2t)|2

|mIw2t|2
+
|∆I(w

−2t)|2

|mIw−2t|2

)
|I|.

By Lemma 3.6 with s = 1, {ηI}I∈D is a Carleson sequence with inten-
sity C[w2t]Ad

2
. Let ηmL :=

∑
I∈STm

L
ηI , where the stopping time ST mL is

defined as in Lemma 3.7 (with respect to the weight w2t). By Lemma 3.8,
{ηmL }L∈D is a Carleson sequence with intensity C(m+ 1)[w2t]Ad

2
.

Observe that on the one hand 〈gwt, hw2t

J 〉 = 〈gw−t, hw2t

J 〉w2t , and on
the other mJ(|g|wt) = mJ(|gw−t|w2t). Therefore,

Σm,n3 =
∑
L∈D

(mLw)−tSw
2t,m

L (gw−t)PnLf,

Σm,n4 =
∑
L∈D

(mLw)−tRw
2t,m

L (gw−t) PnLf.

Estimates (4.7) and (4.8) with s = 1 hold for Sw
2t,m

L (gw−t) and

Rw
2t,m

L (gw−t), with w−1 and g replaced by w2t and gw−t:

Sw
2t,m

L (gw−t) ≤ (mLw
2t)

1
2

 ∑
J∈Dm(L)

|〈gw−t, hw
2t

J 〉w2t |2
 1

2

,

Rw
2t,m

L (gw−t) ≤ C Cnm(mLw
2t)

1
2 (mLw

−2t)
−1
2 F

1
2 (x)

√
ηmL ,
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where F (x) = infx∈L
(
Mw2t(|gw−t|p)(x)

) 2
p . Estimating PnLf is simple:

PnLf≤

 ∑
I∈Dn(L)

|I|/|L|

1
2
 ∑
I∈Dn(L)

|〈f, hI〉|2
1

2

=

 ∑
I∈Dn(L)

|〈f, hI〉|2
1

2

.

Estimating Σm,n3 : Plug in the estimates for Sw
2t,m

L (gw−t) and PnLf ,

observing that (mLw
2t)

1
2 /(mLw)t ≤ [w]

1
2

Cd
2t

. Using the Cauchy-Schwarz

inequality, we get

Σm,n3 ≤
∑
L∈D

[w]
1
2

Cd
2t

 ∑
J∈Dm(L)

|〈gw−t, hw
2t

J 〉w2t |2
1

2
 ∑
I∈Dn(L)

|〈f, hI〉|2
1

2

≤ [w]
1
2

Cd
2t
‖f‖2‖gw−t‖L2(w2t) = [w]

1
2

Cd
2t
‖f‖2‖g‖2.

Estimating Σm,n4 : Plug in the estimates for Rw
2t,m

L (gw−t) and PnLf ,

where F (x) =
(
Mw2t(|gw−t|p)(x)

)2/p
. Using the Cauchy-Schwarz in-

equality and considering again that (mLw
2t)

1
2 /(mLw)t ≤ [w]

1
2

Cd
2t

, then

Σm,n4 ≤ C Cnm[w]
1
2

Cd
2t
‖f‖2

(∑
L∈D

ηmL
mLw−2t

inf
x∈L

F (x)

) 1
2

.

Now, use the Weighted Carleson Lemma 3.1 with αL = ηmL /mL(w−2t)
(which by Lemma 3.2 is a w2t-Carleson sequence with intensity at most

C Cnm[w2t]Ad
2
). Let F (x) =

(
Mw2t |gw−t|p(x)

)2/p
, and v = w2t, then

Σm,n4 ≤ C(Cnm)2[w]
1
2

Cd
2t

[w2t]
1
2

Ad
2
‖f‖2

∥∥Mw2t(|gw−t|p)
∥∥ 1

p

L
2
p (w2t)

.

Using (2.1), that is the boundedness of Mw2t in L
2
p (w2t) for 2/p > 1,

and (2/p)′ = 2Cnm, we get

Σm,n4 ≤ C(Cnm)2(2/p)′[w]
1
2

Cd
2t

[w2t]
1
2

Ad
2
‖f‖2

∥∥|gw−t|p∥∥ 1
p

L
2
p (w2t)

≤ C(Cnm)3[w]
1
2

Cd
2t

[w2t]
1
2

Ad
2
‖f‖2‖g‖2.

The theorem is proved.
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