WEAK LOCALLY MULTIPLICATIVELY-CONVEX ALGEBRAS!

SETH WARNER

Let E be an algebra over the reals or complex numbers, £’ a total
subspace of the algebraic dual E* of vector space E. We first discuss
the following natural questions: When is the weak topology o(E, E’)
defined on E by E’ locally m-convex? When is multiplication continu-
ous for o(E, E’), that is, when is o(E, E’) compatible with the algebraic
structure of E? We then apply our results to certain weak topologies
on the algebra of polynomials in one indeterminant without constant
term.

1. Weak topologies.

- Let K be either the reals or complex numbers, E a K-algebra. A
topology .9~ on E is locally multiplicatively-convex (which we abbreviate
henceforth to ‘‘locally m-convex”) if it is a locally convex topology
and if there exists a fundamental system of idempotent neighborhoods
of zero (a subset A of E is idempotent if A*CA). Multiplication is
then clearly continuous at (0, 0) and hence everywhere, so .7 is com-
patible with the algebraic structure of E. If A is idempotent, so is
its convex envelope, its equilibrated envelope (a subset V of E is called
equilibrated if A2VZV for all scalars 4 such that |2|<{1), and its closure
for any topology on E compatible with the algebraic structure of E.
Hence if .97 is locally m-convex, zero has a fundamental system of
convex, equilibrated, idempotent, closed neighborhoods. (For proofs of
these and other elementary facts about locally m-convex algebras, see
§8§1-3 of [8] or [1].) Henceforth, E’ is a total subspace of the algebraic
dual of E.

LEemMaA 1. Let W be a weak, equilibrated neighborhood of zero (that
is, for the topology o(E, E")), J a subspace of K, and ge E’' such that
JTWWY W {g}°. Then J, JE, and EJ are contained in the kernel
of g.

Proof. Let wedJ, ye E. As W is equilibrated and absorbing, let
2>0 be such that 2ye W. For all positive integers m, 2-'maeJ, and
therefore may=(2"'ma)(y)e JWW*T {g}°; hence |g(may)|<1 for all
positive integers m, and therefore g(xy)=0. Hence JE is contained in
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the kernel of g. Similarly for EJ. Also |g(ma)|<<1 for all xzeJ and
all positive integers m, and therefore g(x)=0 for all xeJ.

LEMMA 2. Let V be a weak neighborhood of zero. Then L=
N[w(0) lue V'] is a weakly closed subspace of finite codimension.

Proof. L is clearly a weakly closed subspace. By definition of
o(E, E') there exist b, b, -, b, in E’ such that {ky, k,, -+, 2} ' V.
Thus if |2(z)|<<1 for 1<<i<n, then [u(z)|<<1 for all we V*. Then if

re ﬁh;‘(O), for any positive integer m |k (mz)|=0<1 for 1<i<n and
hence [u(ma) <1, so u(x)=0 for all we V. Hence F\h;‘(O)gL. Since
i=1

the codimension of [n\h;l(O) is at most 7, so also the codimension of L
i=1

is at most n.

LEmMMA 3. Let E\, E,, .-, E, be finite-dimensional, Hausdorff topo-
logical K-vector spaces, F' a topological K-vector space. Any multilinear
transformation from E,x E,x «-+ x E, into F' is continuous.

Proof. This lemma is well known, and follows from Theorem 2 of
[3, p. 27] just as Corollary 2 of that theorem does.

THEOREM 1. o(&, E') 98 a [ocaily m-convex topology on E if and only
if for all ge E', the kernel of g contains a weakly closed ideal of finite
codimension.

Proof. Necessity: Let ge E’. Let V be a weakly closed, convex,
equilibrated, idempotent neighborhood of zero such that V< {g}’. Let
L=N[u"'0)|ue V']. Then clearly LZV®, but since V is weakly closed,
convex, and equilibrated, V=7V (see [4]). By Lemma 2 L is a weakly
closed subspace of finite codimension. We assert L is an ideal: Let
xeL, ye E. Choose 2>0 such that iye V. For all positive integers
m, A7'mwxelL; hence may=(1"'mzx)(ly)e LVZV*CV. Hence for all
positive integers m and any we V°, [u(may)|<<1l; hence u(xy)=0 for all
ueV® so wyelL. Similarly yre L, so L is an ideal. Now let J—
LN\ g7(0). Then J is a weakly closed subspace of finite codimension
contained in the kernel of g. It remains to show J is an ideal. Now
JTLSV=VUV*C{g}°; hence by Lemma 1 JEZg-'(0) and EJ g *(0).
Also JECLEZL and EJZELZL. Therefore JEZL N g-'(0)=J and
EJZL N ¢g7'(0)=J, so J is an ideal.

