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HOMOTOPY CLASSIFICATION OF GERBES

J. F. Jardine

Abstract

Gerbes are locally connected presheaves of groupoids on a small
Grothendieck site C. They are classified up to local weak equiva-
lence by path components of a cocycle category taking values in
the big 2-groupoid Iso(Gr(C)) consisting of all sheaves of groups
on C, their isomorphisms and homotopies. If F is a full sub-
presheaf of Iso(Gr(C)) then the set [∗, BF ] of morphisms in the
homotopy category of simplicial presheaves classifies gerbes lo-
cally weakly equivalent to objects of F . If St(πF) is the stack
completion of the fundamental groupoid πF of F , if L is a global
section of St(πF), and if FL is the homotopy fibre over L of the
canonical map BF → B St(πF), then [∗, FL] is in bijective corre-
spondence with Giraud’s non-abelian cohomology object H2(C, L)
of equivalence classes of gerbes with band L.

Contents

Introduction 83
1. Simplicial groupoids 87
2. The Grothendieck construction 94
3. Cocycle classification of gerbes 99
4. Homotopy classification of gerbes 103
References 110

Introduction

Suppose that M is a closed model category, and that X and Y are
objects ofM. A cocycle from X to Y is a picture

X
f
←− Z

g
−→ Y
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of morphisms in M such that f is a weak equivalence. A morphism of
cocycles (f, g)→ (f ′, g′) is a commutative diagram

Zf

wwpppppp

��

g

''NNNNNN

X Y

Z ′f ′

ffNNNNNN
g′

88pppppp

and these cocycles and their morphisms together form the cate-
gory h(X,Y ) of cocycles from X to Y . The assignment (f, g) 7→ gf−1

defines a function

φ : π0h(X,Y )→ [X,Y ]

from the path components of cocycle category h(X,Y ) to the set of
morphisms [X,Y ] from X to Y in the homotopy category Ho(M). Then
it is a basic result of [7] that this function φ is a bijection if the model
categoryM is right proper and if its class of weak equivalences is closed
under finite products.

The right properness condition is a serious restriction, but right proper
model structures are fairly common in nature, and include the standard
model structures for spaces, simplicial sets, and spectra, as well as more
exotic structures such as simplicial presheaves, simplicial sheaves and
presheaves of spectra on small Grothendieck sites.

The cocycle approach to constructing morphisms in the homotopy
category is proving to be very useful, particularly in connection with
simplicial sheaves and presheaves. The applications so far include new,
short and conceptual arguments for the homotopy classification of sheaf
cohomology theories, both abelian and non-abelian [7]. Cocycle cate-
gories are involved in the explicit construction of the stack completion
functor which is given in [10]. They have been used to show [8], in
a variety of settings, that morphisms [∗, BI] in the homotopy category
can be identified with path components of a suitably defined category of
I-torsors for small category objects I.

The present paper uses cocycles in presheaves of 2-groupoids, here
called 2-cocycles, to give a homotopy classification of gerbes.

A gerbe is typically defined in the literature (eg. [2, p. 129]) to be
a stack G which is locally path connected. Stacks have no conceptual
mystery —they are fibrant objects in local model structures for sheaves
of groupoids [12] or more generally presheaves of groupoids [4], and this
allows one to identify a stack with the local homotopy type of presheaves
of groupoids that it represents.
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The model structure for presheaves (or sheaves) of groupoids, over
any small Grothendieck site C, is easy to describe. A map f : G →
H of presheaves of groupoids is a local weak equivalence (respectively
injective fibration) if the induced map BG→ BH of classifying objects
is a local weak equivalence (respectively injective fibration) of simplicial
presheaves. In these terms, a gerbe is a presheaf of groupoids G such
that the classifying simplicial presheaf BG is locally path connected.

The local path connnectedness condition can be expressed this way:
given objects x, y ∈ Ob(G)(U) in a section G(U), there is a covering
family φ : V → U such that there is a morphism φ∗(x)→ φ∗(y) in G(V )
for any φ in the cover.

Every gerbe G is locally equivalent to any of its sheaves of auto-
morphism groups. The category h(∗, Iso(Gr(C))) of 2-cocycles, taking
values in the diagram of all sheaves of groups, their isomorphisms and
homotopies, is the vehicle by which we classify gerbes up to local weak
equivalence. Theorem 20 of this paper says that the path components
of this cocycle category are in one to one correspondence with the path
components of the category Ger(C) of gerbes and their local weak equiv-
alences, or that there is a bijection

π0(Ger(C)) ∼= π0h(∗, Iso(Gr(C))).

One has to interpret a statement like this carefully, because the cate-
gories involved are not small. The path component functor π0 means the
class of equivalence classes of objects, where two objects are equivalent
if and only if there is a finite string of arrows connecting them in the
ambient category. We show that there are functions

Φ: π0(Ger(C)) ⇆ π0h(∗, Iso(Gr(C))) : Ψ

which are inverse to each other. Here, Φ is induced by a canonical cocycle
construction which is introduced in Example 13, and Ψ is defined by a
generalized Grothendieck construction, which is discussed in Section 2.

The big 2-groupoid Iso(Gr(C)) has subobjects which are honest
presheaves of 2-groupoids. Examples include the sheaf of 2-groupoids
Aut(G) which is associated to a sheaf of groups of G on C: it has one ob-
ject, the sheaf of 1-cells is the sheaf of automorphisms of G, and its sheaf
of 2-cells is the sheaf of homotopies (or conjugations) of automorphisms.
More generally, any presheaf of sheaves of groups in Iso(Gr(C)) deter-
mines a full subobjectF ⊂ Iso(Gr(C)) which is a presheaf of 2-groupoids,
and one can discuss the homotopy type of F and its classifying objectBF
in simplicial presheaves. It is shown in Theorem 23 that there is a one
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to one correspondences

π0h(∗,F) ∼= π0(GerF(C))

between the set of path components of 2-cocycles taking values in the
presheaf of 2-groupoidsF and path components of the category GerF (C)
of gerbes locally equivalent to sheaves of groups appearing in F . By the
result relating path components of cocycle categories to morphisms in
the homotopy category displayed above, both of these objects are then in
bijective correspondence with the set [∗, BF ] of morphisms in the homo-
topy category of simplicial presheaves —this statement appears formally
as Corollary 24. The bijection of path components in the statement of
Theorem 23 is a restriction of the bijection of Theorem 20.

In the special case where F = Aut(G) for some sheaf of groups G,
Theorem 23 says that gerbes locally equivalent to G are classified up to
weak equivalence by morphisms [∗, BAut(G)] in the homotopy category
of simplicial presheaves. This result was originally proved, in a very
different form, by Breen [1].

Finally, the presheaf of 2-groupoids F has a fundamental groupoid πF
and a canonical morphism F → πF . In the case where F = Aut(G),
the fundamental groupoid πAut(G) is the sheaf of outer automorphisms
of G. The fundamental groupoid πF has a functorial stack completion
πF → St(πF), and St(πF) is the stack of bands (liens) for F . Suppose
that the band L is a fixed choice of global section of St(πF), and consider
the homotopy fibre FL of the composite

BF → BπF → B St(πF).

