ABSTRACT RIEMANN SUMS

PauL Civin

1. Introduction. A theorem of B. Jessen [5] asserts that for f(x)
of period one and Lebesgue integrable on [0, 1]

n_1

(1) lim 2—"22 f(oc-HcZ‘”)=S1 f(t)dt almost everywhere.
n—>o0 k=0 1]

We show that the theorem of Jessen is a special case of a theorem

analogous to the Birkhoff ergodic theorem [1] but dealing with sums

of the form

(2) 25 P,

In this form 7 is an operator on a o-finite measure space such that

T'*"exists as a one-to-one point transformation which is measure pre-
serving for n=0, 1,..., and f(x) is integrable with f(a)=/f(Tx). We
also obtain in §3 the analogues for abstract Riemann sums of the
ergodic theorems of Hurewicz [4] and of Hopf [3].

We might remark that there is no use, due to the examples of
Marcinkiewicz and Zygmund [6] and Ursell [8], in considering sums of
the form

LS (T
N k=0

without further hypothesis on f(x). However we may replace 2"
throughout by m,m,---m, with m; integral and m,>2 without altering
any argument.

In §4 necessary and sufficient conditions are obtained on a trans-
formation 7 in order that the sums (2) have a limit as n—o for
almost all . These conditions are analogous to those of Ryll-Nardzew-
ski [7] in the ergodic case. We use the necessary conditions to establish
an analogue of a form of the Hurewicz ergodic theorem for two
operators [2].

2. Notation. Let (S, Q, p) be a fixed o-finite measure space. We
consider throughout point transformations 7' which have measurable
square roots of all orders, that is,

(8.1) There exist one-to-one point transformations T, so that
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T=T; T,=T,. n=1, 2, -
3.2) If XeQ, then T, Xe Q and T;'XeQ, n=0, 1, ---
No requirement is made of the uniqueness of the sequence 7,. For
example in the theorem of Jessen, 7' is the identity transformation

while T,o=ax+2"" (mod 1). We also suppose throughout that 7 is
measure preserving

(3.3) WTX)=p(X) for XeQ.

3. Limit theorems. Let @ be a finite valued set function defined
on Q and absolutely continuous with respect to z. Form the sums

9M_1

(4) O(X)="3, O(T:X) n=0, 1, -+,
k=0

and

(5) 1 X)= 3 MTEX) n=0, 1, ---

Then @, is absolutely continuous with respect to g, and there exists
an averaging sequence of point functions f,(x) so that

(2) 0,0 =\ Fi@m(da), n=0, 1,

THEOREM 1. Let T be a transformation such that (3.1), (3.2) and
(8.3) are satisfied. Let @ be a finite valued set function defined on Q,
absolutely continuous with respect to p and such that @(TX)=&(X). Then
for almost all x[p] the averaging sequence of point functions defined by
4), (5) and (6) has a limit as n—co. The limit function F(x) has the
following properties:

(i) F(T,x)=F(x) almost everywhere [p], n=0, 1, ---.
(ii) F(x) ¢s integrable over S.
(ili) For any set X with T, X=X, n=0, 1, -+ and pu(X)<oo

[, Fomdn) = | ra) ).
Proof. Note first that since @(TX)=0(X),
(7) 0,(T.X) =§;0 HTH X)=0(X).

Likewise
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( 8 ) /ln(TnX)zﬂn(X) .
Therefore for all X

[, AT =] 1@ ma) = 7. md)

7

and consequently

(9) [T x)= f () almost everywhere [,].
Relation (3.1) then implies

(10) . , ] almost everywhere [z] j=1, ---,2"—1
lim f(T72)= lim f ()

nmsoo . m=1,2, .-
Let

(11) A= {x]s‘)g}? SFa(2)=>0}.

It is asserted that

(12) [ @maz)=o.

We define the following sets:
Pi={z|f(x)=0} j=0, 1, -++
AN={xIO<s;1<1l)v Su(@)=0} N=0, 1, ---

Cy, =Py NPiuNP, im0, e N

Now (9) together with (3.1) imply that 7.P,=P; for k<j. Con-
sequently

TjCN, ]=CN, j and (D(CN‘ j)ZQ(T’;CLV, j)'

Therefore
20(Cy, )= S, 0(TCr, )=0,(C, )
and
2'9(Cy, J)=SCN’ jf,«(w),uj(dx)ZO , j=0,---, N.

Since the Cy, ; are disjoint for j=0, ---, N, we have @(4,)>0 and by
a limiting process we obtain (12).
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Likewise if

(13) B={zlinf ,()=0},
then
(14) SBfo(w)ﬂ(dw)20 :

Inasmuch as the preceding argument made no use of the finiteness
of @, we may apply the result to the set function ¥=@—cp for any
real ¢. Since

7.(0=| (Fix)=)mdo)

we deduce that for

(15) At={z[sup f,(x)=c}
we have

(16) O(A)=>ep(A°)
and for

(17) A= {w|inf f,(x)<d}
we have

(18) O(A)<dp(A,).

