
WEAK LOCALLY MULTIPLICATIVELY-CONVEX ALGEBRAS1

SETH WARNER

Let E be an algebra over the reals or complex numbers, E' a total
subspace of the algebraic dual E* of vector space E. We first discuss
the following natural questions: When is the weak topology o{E, E')
defined on E by E! locally m-convex ? When is multiplication continu-
ous for σ(E, Er), that is, when is σ(E, Ef) compatible with the algebraic
structure of EΊ We then apply our results to certain weak topologies
on the algebra of polynomials in one indeterminant without constant
term.

1* Weak topologies.

Let K be either the reals or complex numbers, E a if-algebra. A
topology J7~ on E is locally multiplicatively-convex (which we abbreviate
henceforth to " locally m-convex") if it is a locally convex topology
and if there exists a fundamental system of idempotent neighborhoods
of zero (a subset A of E is idempotent if A2ζZA). Multiplication is
then clearly continuous at (0, 0) and hence everywhere, so j 7 Ί s com-
patible with the algebraic structure of E. If A is idempotent, so is
its convex envelope, its equilibrated envelope (a subset V of E is called
equilibrated if λVζ^V for all scalars λ such that |Λ|<1), and its closure
for any topology on E compatible with the algebraic structure of E.
Hence if ^Γ is locally m-convex, zero has a fundamental system of
convex, equilibrated, idempotent, closed neighborhoods. (For proofs of
these and other elementary facts about locally m-convex algebras, see
§§1-3 of [8] or [1].) Henceforth, E' is a total subspace of the algebraic
dual of E.

LEMMA 1. Let W be a weak, equilibrated neighborhood of zero {that
is, for the topology σ(E, Ef)), J a subspace of E, and g e E' such that
JClΓCIfUIf^C^} 1 1 . Then J, JE, and EJ are contained in the kernel
of g.

Proof. Let xe J, ye E. As W is equilibrated and absorbing, let
/l>0 be such that λye W. For all positive integers m, ?rιmxeJ, and
therefore mxy=-(?rλmx)(λy)e JW^W2ζZ{g}0 hence \g{mxy)\<\ for all
positive integers m, and therefore g(xy) = 0. Hence JE is contained in
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the kernel of g. Similarly for EJ. Also \g(mx)\<l for all xeJ and
all positive integers m, and therefore g(x) = 0 for all xe J.

LEMMA 2. Let V be a weak neighborhood, of zero. Then L=
Γ[ίu'1(^)\ue ^u] is a weakly closed subspace of finite codimension.

Proof. L is clearly a weakly closed subspace. By definition of
σ(E, E') there exist hu hz, ••, hn in E' such that {klf hίy --, kn}°QV.
Thus if \hι(z)\^l for l<i^n, then \u(z)\<l for all ueV°. Then if

11

xe Γ\hΐι(0)f for any positive integer m |/^(m#)|==0<l for l<i<n and
ί l

hence \u{mx)\<\, so ί φ ) = 0 for all ueV°. Hence Γ\hjι(0)g:L. Since
ΐ = l

n

the codimension of f\ hϊι(0) is at most nf so also the codimension of L
i = l

is at most n.

LEMMA 3. Let Eu Έ%, •••, En be finite-dimensional, Hausdorff topo-
logical K-vector spaces, F a topological K-vector space. Any multilinear
transformation from EλxE2x xEn into F is continuous.

Proof. This lemma is well known, and follows from Theorem 2 of
[3, p. 27] just as Corollary 2 of that theorem does.

THEOREM 1. σ(E, Έ?) is a locally m-convex topology on E if and only
if for all geE', the kernel of g contains a iveakly closed ideal of finite
codimension.

Proof. Necessity: Let geE'. Let V be a weakly closed, convex,
equilibrated, iάempotent neighborhood of zero such that Vc:{g}°. Let
L= Γ\ lu-τ(0) \u e V°l Then clearly L^Vϋ\ but since V is weakly closed,
convex, and equilibrated, VQ0=V (see [4]). By Lemma 2 L is a weakly
closed subspace of finite codimension. We assert L is an ideal: Let
# e L, yeE. Choose Γ>0 such that λy e V. For all positive integers
m, λ~ιmxeL; hence mxy={\-λm,χ){λy) e l F C P C F . Hence for aU
positive integers m and any ue V\ \u(mxy)\<l; hence u(xy) = 0 for all
ueV\ so xyeL. Similarly yxeL, so L is an ideal. Now let J=
L f\ g'\0). Then J is a weakly closed subspace of finite codimension
contained in the kernel of g. It remains to show J is an ideal. Now
J^L^V^VyjV^igY hence by Lemma 1 JE^g-τ(0) and EJClg-^O).
Also JEQLE^L and EJ^EL^L. Therefore JE^L f\ g~l(0)=J and

^g-'W^J, so J is an ideal.