Theorem 27 (see also Corollary 28) identifies the set of morphisms [∗,BFL]
in the homotopy category with path components in a suitably defined
category of L-gerbes. In other words, Giraud’s non-abelian invariant
H2(C, L) is isomorphic to [∗, BFL]. Once again, the idea of the proof is
to identify the set of path components of the cocycle category h(∗, FL)
with path components in L-gerbes, and then use the general result about
cocycles to conclude that there is a bijection

[∗, FL] ∼= π0h(∗, FL).

Theorem 20, Theorem 23 and Theorem 27 are the main results of this
paper. The demonstrations of these theorems appear in Sections 3 and 4.
They depend on some general statements about groupoids enriched in
simplicial sets and presheaves of 2-groupoids which are given in Section 1,
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as well as the discussion of the generalized Grothendieck construction of
Section 2.

I would like to thank the referee for some helpful suggestions, and in
particular for the observation that the Grothendieck construction is in
fact a 2-category.

1. Simplicial groupoids

There are various equivalent ways to define a groupoid H enriched
in simplicial sets. The easiest thing, perhaps, is to say that such an
object is a simplicial groupoid such that the simplicial set Ob(H) of
objects is simplicially discrete, or just a set. The morphisms Mor(H)
form a simplicial set, and the source, target s, t : Mor(H)→ Ob(H) and
identity maps e : Ob(H) → Mor(H) are all simplicial set maps. The
notation Hn will refer to the associated groupoid in simplicial degree n.

For objects x, y of H the simplicial set of morphisms H(x, y) can be
defined by the pullback diagram

H(x, y) //

��

Mor(H)

(s,t)

��
∗

(x,y)
// Ob(H)×Ob(H)

where ∗ = ∆0 defines the one-point (terminal) simplicial set.
A 2-groupoidG is a groupoid enriched in groupoids. Equivalently,G is

a groupoid enriched in simplicial sets such that the simplicial set Mor(G)
is the nerve of a groupoid. More generally, a 2-category A is a category
enriched in categories, or equivalently a category enriched in simplicial
sets such that the simplicial set Mor(A) is the nerve of a category.

One routinely writes BH for both the bisimplicial set n 7→ B(Hn)
associated to a groupoid (or category) H enriched in simplicial sets
and its associated diagonal simplicial set dBH . The vertical simpli-
cial presheaf BHn in horizontal degree n is the iterated fibre product
defined by the inverse limit for the diagram

Mor(H)

t

!!DD
DD

DD
DD

Mor(H)

s

}}zz
zz

zz
zz t

!!DD
DD

DD
DD

Mor(H)

s

}}zz
zz

zz
zz

. . .

Ob(H) Ob(H)

involving n copies of the morphism object Mor(H).
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A map G → H of groupoids enriched in simplicial sets, or of 2-
groupoids, is said to be a weak equivalence if the induced map dBG →
dBH is a weak equivalence of simplicial sets.

The vertices of BH are the objects of H , and two vertices of BH are
in the same path component if and only if they are in the same path
component of the space BH0, or in the same path component of the
groupoid H0 in simplicial degree 0. It is well known and easily seen
that the degeneracy morphism H0 → Hn induces a bijection π0BH0

∼=
π0BHn for all n ≥ 0. It follows that there are natural isomorphisms

(1) π0BH ∼= π0BH0
∼= π0BHn

for all n ≥ 0. I say that the object H is connected if BH is a path-
connected simplicial set. More generally, I write

π0H := π0BH,

for the set of path components of H .

The enriched version of Quillen’s Theorem B (or rather, its proof),
implies that there is a homotopy cartesian diagram

X //

��

holim−−−→GX

��
Ob(G) // BG

for all simplicial set-valued diagrams X defined on groupoids G enriched
in simplicial sets [8, Lemma 2], [15].

The homotopy colimit which is displayed here and throughout this
paper is the standard construction: if X : I → sSet is a small diagram
of simplicial sets, then holim−−−→IX is the bisimplicial set (or its diagonal)

which is specified in vertical degree n by the nerve B(EIXn) of the trans-
lation category EIXn which is associated to the set-valued functor Xn

—see [3, IV.1.8].

Lemma 1. Suppose that f : G→ H is a morphism of groupoids enriched

in simplicial sets, and that X : H → sSet is a simplicial diagram. Then

the induced diagram

holim−−−→G (X · f) //

��

holim−−−→HX

��
BG // BH

is homotopy cartesian.
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Proof: Suppose given a factorization

holim−−−→HX
j //

$$JJJJJJJJJ
Z

p

��
BH

of the canonical map holim−−−→HX → BH such that j is a weak equivalence

and p is a fibration. The squares in the picture

X · f //

��

X //

��

holim−−−→HX

��
Ob(G) // Ob(H) // BH

are homotopy cartesian, so that the induced map

X · f //

��?
??

??
??

Ob(G)×BH Z

zzttttttttt

Ob(G)

is a weak equivalence of objects over Ob(G). It follows that the induced
map

holim−−−→GX · f //

""EE
EE

EEE
E

BG×BH Z

||zz
zz

zz
zz

z

BG

induces a weak equivalence on all homotopy fibres. This map is also a
homotopy colimit of a comparison of diagrams made up of the homotopy
fibres of the respective maps, and is therefore a weak equivalence.

Corollary 2. Suppose that H is a groupoid enriched in simplicial sets.

Then the pullback square

H(x, y) //

��

B(H/y)

��
∗

x
// BH

is homotopy cartesian.



90 J. F. Jardine

Proof: The bisimplicial set B(H/y) is the homotopy colimit of a sim-
plicial functor H → sSet which takes an object x to the simplicial
set H(x, y), and the object x defines a functor ∗ → H .

There is a simplicial groupoid H1 associated to H whose objects in
simplicial degree n are the morphisms h : x → y of Hn and whose mor-
phisms h→ h′ are the commutative squares

x
h //

α

��

y

β

��
x′

h′

// y′

in Hn. There is a simplicial groupoid functor (s, t) : H1 → H×H which
is defined in degree n by sending the square diagram above to the pair

of morphisms (x
α
−→ x′, y

β
−→ y′). The two projections s, t : H1 → H are

weak equivalences, because they are weak equivalences in each simplicial
degree.

Corollary 3. Suppose that H is a groupoid enriched in simplicial sets.

Then the pullback diagram

Mor(H) //

��

BH1

��
Ob(H)×Ob(H) // BH ×BH

is homotopy cartesian.

Proof: The object BH1 is the homotopy colimit of a simplicial functor

homH : H ×H → sSet

which takes an object (x, y) to the simplicial set H(x, y), and which, in
each simplicial degree, sends the morphism (α, β) : (x, y) → (x′, y′) to
the function Hn(x, y) → Hn(x

′, y′) which sends a morphism f : x → y
to the composite

x′
α−1

−−→ x
f
−→ y

β
−→ y′.