Sufficiency : It clearly suffices to show that for all ge E’ there
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exists an idempotent neighborhood V of zero such that V<T{g}’. Let
J be a weakly closed ideal of finite codimension contained in g¢-%(0).
Then F=E]J is a finite-dimensional algebra with a Hausdorff topology
compatible with the vector space structure of F. Multiplication is a
bilinear transformation from F xF into F, and hence by Lemma 3
multiplication is continuous. But also, any finite-dimensional, Hausdorff,
K-vector space has its topology defined by a norm (this follows from
Theorem 2 of [3, p. 27]); and by a familiar property of normed spaces
with a continuous multiplication, the norm may be so chosen that F'is
a normed algebra [6, p. 50]. Let ¢ be the continuous canonical homo-
morphism from E onto #, and let g=gogp. g is continuous on F, so
we may select an idempotent neighborhood U of zero in F' such that
ve U implies |g(v)|<<1l. Then V=¢-}(U) is a neighborhood of zero for
o(E, E'). As U is idempotent and ¢ a homomorphism, V is idempotent.
Finally, if eV then ¢(x)e U, and therefore |g9(x)|=Ig(¢(x))|<1, so
ze {g}°; hence V< {g}°, and the theorem is completely proved.

THEOREM 2. Multiplication in E is continuous for o(E, E') if and
only if for all ge E', the kernel of g contains a weakly closed subspace
J of finite codimension such that JE and EJ are also contained in the
kernel of g.

Proof. Necessity: Let ge E’. Then since {¢}° is a neighborhood
of zero, we may choose a weakly closed, convex, equilibrated neigh-
borhood W of zero such that W\ W< {g}°. Let L=N\[u"'(0)|ue W"].
Then clearly LCW®=W, since W is weakly closed, convex, and
equilibrated. By Lemma 2 L is a weakly closed subspace of finite
codimension. Let J=L N ¢~*(0). Then J is also a weakly closed sub-
space of finite codimension contained in the kernel of g. Also JTLZ
wWw\U W< {g}’, so by Lemma 1, JE and EJ are contained in the
kernel of g.

Sufficiency : It suffices to show that for any ge £’ and any aec E,
there exist neighborhoods W and V of zero in E such that W*CT{g}°
and ValyaV<{g}® ([5, p. 49]). Let I=¢-(0) and let J be a weakly
closed subspace of finite codimension contained in I such that EJZI
and JECI. Let ¢ and ¢ respectively be the canonical maps from E
onto E/J and from E onto E/I. Let g=go¢. We assert the map
(¢(z), ¢(y))—¢(xy) is a well-defined bilinear map from (E/J)x (E/J) into
E[l: If z—a’edJ and y—y' € J, then zy—2'ye JEZI and a'y—z'y’ €
EJZI; hence zy—a'y' =(@y—a'y)+(@'y—z'y’)el+I=I. The map is
therefore well-defined ; bilinearity is easily seen. Both (E/J) and (E/I)
are finite-dimensional Hausdorff topological K-vector spaces, so by
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Lemma 3 the above bilinear map is continuous. Hence there exists a
neighborhood U of zero in E/J such that if ¢(z), ¢(y)e U, then ¢(ay)e
{g}°. If W=¢*(U), then W is a neighborhood of zero for o(¥, E’);
if z, ye W, then ¢(z), ¢(y)e U and hence |g(zy)|=|g(¢(xy))|<1, so aye
{9}°. Thus W*T{g}°. Now let ac E. We assert the maps ¢(x)—¢(ax)
and ¢(x)—>¢(za) are well-defined, linear maps from E/J into E/I: For
if x—a’eJ, then ax—ax’ € EJZI and za—z'ae JEZI, so the maps are
well-defined. Linearity is immediate. Since E/J and E/I are finite
dimensional and Hausdorff, again by Lemma 3 these maps are continu-
ous. Hence we may choose a neighborhood P of zero in E/J such that
if ¢(x)e P then ¢(ax), ¢(xa)e {g}°. Then V=¢-'(P) is a neighborhood
of zero for o(F, E'). If xe V, then ¢(x)e P and hence |g(ax)|=lg(¢(ax))|
<1 and similarly |g(xa)|<<1. Hence aV\JVa<{g}°, and the theorem is
completely demonstrated.