Sufficiency: It clearly suffices to show that for all geEf there
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exists an idempotent neighborhood V of zero such that V^{g}°. Let
J be a weakly closed ideal of finite codimension contained in g~ι(0).
Then F=EIJ is a finite-dimensional algebra with a Hausdorίf topology
compatible with the vector space structure of F.' Multiplication is a
bilinear transformation from FxF into F, and hence by Lemma 3
multiplication is continuous. But also, any finite-dimensional, Hausdorff,
ίΓ-vector space has its topology defined by a norm (this follows from
Theorem 2 of [3, p. 27]) and by a familiar property of normed spaces
with a continuous multiplication, the norm may be so chosen that F is
a normed algebra [6, p. 50]. Let φ be the continuous canonical homo-
morphism from E onto F, and let g=goφ. g is continuous on F, so
we may select an idempotent neighborhood U of zero in F such that
veU implies \g(v)\<±. Then V=φ~1(U) is a neighborhood of zero for
σ(E, E'). As U is idempotent and ψ a homomorphism, Fis idempotent.
Finally, if xe V then φ(x)eU, and therefore \g(x)\=\g(φ(x))\<l, so
xe {g}°; hence 7C{ff}°, and the theorem is completely proved.

THEOREM 2. Multiplication in E is continuous for o(E, Ef) if and
only if for all geE', the kernel of g contains a weakly closed subspace
J of finite codimension such that JE and EJ are also contained in the
kernel of g.

Proof. Necessity: Let geE'. Then since {g}° is a neighborhood
of zero, we may choose a weakly closed, convex, equilibrated neigh-
borhood W of zero such that W{JW^{g}°. Let L= Γ\[u~\0)\ue W°].
Then clearly L(ZW00=W, since W is weakly closed, convex, and
equilibrated. By Lemma 2 L is a weakly closed subspace of finite
codimension. Let J=L f\ g-^O). Then J is also a weakly closed sub-
space of finite codimension contained in the kernel of g. Also e/cXc;
W^W^JW^Zlg}0, so by Lemma 1, JE and EJ are contained in the
kernel of g.

Sufficiency: It suffices to show that for any g e E' and any aeE,
there exist neighborhoods W and V of zero in E such that W2£Z{g}°
and Va\JaV<^{g}° ([5, p. 49]). Let I=g-\0) and let J be a weakly
closed subspace of finite codimension contained in / such that EJQJ
and JE^I. Let φ and ψ respectively be the canonical maps from E
onto E\J and from E onto E/L Let g=g°ψ. We assert the map
(φ(x)j φ{y))->Φ(%y) is a well-defined bilinear map from (ElJ) x (E/J) into
E\I\ If x—x' eJ and y—yf e J , then xy—x'yeJE^I and x'y—x'y'e
EJ^I; hence xy — x'yf = (xy—x'y)-h(x'y — x'y')el-hl=l. The map is
therefore well-defined bilinearity is easily seen. Both (E/J) and (Ell)
are finite-dimensional Hausdorff topological K-vector spaces, so by
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Lemma 3 the above bilinear map is continuous. Hence there exists a
neighborhood U of zero in EjJ such that if <p(x), φ{y) e U, then <p(xy) e
{g}°. If W=φ-ι(U), then W is a neighborhood of zero for σ(E, Er)
if x,ye W, then φ(x), φ(y)e U and hence \g(xy)\=\g(Ψ(xy))\<l, so xye
{g}°. Thus W2(^{g}0. Now let aeE. We assert the maps φ(x)-*ψ(ax)
and (̂α?)—>ψ(xa) are well-defined, linear maps from E\J into £7/: For
if x—x'eJ, then ax — ax'eEJ^ZI and xa — x'aeJEQJ, so the maps are
well-defined. Linearity is immediate. Since EIJ and £7/ are finite
dimensional and Hausdorff, again by Lemma 3 these maps are continu-
ous. Hence we may choose a neighborhood P of zero in E\J such that
if φ(x)eP then ψ(ax)9 ψ(xa)e {g}ΰ. Then V=φ-\P) is a neighborhood
of zero for σ(E, E'). If xe V, then φ(x)eP and hence |^(αa?)|=|^(αa?))|
< 1 and similarly \g(xa)\<l. Hence aV\JVaCZ{g}0, and the theorem is
completely demonstrated.