Let now for »>s

(19) L;= {zllim f,(z)>r and lim f,()<s} .

From (10) we obtain
(20) T%’nL:=L§ .7=07 19 ttty 2m_1’ m=0, 1; cet .

Since L; is invariant under each 7, we may consider it as a new
space. The sets A" and A, relative to the new space are now the full
space L;. Hence if we apply (16) and (18) we obtain

Q(L)=rp( L) ; O(L)<<sp(Ly) .

The finiteness of @ together with the assumption »>>s implies p(L5)=0.
Thus lim f,(x) exists almost everywhere [¢].

700

Property (i) of the limit function Fl(x) follows immediately from
(10). Utilizing (i) the proofs of (ii) and (iii) are now identical with
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the corresponding proofs by Hurewicz [4, p. 201] in the ergodic case.
The theorem for abstract Riemann sums analogous to the Hopf
ergodic theorem is now deducible as a corollary.

COROLLARY 1. Let T be a transformation such that (3.1) and (3.2)
are satisfied and in addition

(21) ﬂ(Tn-X)ZIJ(X) n=07 1’ ttt .

Then for any integrable f(x) with f(Tx)=f(x) and any g(x)>0 with
9(Tx)=g(=)

S i
(22) lim £0"

N—o00 271

>, g(Th)

k=0
ewists for almost every « [p]. The limit function h(x) is integrable,
satisfies h(T,x)=h(x) for almost all x [p], and for sets Y with p(Y)< co
and T, Y=Y, m=0, 1, ---.

(23 | @)~ r@nda.

Proof. Introduce the measure

W0 = gta)pas),

and the set function

F(X>=§Xf(w>p<dx).

The function F' is absolutely continuous with respect to » and is finite
valued. Condition (21) implies that

F(X0=| 'S r @tz

and

(0= S o(Tia)az).

Thus from the representation

Fn(X) = San(x) 2Jn(dx)
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we deduce that
So(@)="*=L____ almost everywhere [g].
2

The corollary is then an immediate consequence of Theorem 1.
The theorem of Jessen now follows from the version of Corollary
1 with g(z)=1 with the T, as noted in § 2.

4. Invariant measure and two operators. It is possible for the
conclusion of Corollary 1 to hold when g(x)=1 but T does not satisfy
(21). If we introduce

(24) R4, Y)=2-"S (Y (\T;4)

we obtain the following theorem.

THEOREM 2. If T is a transformation such that (3.1) and (3.2) are
satisfied, then the following statements are equivalent :

(25.1) For every integrable f(x) with f(Tx)=f(x),

lim 2-'S" f£(T%z)
=0

Nn—>o0 k

exists for almost every x [p].
(25.2) For each Y with p(Y)<co, lim R,(4, Y)<Ku(A).

(25.8) For each Y with p(Y)<loo, lim R, (A4, Y)<Kpu(A).

(25.4) For an increasing sequencc of sets Y; with O Y,=S,
j=1

lim B(A4, Y,)<Ku(A) .

N—>00

(25.5) There exists a countably additive measure » with the properties:
(i) 0<uX)<Ku(X)
(ii) If A=T,A, n=1, 2, «-+, SA)=p(A)
(iii) »(A)=u(T,4) , n=1, 2, «.-

The proof is almost identical with that of Ryll-Nardzewski [7] in
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the ergodic case, and is omitted. The existence of an invariant measure
implies, as in the ergodic case [2], the following theorem with two
operators (or two sequences of roots of the same operator).

THEOREM 3. Let T and U each satisfy (3.1), (3.2), (3.3) and (25.1),
and let

271
>, (T X)
k=0
be absolutely continuwous with respect to
9M_1
m(X)= 5 ((ULX), n=0, 1, -~
k=0

For any finite valued set function @ absolutely continuous with respect
to p and with O(TX)=0(X) form

2,(X)= "3 0(T, X).
k=0
Then in the representation

2.X) =\ fu@mldo),

the averaging sequence of point functions f.(x) tends to a limit as n—
Sfor almost every x [p].

As a consequence of Theorem 3 we obtain the following corollary
in the same fashion as Corollary 1 was derived from Theorem 1.

COROLLARY 2. Let T and U each satisfy (3.1) and (3,2), and in
addition

(26) 1V, X)=p(X) n=0, -~

for V=T and V=U. Then for any integrable f(z) with f(Tx)=f(x)
and any g(x)>0 with g(Uz)=g(z)

2”1
2 ATX)
lim&

n-sco 27 -1

= 9(UEX)

exists for almost all x [x].
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