Here is an example of a Banach algebra E with topological dual
E’ such that multiplication is not continuous for the associated weak
topology o(E, E'). Let E be the algebra of all continuous funections
from the compaect interval [0, 1] into K with the uniform topology. If

7( f)=$1 f(@)dt (dt is the usual Lebesgue complex-valued measure if K
0

is the complex numbers), then pgeE’. But g does not satisfy the
restrictions of Theorem 2: Let J be any weakly closed subspace con-

tained in the kernel of z such that JEZp-'(0). If fe.J, then ffe
JEZp(0) (f=f if K is the reals); hence Sl\f(t)lzdt—:o and se, since

S is continuous, f=0. Therefore J={0}. But since E is infinite-
dimensional, J is not of finite codimension. Hence by Theorem 2,
multiplication is not continuous for «(E, E’).

2. Algebras of polynomials. If E is any locally m-convex algebra,
E' its topological dual, . #(E) is the set of all continuous multiplica-
tive linear forms, . # -(E) the set of all nonzero continuous multiplica-
tive linear forms. . Z(K) and .7 -(£) are topologized as subsets of
E'; o(FE', E).

In [9] Silov proved the following theorems :

(1) If E is a normed C-algebra (C is the complex numbers) with
identity e, generated by e and another element x (that is, if all elements
of E are of form ae+ax+---+a,2"), then .~ ~(E) is homeomorphic
with a compact subset of C whose complement is connected; (2) every
such subset of C arises in this manner.

Here we give elementary analogues of these theorems for locally
m-convex algebras.
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Proposition 1. If K is a locally m-convex Hausdor[f algebra generated
by a single element x, then f— f(x) is a homeomorphism from _# (E) onto
a subset of K.

Progf. The map is surely continuous and is one-to-one since «
generates E. To show f(x)—f is continuous, it suffices to show f(a)—
f(2) is continuous for all ze E'; but as = generates E it suffices for
this to show f(x)— f(2") is continuous for all positive integers n». But
(@)= f(x)", so f(x)—f(z")is simply a restriction of the map 2—2" from
K into K, which is surely a continuous map. Hence f—f(x) is a
homeomorphism into K.

Proposition 2. Let E be an algebra cver any field F. The set M of
nonzero multiplicative linear forms is a linearly independent subset of E™,
the algebraic dual of K.

Proof. In Theorem 12 of [2, p. 84], Artin proves that if G is a
group, F a field, then the set of all nonzero homomorphisms from G
into the multiplicative semi-group of F' is a linearly independent subset
of the vector space ../ (G, F) of all functions from G into F. The
proof remains valid if ‘‘semi-group’’ replaces ‘‘ group’ in the state-
ment of the theorem, and thus modified the theorem may be applied
to the multiplicative semi-group of an algebra to yield the desired
result.

Henceforth, K[X] is the K-algebra of all polynomials in one in-
determinant, £ the subalgebra of those without constant term. K[X]
has a base {e}, with multiplication table ee,=e,,,; {e}iz, is a base
for E. For 1e K we let f, be the linear form defined on E by:
file;)=2. Also for every positive integer 4, g, is the linear form de-
fined on E by: g(e)=1, g,(¢;,)=0 for j~1i.

LEMMA 4. The set of all multiplicative linear forms on E 18

[frlde K].

Proof.  fiee)=rf € )=1" "= =f(e,)f(e;). This suffices to
show f, is multiplicative. Conversely, if f is any multiplicative linear
form, let 2= f(e;). Then for any positive integer i, f(e,)=r(e)=f(e:)’
=])". Hence f=r,.

LEMMA 5. {f.}rexnso U {0:} 521 48 @ linearly independent subset of E*.

n »
Proof. Suppose zZa.[gﬁ >.P;ify=0, where the 2; are distinct
=1 j=1

from each other and all different from zero. Then for m>n, g,(e,)=0
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»
for 1<<i<ln, so 3 f,f,(e.)=0. The subspace of E generated by
j=1

{€;} 5ons is clearly a subalgebra; the restrictions of the f,, 1<{j<p,
to this algebra are again clearly distinet from each other and different
from zero. Hence by Proposition 2 applied to this subalgebra, all

2,=0. Hence ﬁ a,9,=0; but a,=a,g,(e;)= Zn] a;9,(e)=0, so the lemma
i=1 Jj=1

is proved.