The map Ob(H) × Ob(H) → BH × BH is induced by the inclusion of
objects functor Ob(H)×Ob(H)→ H ×H .

Let πH denote the groupoid of path components of a groupoid H
enriched in simplicial sets. The object πH will typically be called the
path component groupoid of H . It has the same objects as H , and the set
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of morphisms from x to y is the set πH(x, y) of path components of the
simplicial set H(x, y). There is a canonical map η : H → πH which is
the identity on objects and is the canonical map Mor(H)→ π0 Mor(H)
on morphisms. The morphism η is one of the canonical maps for an
adjunction: the functor H 7→ πH is left adjoint to the inclusion of
groupoids in groupoids enriched in simplicial sets.

Corollary 4. The induced map η : BH → BπH induces an isomorphism

on path components and all fundamental groups, so that πH is naturally

weakly equivalent to the fundamental groupoid of BH.

Proof: The morphismsH(x, x)→ πH(x, x) induce isomorphisms in path
components, and so the map BH → BπH induces isomorphisms in
path components of all loop spaces, by Corollary 2. It follows that
all homomorphisms π1(BH, x) → π1(BπH, x) are isomorphisms. The
claim that π0BH → π0BπH is a bijection follows from the isomorphisms
of (1).

Suppose now that C is a small Grothendieck site. Local homotopy
theory, as it is presently constituted, is based on a homotopy theory
of simplicial sheaves or presheaves on such a site C for which the weak
equivalences are defined locally [5], [11]. In particular, a map X → Y of
simplicial presheaves is said to be a local weak equivalence if it induces an
isomorphism π̃0X ∼= π̃0Y of sheaves of path components, and if induces
isomorphisms in all possible sheaves of higher homotopy groups (with
local choices of base points) in the sense that all comparisons

πnX //

��

πnY

��
X0

// Y0

induce pullback diagrams of associated sheaves. In the presence of
enough points for the sheaf category on C, the map f : X → Y is a
local weak equivalence if it induces weak equivalences fx : Xx → Yx in
all stalks. A cofibration for the theory (or rather for the injective model
structure on simplicial presheaves) is a monomorphism, and an injective

fibration is defined by a right lifting property with respect to all maps
which are cofibrations and local weak equivalences.

The injective model structure for simplicial presheaves induces a
model structure on the category of presheaves of groupoids [4], for which
a map f : G→ H is a weak equivalence (respectively fibration) if the in-
duced map BG→ BH is a local weak equivalence (respectively injective
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fibration), and then the cofibrations are defined by a lifting property.
From this point of view, a stack is, alternatively, a presheaf of groupoids
which satisfies descent (ie. is sectionwise equivalent to some, hence any
fibrant model), or just a homotopy type of presheaves of groupoids.

These ideas can be promoted to presheaves of higher groupoids [14].
In particular, a map f : H → H ′ of presheaves of 2-groupoids is a weak

equivalence if the induced map f : dBH → dBH ′ is a local weak equiv-
alence of simplicial presheaves.

If G is a presheaf of groupoids on C and x, y are objects of G(U),
there is a presheaf G(x, y) of homomorphisms from x to y on C/U . Write

Gx = G(x, x) for the presheaf of automorphisms of x in G, and let G̃x
denote the associated sheaf of automorphisms on C/U .

Say that a presheaf of groupoids G is a Čech object if the canonical
map G → π0G is a local weak equivalence, where π0G = π0BG is the
presheaf of path components of G.

In particular, an ordinary groupoid H is a Čech groupoid if the
groupoid morphism H → π0H is a weak equivalence. Equivalently, H is
a Čech groupoid if and only if there is at most one morphism between
any two objects of H .

Example 5. The Čech groupoid C(p) for a function p : X → Y has the
objects Ob(C(p)) = X , and there is a morphism x → y in C(p) if and
only if p(x) = p(y) in Y . There is a canonical bijection π0C(p) ∼= p(X).

This construction is natural, and therefore applies to morphisms
p : X → Y of presheaves on a site. If p is an epimorphism of sheaves,
the simplicial presheaf map BC(p)→ Y is the Čech resolution of Y cor-
responding to the epimorphism p, and is a local weak equivalence. This
construction produces the standard Čech resolution when applied to an
epimorphism p :

⊔
α Uα → Y arising from a covering.

Lemma 6. Suppose that H is a presheaf of 2-groupoids, and let η : H →
πH be the canonical map to the presheaf of path component groupoids.

Then η is a local weak equivalence if and only if all presheaves of

groupoids H(x, y) are Čech objects.

Proof: If the map η : H → πH is a local weak equivalence, then the map

Mor(H)→ Mor(πH)

is a local weak equivalence over Ob(H)×Ob(H), by Corollary 3.
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In general, a map

Z
f //

��2
22

22
2 W

����
��
��

A

of simplicial presheaves fibred over a presheaf A is a local weak equiv-
alence if and only if it induces local weak equivalences Zx → Wx of
simplicial presheaves on C/U for all x ∈ A(U), U ∈ C. Thus, if all
morphism groupoids H(x, y) are Čech objects, then the map Mor(H)→
Mor(πH) is a local weak equivalence of simplicial presheaves over the
presheaf Ob(H)×Ob(H). It also follows that all maps

Mor(H)×t,s Mor(H)×t,s · · · ×t,s Mor(H)

→ Mor(πH)×t,s Mor(πH)×t,s · · · ×t,s Mor(πH)

of iterated fibre products over Ob(H) are local weak equivalences. These
are the comparison maps of vertical simplicial presheaves making up the
comparison BH → BπH of bisimplicial presheaves, and one concludes
that this map is a local weak equivalence.

Lemma 7. A presheaf of groupoids H is a Čech object if and only if for

every two morphisms f, g : x→ y in H(U) there is a covering sieve R ⊂
hom( , U) such that φ∗f = φ∗g for all φ : V → U in R.

Proof: Suppose that H → H̃ is the canonical map taking values in the
associated sheaf of groupoids H̃ . Then H is a Čech object if and only
if all sheaves H̃(x, x) of automorphisms of H̃ are trivial in the sense

that the canonical sheaf map H̃(x, x) → ∗ are isomorphisms. This is
equivalent to the assertion that all presheaf maps H(x, x)→ ∗ are local
monomorphisms.

Thus, suppose that H is a Čech object, and suppose given f, g : x→ y
in H(U) the composite g−1f ∈ H(x, x)(U), and there is a covering
sieve R ⊂ hom( , U) such that φ∗(g−1f) = 1φ∗x for all φ : V → U
in R. But then φ∗(g) = φ∗(f) for all φ ∈ R.

The converse is clear: the local coincidence of all f, g : x → y means
that all presheaf maps H(x, y)→ ∗ are local monomorphisms, and so all

sheaf maps H̃(x, x)→ ∗ are isomorphisms.