Here is an example of a Banach algebra E with topological dual
E' such that multiplication is not continuous for the associated weak
topology σ(E, E'). Let E be the algebra of all continuous functions
from the compact interval [0, 1] into K with the uniform topology. If

;"(/)= I f(t)dt (dt is the usual Lebesgue complex-valued measure if K
Jo

is the complex numbers), then μeE'. But μ does not satisfy the

restrictions of Theorem 2: Let J be any weakly closed subspace con-

tained in the kernel of μ such that JE£Zμ-ι(0). If feJ, then ffe

JίC/ί-^O) ( / = / if K is the reals); hence \ \f(t)\2dt = 0 and so, since
/ is continuous, / = 0 . Therefore J={0}. But since E1 is infinite-
dimensional, J is not of finite codimension. Hence by Theorem 2,
multiplication is not continuous for σ(E, E1).

2. Algebras of polynomials• If E is any locally m-convex algebra,
Έ' its topological dual, ,/fί(E) is the set of all continuous multiplica-
tive linear forms, ,/?-(E) the set of all nonzero continuous multiplica-
tive linear forms. ,^'{E) and ,//~{E) are topologized as subsets of
E'; σ(E',E).

In [9] Silov proved the following theorems :
(1) If E is a normed C-algebra (C is the complex numbers) with

identity e, generated by e and another element x (that is, if all elements
of E are of form a^e + a^xΛ \-anx

n), then ,^//-(E) is homeomorphic
with a compact subset of C whose complement is connected (2) every
such subset of C arises in this manner.

Here we give elementary analogues of these theorems for locally
m-convex algebras.
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Proposition 1. If E is a locally m-convex Hausdorff algebra generated
by a single element x, then f—>f{x) is a homeomorphism from ^//{E) onto
a subset of K.

Proof. The map is surely continuous and is one-to-one since x
generates E. To show f(x)->f is continuous, it suffices to show /(#)-*
f(z) is continuous for all zeE; but as x generates E it suffices for
this to show f(x)-+f(xn) is continuous for all positive integers n. But
f(xn) = f(x)n, so f(x)—>f{xn) is simply a restriction of the map λ->λn from
K into K, which is surely a continuous map. Hence f->f(x) is a
homeomorphism into K.

Proposition 2. Let E be an algebra over any field F. The set M of
nonzero multiplicative linear forms is a linearly independent subset of E*,
the algebraic dual of E.

Proof. In Theorem 12 of [2, p. 34], Artin proves that if G is a
group, F a field, then the set of all nonzero homomorphisms from G
into the multiplicative semi-group of F is a linearly independent subset
of the vector space ,Vr(G, F) of all functions from G into F. The
proof remains valid if " semi-group " replaces " group" in the state-
ment of the theorem, and thus modified the theorem may be applied
to the multiplicative semi-group of an algebra to yield the desired
result.

Henceforth, K[X] is the i£-algebra of all polynomials in one in-
determinant, E the subalgebra of those without constant term. K[X~\
has a base {βj^o with multiplication table e ^ = ^ + J ; {ejjli is a base
for E. For λ e K we let / λ be the linear form defined on E by:
fλ(e3)=λj. Also for every positive integer i, gt is the linear form de-
fined on E by: ^ ί(e ί)=l, ^(e,) = 0 for j # i .

LEMMA 4. The set of all multiplicative linear forms on E is

Proof. Λ(βA) = Λ(^+*) = ̂ + * = ^ * = Λ ( e J ) / λ ( e t ) . This suffices to
show / λ is multiplicative. Conversely, if / is any multiplicative linear
form, let λ=f(e1). Then for any positive integer i, f(ei)=f(ei) = f(eiy
= λ\ Hence / = / λ .

LEMMA 5. {/λ}λe*fλ#u \J {#*}<! 1 is a linearly independent subset of E*.

n p

Proof. Suppose Σ ^ + Σ f t Λ i = 0 , where the L are distinct

from each other and all different from zero. Then for m^>n, ^(em) = 0
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p

for l<i<n, so Σ βjf\j{em)=~'Q The subspace of E generated by

{e>}JU+i is clearly a subalgebra the restrictions of the fKj, l<j<p,
to this algebra are again clearly distinct from each other and different
from zero. Hence by Proposition 2 applied to this subalgebra, all

βj = O. Hence ^ ^ = 0 ; but ocl=aigi(ei)=y£iaJgJ(ei) = 0f so the lemma

is proved.