LEMMA 6. Let {4}, be a denumerable family of distinet nonzero
elements of K. Then {fy}, separates the points of E.

Proof. For 25£0, each f, has a unique extension to a multiplicative
linear form on K[X] obtained by setting f,(e)=1. Let z= 37 «.e e
E. Then =37 ,a in K[X] where «=0. Suppose [, (x)=0 for
1<j<n+1. Then 3/ ,ai=0 for 1<j<n+1. But the determinant
of the system of linear equations >.,¢4i=0, 1<{j<n+1, is

Ao e 11 e 1
Ay /ﬁ e 3 [ 1 A de v Aua i
= . Cl= 1 (= 4)#£0
j | : : : ! 1< j<n+1

. l
Ana )\7124-1 cee o Auenl U4 A e Aaan
(this is the Vandermonde determinant). Hence the above system of
linear equations has only the trivial solution, and therefore «,=0,
0<<¢<n, and hence =0. Thus the proof is complete.

Proposition 3. If L is any subset of K containing zero, there 1s
a Hausdorff, weak locally m-convex topology .~ on E such that the
canonical map f,—4 maps _Z (E) homeomorphically onto L. Further
iof L is an infinite set, . may be so chosen that the completion of E ;
48 semi-simple; and iof L s denumerable, .~ 1is metrizable.

Proof. Case 1: L is finite. Let M=[f,|1e L], and let E’ be the
subspace of E* generated by {g,);.\U M. Clearly E’ is a total sub-
space of E*, and so, as E’ has a denumerable linear base, o(F, E') is
a metrizable weak topology on E. To show o(E, E') is locally m-convex,
it clearly suffices to show that the condition of Theorem 1 holds for
all members of a base of E’. The condition holds trivially for all
uwe M, since the kernel of we M is already a weakly closed ideal.
Consider any g,: The linear subspace generated by {e;}7.,., is clearly
of finite codimension, and the multiplication table shows that it is

actually an ideal. Further, it is identical with f\ 9:'(0) and thus is
k=1
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weakly closed and contained in the kernel of ¢g,. Hence by Theorem 1,
o(E, E') is locally m-convex. By Lemma 5 the set of all multiplicative
linear forms in E’ is M. As the topological dual of E; o(E, E’) is E’
(see [7]), M is the set of all continuous multiplicative linear forms on
E; o(E, E'), and by Proposition 1 applied to =e,, M is homeomorphic
with L.

Case 2: L is infinite. Again let M=[f,|1¢e L], and let E’ be the
subspace of E™ generated by M. By Lemma 6, E’ is total. The
condition of Theorem 1 is trivially satisfied by E’, so «(E, E’) is a
Hausdorft, weak locally m-convex topology on E. If L is denumerable,
E’ has a countable base and so o(&, E’) is metrizable. M is again the
set of all continuous multiplicative linear forms on E; o(E, E’) and is
homeomorphic with L. The completion of E for this topology is E'*
([7]), and as M generates E’, M separates the points of E’*; thus the
completion of E for this topology is semi-simple by Corollary 5.5 of [8].

It is easy to see that E has no divisors of zero and that zero is
the only element having an adverse; thus the Jacobson radical is {0}
and F is semi-simple. If, in Proposition 3, L= {0} and the scalar field
is the complex numbers, E is a commutative, metrizable locally m-
convex algebra with no continuous nonzero multiplicative linear forms ;
the completion E of E then has no continuous nonzero multiplicative
linear forms and hence by Corollary 5.5 of [8] is a radical algebra.
Thus we have an example of a semi-simple metrizable algebra whose
completion is a radical algebra. This phenomenon is also known even
for normed algebras. For example, an elementary calculation shows
the following is a norm on E':

_ el

n=1 Ml

m
Z a.e,
n=1

[(m—1)le,|=1/m—0, so (m—1)!e,—0 for this norm topology. But for
any 240, |fu((m—1)!e,)|=(m—1)!|2[">c, so f, is not continuous.
Hence E has no continuous nonzero multiplicative linear forms and so,
assuming the scalar field is the complex numbers, the completion of £
for this norm is a radical algebra.
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