Lemma 8. Suppose that A is a presheaf of 2-groupoids, and that π0A is

its presheaf of path components. Then the canonical map A→ π0A is a

local weak equivalence if and only if all presheaves of groupoids A(x, y)
and the path component groupoid πA are Čech objects.
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Proof: Suppose that A → π0A is a local weak equivalence. Then all
sheaves of homotopy groups for BA are trivial, and so Corollary 3 implies
that all maps A(x, y) → ∗ are local weak equivalences. In particular,
all A(x, y) are Čech objects. But then η : A → πA is a local weak
equivalence by Lemma 6, and so the induced map πA → π0(πA) is a
weak equivalence, so that the presheaf of groupoids πA is a Čech object.

Suppose conversely that allA(x, y) and πA are Čech objects. Lemma 6
implies that A→ πA is a local weak equivalence, and then the map

πA→ π0(πA) ∼= π0A

is a local weak equivalence. It follows that the map A → π0A is a
composite of local weak equivalences.

2. The Grothendieck construction

Let cat2 denote the 2-category whose 0-cells are the small categories,
whose 1-cells are the functors between small categories, and whose 2-cells
are the homotopies of functors.

Suppose that A is a 2-category, and suppose given a 2-category mor-
phism F : A → cat2. There is an associated 2-category EA(F ) whose
0-cells are the pairs (x, i) with x ∈ F (i). A 1-cell (f, α) : (x, i)→ (y, j) is
a pair consisting of a 1-cell α : i→ j of I and a morphism f : α∗(x)→ y
of the category F (j). Finally, a 2-cell h : (f, α) → (f, α′) is a 2-cell
h : α→ α′ of A such that the diagram

(2) α∗(x) f

((QQQQQQ

F (h)

��
y

α′
∗(x)

f ′

66mmmmmm

commutes, where F (h) is the homotopy associated to the 2-cell h by F .
Vertical composition of 2-cells is obvious, and horizontal composition of
2-cells is defined by the commutative diagram

β∗α∗(x)
β∗(f) //

F (h2)

��

β∗(y)
g //

F (h2)

��

z

β′
∗α∗(x)

β′

∗
(f) //

β′

∗
(F (h1))

��

β′
∗(y)

g′

==|||||||||

β′
∗α

′
∗(x)

β′

∗
(f ′)

::uuuuuuuuu
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Observe that the composite homotopy β′
∗(F (h1))(F (h2)α∗) is the image

of the composite 2-cell h2 ∗ h1 under the morphism F .
There is a canonical functor of 2-categories

p : EA(F )→ A,

which is defined by the assignments (x, i) 7→ i and (f, α) 7→ α on 0-cells
and 1-cells, respectively, and sends the 2-cell of (2) to the 2-cell h of A.

The path component category πEA(F ) of the 2-category EA(F ) is
denoted by EA(F ), and is called the Grothendieck construction for the
functor F : A→ cat2. The 2-category functor p : EA(F )→ A induces a
functor

p : EA(F )→ π(A)

of their associated path component categories.
Observe that if A is a category enriched in groupoids, then the 1-cells

(f, α), (f ′, α′) : (x, i) → (y, j) of EA(F ) have the same image in EA(F )
if and only if there is a 2-cell h : α→ α′ of A such that the diagram (2)
commutes.

In general, I write [(f, α)] for the image (path component) of the
1-cell (f, α) in EA(F ).

Remark 9. Suppose that I is a small category, and let x, y be objects of I.
There is a small category Is(x, y) whose objects are the functors θ : n→ I
(strings of length n) such that θ(0) = x and θ(n) = y. A morphism θ → γ
of Is(x, y) is a commutative diagram of functors

n
θ

''NNNNNN

α

��
I

m
γ

77pppppp

such that the ordinal number map α is end-point preserving in the sense
that α(0) = 0 and α(n) = m. Concatenation of strings defines a composi-
tion law Is(x, y)×Is(y, z)→ Is(x, z), and so there is a 2-category Is with
the same objects as I. There is also a canonical weak equivalence Is → I
(see also [3, IX.3.2]). Write GIs for the category enriched in groupoids,
having the same 0-cells as I, and such that the groupoid GIs(x, y) is the
free groupoid on the category Is(x, y). The groupoid GIs(x, y) is a Čech
groupoid with path components given by the set I(x, y) of morphisms
from x to y in I.

A pseudo-functor F defined on I and taking values in small categories
can be identified with a 2-category morphism F : GIs → cat2 [3, IX.3.3],
and one can show that the Grothendieck construction EGIs

(F ) as defined
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above is isomorphic to the standard Grothendieck construction for the
pseudo-functor F .

A lax functor G defined on I is a 2-category functor G : Is → cat2.
The category EIs

(G) is a Grothendieck construction for the lax func-
tor G.

We shall henceforth specialize to 2-category morphisms F : A→ cat2

which are defined on small 2-groupoids A.

Lemma 10. Suppose that F : A→ cat2 is a 2-category morphism, where

A is a 2-groupoid. Suppose that [(f, α)] : (x, i) → (y, j) is a morphism

of EA(F ) such that f : α∗(x) → y is an invertible morphism of F (j).
Then [(f, α)] is invertible in EA(F ).

Proof: The inverse of [(f, α)] is represented by [(α−1
∗ (f−1), α−1)].

Corollary 11. Suppose that A is a 2-groupoid. If the 2-category mor-

phism F : A→ cat2 takes values in groupoids, then EA(F ) is a groupoid.

A diagram

B
α
←−
≃
A

F
−→ cat2

such that α : A→ B is a weak equivalence of 2-groupoids is a 2-cocycle
taking values in small categories. A morphism of 2-cocycles is a commu-
tative diagram of functors

A
α

≃xxpppppp

��

F
''PPPPPP

B cat2

A′α′

≃
ffMMMMMM

F ′

77nnnnnn

and the corresponding 2-cocycle category is denoted by h(B,cat2). There
are analogous definitions for 2-cocycles and 2-cocycle categories taking
values in 2-categories of groups and small groupoids. These 2-cocycle
categories are typically not small.

Example 12. Write Iso(Gr) for the 2-groupoid whose objects are all
groups, whose 1-cells are the isomorphisms of groups G→ H , and whose
2-cells are the homotopies of isomorphisms, and suppose now that there
is a 2-cocycle

πA
η
←−
≃
A

K
−→ Iso(Gr)

where A is a 2-groupoid. Then the associated Grothendieck construc-
tion EA(K) can be identified with a category having as objects all i ∈
Ob(A) and with morphisms consisting of equivalence classes of pairs
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(f, α) : i→ j, where α : i→ j is a 1-cell of A and f ∈ K(j). In this case,
there is a relation (f, α) ∼ (g, β) if the diagram

∗ f

''PPPPPP

h∗

��
∗

∗ g

77nnnnnn

commutes in the group K(j), where conjugation by h∗ defines the image
of the unique 2-cell α → β. The category EA(K) is a groupoid by
Corollary 11. It is connected if A is connected, since K takes values in
groups.