LEMMA 6. Let {ΛJΓ=i be a denumerable family of distinct nonzero
elements of K. Then {fλi}?=ι separates the points of E.

Proof. For λφQ, each fλ has a unique extension to a multiplicative
linear form on K[X] obtained by setting fκ(e0)=l. Let α?= Σ?=i α*eι e

£\ Then a?=Σ?-oΛiβ< in JK[X] where αo=O. Suppose fλJ(%) = 0 for
l<^'<n-fl . Then ΣLo^M^O for l<j<n-hl. But the determinant
of the system of linear equations Σ?«oWj=O, I < i < ^ + 1, is

/lΐ λ\ . . . ? j l 1 . . . 1 !

TO j i , . . 3 W ! ί 3 ^ ) ) l ) n I

(this is the Vandermonde determinant). Hence the above system of
linear equations has only the trivial solution, and therefore oct = 09

0<>i<n, and hence x=0. Thus the proof is complete.

Proposition 8. If L is any subset of K containing zero, there is
a Hausdorff, weak locally m-convex topology J/~ on E such that the
canonical map /λ~>x maps ^/S (E) homeomorphically onto L. Further
if L is an infinite set, j7~" may be so chosen that the completion of E
J/7"is semi-simple; and if L is denumerable, J7~is metrizable.

Proof. Case 1: L is finite. Let M=[fλ\λ6L], and let E' be the
subspace of E* generated by {g^^yj M. Clearly E' is a total sub-
space of E*, and so, as E' has a denumerable linear base, o(E, E!) is
a metrizable weak topology on E. To show σ(E, Er) is locally m-convex,
it clearly suffices to show that the condition of Theorem 1 holds for
all members of a base of Ef. The condition holds trivially for all
ue M, since the kernel of ue M is already a weakly closed ideal.
Consider any gh: The linear subspace generated by {ej}^i+ι is clearly
of finite codimension, and the multiplication table shows that it is

i

actually an ideal. Further, it is identical with f\ gi\0) and thus is
fc = l
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weakly closed and contained in the kernel of git Hence by Theorem 1,
o{E, E') is locally m-eonvex. By Lemma 5 the set of all multiplicative
linear forms in Er is M. As the topological dual of E o(E, Ef) is Ef

(see [7]), M is the set of all continuous multiplicative linear forms on
E; σ(E, E'), and by Proposition 1 applied to x=el9 M is homeomorphic
with L.

Case 2: L is infinite. Again let M=[fκ\λeL], and let Ef be the
subspace of E* generated by M. By Lemma 6, JS7r is total. The
condition of Theorem 1 is trivially satisfied by E', so a(E, Ef) is a
Hausdorff, weak locally m-convex topology on E. If L is denumerable,
Ef has a countable base and so σ(E, E') is metrizable. M is again the
set of all continuous multiplicative linear forms on E o(E, E) and is
homeomorphic with L. The completion of E for this topology is E'*
([7]), and as M generates E\ M separates the points of Ef* thus the
completion of E for this topology is semi-simple by Corollary 5.5 of [8].

It is easy to see that E has no divisors of zero and that zero is
the only element having an adverse thus the Jacobson radical is {0}
and E is semi-simple. If, in Proposition 3, L= {0} and the scalar field
is the complex numbers, £ is a commutative, metrizable locally m-
convex algebra with no continuous nonzero multiplicative linear forms
the completion E of E then has no continuous nonzero multiplicative
linear forms and hence by Corollary 5.5 of [8] is a radical algebra.
Thus we have an example of a semi-simple metrizable algebra whose
completion is a radical algebra. This phenomenon is also known even
for normed algebras. For example, an elementary calculation shows
the following is a norm on E:

Σ
l

n-l Π\

||(m — l)!eTO||=l/m->0, so (m — l)lem->0 for this norm topology. But for
any λφO, | / λ ((m-l) ! em)\=(m —1)1 |Λ|m->oo, so fκ is not continuous.
Hence E has no continuous nonzero multiplicative linear forms and so,
assuming the scalar field is the complex numbers, the completion of E
for this norm is a radical algebra.
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