Example 13. Suppose that G is a groupoid. The resolution 2-
groupoid R(G) has the same objects and 1-cells as G, and has a unique
2-cell f → g between any two morphisms f, g : x → y of G. The path
component groupoid πR(G) of R(G) is a Čech groupoid, and the natural
maps

BR(G)→ BπR(G)→ π0B(πR(G))

are weak equivalences. There are natural bijections

π0G = π0BG ∼= π0B(πR(G)).

There is a canonical morphism F (G) : R(G) → Iso(Gr) which takes
the object x ∈ G to the group Gx = G(x, x), takes a 1-cell f : x→ y to
the isomorphism Gx → Gy which is defined by conjugation by f , and
takes the 2-cell f → g to the homotopy defined by conjugation by the
element gf−1 ∈ Gy. It follows that G determines a canonical 2-cocycle

πR(G)
≃
←− R(G)

F (G)
−−−→ Iso(Gr).

Lemma 14. There is a natural isomorphism of groupoids

ψ : ER(G)(F (G))
∼=
−→ G

which is defined fibrewise over πR(G) in the sense that there is a com-

mutative diagram

ER(G)(F (G))
ψ

∼=
//

##HH
HH

HH
HH

H
G

����
��

��
�

πR(G)

Proof: The functor ψ is the identity on objects. It is defined on mor-
phisms by sending the pair (f, α) to the composite f · α in G. If
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(f, α)∼ (g, β) and α→β is the unique 2-cell in R(G), then the diagram

j

βα−1

��

f

&&LLLLLL

i

α
99rrrrrr

β %%LLLLLL j

j
g

88rrrrrr

commutes in G, so that f · α = g · β and the assignment [(f, α)] 7→ f · α
is well defined. The assignment is functorial, because the diagram

k β∗(f)

&&MMMMMM

j

β 88qqqqqq
f

&&LLLLLL k g

&&MMMMMM

i

α
99rrrrrr

j

β 88rrrrrr
k

commutes in G.
The functor ψ plainly induces surjective functions

ψ : homER(G)(F (G))(i, j)→ homG(i, j).

Finally, if the diagram
j

f

&&LLLLLL

i

α
99rrrrrr

β %%LLLLLL j

j
g

88rrrrrr

commutes in the groupoid G then g · (βα−1) = f , so that (f, α) ∼ (g, β),
and ψ is injective on morphisms.

Remark 15. Suppose thatK : A→Iso(Gr) is a morphism of 2-groupoids,
and form the resolution 2-groupoid R(EA(K)) of the Grothendieck con-
struction EA(K). Observe that the 0-cells of R(EA(K)) coincide with
the 0-cells of A, the 1-cells are the morphisms [(g, α)] : i→ j of EA(K),
and there is a unique 2-cell [(g, α)] → [(g.α′)] for any pair of 1-cells
[(g, α)], [(g′, α′)] : i→ j.

There is a 2-groupoid morphism ω : A → R(EA(K)) which is the
identity on 0-cells, sends the 1-cell α : i → j to the 1-cell [(e, α)] and
sends a 2-cell h : α→ β to the unique 2-cell [(e, α)]→ [(e, β)].

If the map A → ∗ is a weak equivalence then EA(K) is a connected
groupoid and R(EA(K)) → ∗ is a weak equivalence, and the map ω
defines a morphism

A
ω
−→ R(EA(K))

F (EA(K))
−−−−−−−→ Iso(Gr)

of 2-cocycles.
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3. Cocycle classification of gerbes

A gerbe G is a locally connected presheaf of groupoids. A morphism of

gerbes is a local weak equivalence G→ H of presheaves of groupoids. We
shall write Ger(C) for the category of gerbes and morphisms of gerbes
on the site C.

If G is a gerbe and x is a global section of Ob(G), then the inclusion
map Gx → G is a local weak equivalence. It follows that every gerbe H
is locally equivalent to a presheaf of groups, in the sense that there is
a covering U → ∗ by objects U ∈ C and section xU ∈ Ob(H)(U) such
that the morphisms HxU

→ H |U are local weak equivalences over C/U
for all U in the covering.

Remark 16. Suppose that E is a presheaf, and identify E with a presheaf
of discrete groupoids. An E-gerbe is a morphism G → E of presheaves
of groupoids such that the associated presheaf map π0G→ E induces an
isomorphism π̃0G ∼= Ẽ of associated sheaves. A morphism of E-gerbes
is a commutative diagram

G
f //

��0
00

00
0 H

��









E

such that the morphism f : G → H is a local weak equivalence of
presheaves of groupoids. Write GerE(C) for the corresponding category.

There is an equivalence of categories

GerE(C) ≃Ger(C/E)

between the category of E-gerbes on C and the category of gerbes for the
fibred site C/E. Equivalences of this sort are discussed in [9]. Classifi-
cation results for E-gerbes can therefore be deduced from classification
results for gerbes on the site C/E.

Categories of E-gerbes appear in applications —see [13, p. 22], for
example.

We shall write Iso(Gr(C)) for the following monster: it is a contravari-
ant diagram defined on C and taking values in 2-groupoids, such that the
0-cells of Iso(Gr(C))(U) are the sheaves of groups on C/U , the 1-cells
are the isomorphisms of sheaves of groups on C/U , and the 2-cells are
the homotopies of sheaf isomorphisms. The object Iso(Gr(C)) is not a
presheaf of groupoids, because it does not take values in small groupoids.
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If G is a gerbe, then the corresponding resolution 2-groupoid R(G)
(Example 13) is weakly equivalent to a point in the sense that the
map R(G)→ ∗ is a local weak equivalence of presheaves of 2-groupoids.

There is a canonical morphism

F (G) : R(G)→ Iso(Gr(C))

for which the 0-cell x ∈ R(G)(U) is mapped to the sheaf of groups G̃x,

the 1-cell α : x → y is mapped to the sheaf isomorphism cα : G̃x → G̃y
on C/U which is defined by conjugation by the global section α, and
each 2-cell h : α→ β between 1-cells x→ y maps to conjugation by the
image of h ∈ G̃y(U) in global sections of G̃y.

In this way, each gerbe G has a canonically associated 2-cocycle

∗
≃
←− R(G)

F (G)
−−−→ Iso(Gr(C)).

Write h(∗, Iso(Gr(C))) for the category of 2-cocycles taking values in
the 2-groupoid object Iso(Gr(C)).

A map G→ H of gerbes induces a 2-groupoid morphism f∗ : R(G)→
R(H), but the assignment of the cocycle F (G) : R(G)→ Iso(Gr(C)) to

the gerbe G is not quite functorial. The sheaf isomorphisms fx : G̃x
∼=
−→

H̃f(x) which are induced by the local weak equivalence f determine a
homotopy

(3) hf : R(G)× 1→ Iso(Gr(C))

from F (G) to F (H) · f∗. It follows that F (G) and F (H) represent the
same element of π0h(∗, Iso(Gr(C))), and so the assignment G 7→ [F (G)]
induces a function

Φ: π0Ger(C)→ π0h(∗, Iso(Gr(C))).

Suppose that

∗
≃
←− A

K
−→ Iso(Gr(C))

is a 2-cocycle taking values in Iso(Gr(C)). ThenK consists of 2-groupoid
morphismsK(U) : A(U)→ Iso(Gr(C))(U), and hence induces composite
morphisms

A(U)
K(U)
−−−→ Iso(Gr(C))(U)

evU−−→ Iso(Gr).

Here, evU : Iso(Gr(C))(U)→ Iso(Gr) is the 2-groupoid morphism which
is defined by U -sections.

Write EA(K(U)) for the Grothendieck construction corresponding to
the composite evUK(U). Then the assignment U 7→ EA(K(U)) defines
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a presheaf of groupoids EA(K). From Section 2, we see that there is a
canonical morphism

p : EA(K)→ πA

of presheaves of groupoids; it is defined in sections to be the identity on
objects, and it sends a class [(f, α)] to the class [α].

Lemma 17. Suppose that K : A → Iso(Gr(C)) is a 2-cocycle over the

terminal object ∗. Then the presheaf of groupoids EA(K) is a gerbe.

Proof: The map π0EA(K) → π0(πA) is an isomorphism of presheaves,
since each 2-functor evUK(U) takes values in groups. The sheaf associ-
ated to π0(A) ∼= π0(πA) is trivial, since A is weakly equivalent to a point
as a 2-groupoid.

Lemma 18. Suppose that K : A → Iso(Gr(C)) is a 2-cocycle over ∗,
and choose i ∈ A(U). Then the homomorphism γi : K(i)→ EA(K)(i, i)
which is defined by f 7→ [(f, 1i)] induces an isomorphism of sheaves of

groups on C/U .

Proof: Suppose that [(g, α)] is an element of hom(i, i). By Lemma 7
there is a covering sieve R ⊂ hom( , U) such that there is a 2-cell
hφ : φ∗(α) → 1α∗(i) for all φ ∈ R. It follows that, locally, [(g, α)] is
in the image of γi.

Take group elements f, g ∈ K(i)(U) and suppose that γi(f) = γi(g).
Then there is a 2-cell h : 1i → 1i in A(U) such that the diagram

∗ f

''PPPPPP

h∗

��
∗

∗ g

77nnnnnn

commutes in K(i)(U). The presheaf of groupoids A(i, i) is a Čech object
by Lemma 8 so that there is a covering φ : V → U such that φ∗(h) = 1
for all members φ of the cover. But then φ∗(h∗) = 1 for all φ, and so
h∗ = 1 since K(i) is a sheaf of groups.

Corollary 19. Suppose that the diagram

A

θ

��

K
))TTTTTTT

≃

xxqqqqqq

∗ Iso(Gr(C))

B
≃

ffMMMMMM
G

55jjjjjj

is a morphisms of 2-cocycles. Then the induced map θ : EA(K)→ EB(G)
is a local weak equivalence of presheaves of groupoids.
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Proof: The diagram

K(i)
γi //

=

��

hom(i, i)

θ∗

��
G(θ(i))

γθ(i)

// hom(θ(i), θ(i))

commutes, so that θ induces an isomorphism on all sheaves of fundamen-
tal groups by Lemma 18. The objects EA(K) and EB(G) are locally path
connected by Lemma 17.

It follows that the assignment K 7→ EA(K) defines a functor

h(∗, Iso(Gr(C)))→ Ger(C),

and hence induces a function

Ψ: π0h(∗, Iso(Gr(C)))→ π0(Ger(C)).

Theorem 20. The functions Φ and Ψ are inverse to each other, and

define a bijection

π0(Ger(C)) ∼= π0h(∗, Iso(Gr(C))).

Proof: The relation ΨΦ = 1 is a consequence of Lemma 14.
Suppose that K : A → Iso(Gr(C)) is a 2-cocycle over ∗. Following

Remark 15, there is a 2-groupoid morphism ω : A → R(EA(K)) which
is the identity on objects, sends the 1-cell α : i→ j to the 1-cell [(e, α)],
and sends the 2-cell h : α → β to the unique 2-cell [(e, α)] → [(e, β)].
The composite

A
ω
−→ R(EA(K))

F (EA(K))
−−−−−−−→ Iso(Gr(C))

defines a group-valued 2-cocycle on π0A. This composite sends the ob-
ject i ∈ A to the presheaf of groups EAK(i, i), sends a 1-cell α : i → j
to the homomorphism cα : EAK(i, i) → EAK(j, j) which is defined by
conjugation with [(e, α)], and sends a 2-cell h : α → β to the homotopy
defined by conjugation with the element

[(h∗, 1)] = [(e, β)][(e, α)]−1.

The assignments f 7→ [(f, 1)] define homomorphisms

γi : K(i)→ EAK(i, i)

which induce isomorphisms of associated sheaves, by Lemma 18. The
morphisms γi further determine a homotopy

γ : A× 1→ Iso(Gr(C))
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from the cocycle K to the cocycle F (EA(K))ω. It follows that there is
a path

F (EA(K)) ∼ F (EA(K))ω ∼ γ ∼ K

in the cocycle category, and so ΨΦ = 1 as required.

4. Homotopy classification of gerbes

Suppose that F ⊂ Iso(Gr(C)) is a subobject of Iso(Gr(C)) such that

1) the imbedding is full in the sense that all simplicial presheaf maps

F(H,K)→ Iso(Gr(C))(H,K)

are isomorphisms.
2) F is a presheaf of 2-groupoids, so that all classes Ob(F)(U) are

sets.

We shall say that a subobject F of the diagram of 2-groupoids Iso(Gr(C))
which satisfies these conditions is a full subpresheaf of Iso(Gr(C)).

Suppose that G is a gerbe, and let FG ⊂ Iso(Gr(C)) be the smallest
full subpresheaf which contains the image of the cocycle F (G) : R(G)→
Iso(Gr(C)). It is the full subobject of Iso(Gr(C)) whose objects are

the automorphism sheaves of groups G̃x associated to the automor-
phism groups Gx of G, where x ∈ Ob(G)(U), U ∈ C. The 2-cocycle
F (G) : R(G)→ Iso(Gr(C)) factors uniquely through a cocycle R(G)→
FG.

Lemma 21. Suppose that F ⊂ F ′ are full subpresheaves of Iso(Gr(C)).
Suppose further that every object F ′

x of F ′ is locally isomorphic to an

object of F . Then the inclusion F ⊂ F ′ is a local weak equivalence of

presheaves of 2-groupoids.

Proof: Write α : F ⊂ F ′ for the inclusion morphism. Then α is full, and
therefore induces a presheaf monomorphism π0F → π0F ′. Every object
of F ′

x ∈ F
′(U) is locally isomorphic to an object in the image of α, by

assumption, so that π0F → π0F ′ is a local epimorphism.
The assertion that α induces an isomorphism in all sheaves of higher

homotopy groups is a consequence of the fullness of α along with Corol-
lary 2.

Say that two gerbes G and H are locally equivalent if there is a cov-
ering family U → ∗, U ∈ Ob(C), such that the restricted gerbes G|U
and H |U are (locally) weakly equivalent on C/U for each object U in
the covering of the terminal object ∗. If there is a local weak equiv-
alence G → H then G and H are locally equivalent in the sense just
described, but the converse assertion is false.
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Example 22. Suppose that the presheaf of 2-groupoids F is a full sub-
presheaf of Iso(Gr(C)), and that there is a 2-cocycle

∗
≃
←− A

F
−→ F ⊂ Iso(Gr(C))

over the terminal sheaf ∗.
There is a covering family U → ∗, U ∈ C, such that A(U) 6= ∅. In

effect, Ob(A) → ∗ is a local epimorphism, so there is a covering U → ∗
such that there are liftings

Ob(A)

��
U //

xU

<<xxxxxxxx
∗

where xU represents an object ofA(U). The presheaf of groupoidsEA(F )
is locally connected by Lemma 17, and the maps

F (xU )→ homEA(F )(xU , xU )

induce isomorphisms of associated sheaves of groups on C/U by Lem-
ma 18. It follows that the automorphism groups of the Grothendieck
construction EA(F ) are locally isomorphic to objects of F .

Write GerF (C) for the full subcategory of the category of gerbes
whose automorphism groups are locally isomorphic to sheaves of groups
in F . I also say that the objects of this category are F -gerbes. The as-
signment F 7→ EA(F ) for a cocycle F : A→ F takes values in F -gerbes,
so that there is a commutative diagram

π0h(∗,F) //

��

π0h(∗, Iso(Gr(C)))

∼=

��
π0(GerF (C)) // π0(Ger(C))

Note that if f : G→ H is a local weak equivalence of gerbes, then G is an
F -gerbe if and only if H is an F -gerbe, and it follows that the induced
map

π0(GerF (C))→ π0(Ger(C))

is an injection.

Theorem 23. Suppose that F is a full subpresheaf of the Iso(Gr(C)).
Then the Grothendieck construction defines a function

π0h(∗,F)→ π0(GerF (C))

which is a bijection.
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Proof: Suppose given cocycles F : A → F and G : B → F such that
F and G are in the same path component as cocycles taking values in
Iso(Gr(C)). Then there is a string of maps of cocycles

(4) F = F0 ↔ F1 ↔ · · · ↔ Fn = G

where Fi : Ai → Iso(Gr(C)) are cocycles in Iso(Gr(C)).
Suppose that F : A→ Iso(Gr(C)) is a cocycle taking values in sheaves

of groups locally isomorphic to objects of F and that

A
α //

F ��@
@@

@@
@@

A′

F ′

~~}}
}}

}}
}

Iso(Gr(C))

is a morphism of h(∗, Iso(Gr(C))). Take x ∈ A′(U). Then there is a
covering family φ : V → U with 1-cells φ∗(x) → α(yV ) in A′(V ) for
all φ. It follows that the group F ′(x) is locally isomorphic to groups of
the form F (yV ), and all of these are locally isomorphic to objects of F .
Thus, the cocycle F ′ takes values in sheaves of groups locally isomorphic
to objects of F .

It follows that all cocycles Fi in the list (4) take values in groups lo-
cally isomorphic to objects of F . Write F ′ for the presheaf of 2-groupoids
which is the full subobject of Iso(Gr(C)) on the sheaves of groups ap-
pearing in the sets F(U) and all Fi(Ob(Ai))(U). Then F ⊂ F ′, and
Lemma 21 implies that this map of presheaves of 2-groupoids is a weak
equivalence. The string of cocycles Fi in (4) all take values in F ′ by
construction, and the map

π0h(∗,F)→ π0h(∗,F
′)

is a bijection. It follows that the original cocycles F and G are in the
same path component of h(∗,F). The function

π0h(∗,F)→ π0h(∗, Iso(Gr(C)))

is therefore a monomorphism, as is the function

π0h(∗,F)→ π0(GerF (C)).

Suppose that H is a gerbe such that every automorphism sheaf H̃x is
locally isomorphic to an object of F , so that H is an object of GerF (C).
Choose a full subpresheaf F ′ ⊂ Iso(Gr(C)) whose 0-cells are sheaves of
groups locally equivalent to objects of F and which contains both F
and FH . Then the canonical cocycle

F (H) : R(H)→ Iso(Gr(C))
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takes values in F ′. The map F → F ′ is a local weak equivalence,
and so the class of F (H) in π0h(∗, Iso(Gr(C))) can be represented by
a cocycle taking values in F . It follows that the function π0h(∗,F) →
π0(GerF(C)) is surjective.

Corollary 24. Suppose that F is a full subpresheaf of 2-groupoids in

the object Iso(Gr(C)). Then there is a bijection

[∗, dBF ] ∼= π0(GerF (C)).

Recall that dBF is the diagonal of the bisimplicial set BF which is
associated to the 2-groupoid F .

Suppose that G is a gerbe, and write GerG(C) for the category of
gerbes which are locally equivalent to G. This category coincides with
the category GerFG

(C), and so we have the following:

Corollary 25. Suppose that G is a gerbe on a site C, with associated

2-groupoid object FG of isomorphisms and homotopies of automorphism

sheaves of G. Then there is a bijection

[∗, dBFG] ∼= π0(GerG(C)).

Remark 26. A special case of Corollary 25, corresponding to the case of
a sheaf of groups G, was proved by Breen in [1]. To see the connection,
observe that there is an isomorphism

Aut(G)
∼=
−→ FG

which sends the object ∗ to the objectG, sinceG is a one-object groupoid.

Suppose that F is a full subpresheaf of Iso(Gr(C)), and write Ger(F)
for the full subcategory of Ger(C) whose objects are the gerbes G such
that FG ⊂ F . The category GerF (C) is a filtered colimit of subcate-
gories Ger(F ′), indexed over all inclusions F ⊂ F ′ of full subpresheaves
of Iso(Gr(C)) such that every object of F ′ is locally isomorphic to objects
of F . It follows that there is an isomorphism

π0(GerF(C)) ∼= lim
−→

F⊂
≃

F ′

π0(Ger(F ′)).

Write St(F) and St(πF) for the stack completions (fibrant models)
for the presheaf of 2-groupoids F and its path component object πF .
The path component object is a groupoid of outer automorphisms and
its stack completion St(πF) is the stack of bands (liens) for F . The
stack completions are functorial, since the underlying model structures
are cofibrantly generated [14].
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A band L is a global section of the presheaf of groupoids St(πF),
or equivalently [10] a torsor for the presheaf of outer automorphism
groupoids πF .

Write pF for the composite

F → πF → St(πF).

The homotopy fibre over a band L of the induced map BF → B St(πF)
is the classifying object B(pF/L) of the simplicial groupoid pF/L [8].

The objects of 2-cocycle category h(∗, pF/L) can be identified with
the collection of pairs (φ, ν) consisting of a 2-cocycle

∗
≃
←− A

φ
−→ F

and a natural isomorphism ν : φ∗ → L in St(πF), where φ∗ : π(A) →
St(πF) is the composite

π(A)→ πF → St(πF).

The morphisms f : (φ, ν)→ (φ′, ν′) are cocycle morphisms

A

f

��

φ

''NNNNNN

F

A′ φ′

88pppppp

such that ν′ · f∗ = ν : φ∗ → L.
Recall that a gerbe G in F is defined by the canonical cocycle for G

having the form F (G) : R(G)→ F .
An L-gerbe (G,µ) is an F -gerbe G, together with a natural isomor-

phism µ : F (G)∗ → L in St(πF) so that (F (G), µ) defines an object of
the 2-cocycle category h(∗, pF/L).

There is a canonical natural isomorphism

hf∗ : F (G)∗
∼=
−→ F (H)∗f∗

for any morphism f : G → H of gerbes which is induced by the ho-
motopy hf of (3). A morphism f : (G,µ) → (H,µ′) of L-gerbes is a
morphism f : G→ H of gerbes such that the diagram of natural isomor-
phisms

(5) F (G)∗

µ
��9

99
99

99

hf∗ // F (H)∗f∗

µ′f∗����
��

��
�

L
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commutes. The natural isomomorphisms hf∗ : G(x, x) → G(f(x), f(x))
arising from gerbe morphisms f are coherent; this gives the law of
composition for a category of L-gerbes in F , which will be denoted
by Ger(F)/L.

Every L-gerbe (G,µ) in F determines an object (F (G), µ) in the co-
cycle category h(∗, pF/L), by definition.

Suppose that f : (G,µ) → (H,µ′) is a morphism of L-gerbes in F .
Then the homotopy of cocycles hf : R(G)×1→ F from F (G) to F (H)f∗
determines a diagram morphisms

πR(G)

��

F (G)∗

**UUUUUUUUUUUUUUUUUUUU

πR(G)× 1
hf∗ // St(πF)

πR(G)

OO

f∗

// πR(H)

F (H)∗

99ttttttttt

The natural isomorphism µ : F (G)∗ → L extends uniquely to a natu-
ral isomorphism µh : hf∗ → L, and µh restricts to µ′f∗ : F (H)∗ → L
on πR(G)× {1} on account of the commutativity of the diagram (5).

It follows that every morphism f : (G,µ) → (H,µ′) of L-gerbes de-
termines a path between the associated objects (F (G), µ), (F (H), µ′) in
the cocycle category, and that there is a function

ΦF : π0(Ger(F)/L)→ π0h(∗, pF/L)

which is defined by Φ([(G,µ)]) = [(F (G), µ)].
Suppose that the 2-cocycle

∗
≃
←− A

φ
−→ F

and the natural isomorphism ν : φ∗ → L define an object (φ, ν) of
the cocycle category h(∗, pF/L). Then the associated presheaf of
groupoids EA(φ) is a gerbe which has automorphism sheaves locally
isomorphic to objects of F , and from the proof of Theorem 20 we know
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that there is a homotopy

A

��

φ

**UUUUUUUUUUUUUUUUUUUUUUU

A× 1
γ // F ′

A

OO

ω
// R(EA(φ))

F (EA(φ))

::uuuuuuuuuu

where F ′ is a full subpresheaf of Iso(Gr(C)) containing F such that
the map F ⊂ F ′ is a local weak equivalence. We also know that the
induced map ω∗ : πA → πR(EA(φ)) is an isomorphism. It follows that
the induced natural isomorphism (or homotopy)

γ∗ : φ∗
∼=
−→ F (EA(φ))∗ω∗

of functors πA→ St(F ′) induces a unique natural isomorphism

F (EA(φ))∗
ν̃
−→ L

which restricts to the isomorphism ν : φ∗ → L along the homotopy

π(A)× 1
γ∗
−→ St(πF ′).

In other words, (EA(φ), ν̃) is an L-gerbe in F ′.
Suppose that f : (φ, ν) → (φ′, ν′) is a morphism of the 2-cocycle cat-

egory h(∗, pF/L). Then there is a full subpresheaf F ′′ ⊂ Iso(Gr(C))
containing F , such that F ⊂ F ′′ is a weak equivalence and such that
the associated gerbes EA(φ) and EA′(φ′) are gerbes in F ′′. There is a
diagram of homotopies

φ∗(i)
= //

γi

��

φ′∗(f(i))

γf(i)

��
Aut(i)

f∗

// Aut(f(i))

where Aut(i) is the sheaf of automorphisms of i in EA(φ) and Aut(f(i))
is the sheaf of automorphisms of f(i) in EA′(φ′). Then the morphisms
νi : φ(i) → L and ν′

f(i) : φ
′(f(i)) → L coincide on φ(i) = φ′(f(i)) since

f is a morphism of the cocycle category h(∗, B(pF/L)). Furthermore,
the vertical isomorphisms uniquely determine the natural isomorphisms
ν̃ : Aut(i) → L and ν̃′f∗ : Aut(f(i)) → L, respectively. It follows that
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the map f∗ : EA(φ) → EA′(φ′) defines a morphism of L-gerbes in F ′′.
We therefore have a well defined function

Ψ: π0h(∗, pF/L)→ lim
−→

F⊂
≃

F ′

π0(Ger(F ′)/L).

Theorem 27. Suppose that F is a full subpresheaf of Iso(Gr(C)) and

that L ∈ St(πF) is a band. Then the function Ψ is a bijection.

Proof: Suppose that F ⊂ F ′′ is a weak equivalence of full subpresheaves
of Iso(Gr(C)). Then the diagram

π0(Ger(F)/L)
ΦF //

��

π0h(∗, pF/L)

∼=

��
π0(Ger(F ′)/L)

Φ
F′

// π0h(∗, pF ′/L)

commutes, where the indicated vertical map is a bijection since the com-
parison map B(pF/L)) → B(pF ′/L) is a local weak equivalence. It
follows that the maps ΦF ′ together induce a function

Φ: lim
−→

F⊂
≃

F ′

π0(Ger(F ′)/L)→ π0h(∗, pF/L).

The function Φ is the inverse of Ψ.

Corollary 28. Suppose that F is a full subpresheaf of Iso(Gr(C)) and

that L ∈ St(πF) is a band. Then there are bijections

[∗, B(pF/L)] ∼= π0h(∗, pF/L) ∼= lim
−→

F⊂
≃

F ′

π0(Ger(F ′)/L).
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