ON CLOSED DIFFERENTIABLE CURVES OF ORDER n IN n-SPACE

Douglas Derry

1. Introduction. Let C_{n} be a closed curve in real projective n space S_{n} whose coordinates $x_{i}(1 \leqq i \leqq n+1)$ are given in the parametric form

$$
x_{i}=x_{i}(s), \quad 1 \leqq i \leqq n+1, \quad q \leqq s<q+1
$$

where $x_{i}(s)$ are real continuous periodic functions of period 1 , and q is any real number. The point with coordinates $x_{i}(s)(1 \leqq i \leqq n+1)$ will be designated by its defining number s.

The curve C_{n} is to satisfy the following order condition.
No hyperplane of S_{n} contains more than n points of C_{n}.

A simple consequence of the above condition is that any $k+1$ $(0 \leqq k \leqq n)$ distinct curve points $s_{1}, s_{2}, \cdots, s_{k+1}$ span a linear k-subspace $\left[s_{1}, s_{2}, \cdots, s_{k+1}\right]$. (The square-bracket symbol $[A, B, \cdots]$ will be used throughout to designate the linear subspace spanned by the sets A, B, \cdots.)

The curve C_{n} is to satisfy the following differentiability condition.

For each point s of C_{n} and for each integer $k(0 \leqq k \leqq n-1)$ a linear k-subspace (k, s), known as the osculating k-space at s, exists for which $\left[s_{1}, s_{2}, \cdots, s_{k+1}\right]$ converges to (k, s) as $s_{1}, s_{2}, \cdots, s_{k+1}$ all approach s in any way whatsoever.

The curves C_{3} were considered by A. Kneser [2] who studied properties which are invariant to certain continuous displacements. One of his results is that the set of planes of the projective space each of which contains exactly k ($k=1$ or 3) points of a C_{3} builds a connected set. In the present paper the methods used by Kneser are adapted to study the properties of the curves C_{n}. All the proofs make use of those lines l each point of which is included in n distinct ($n-1, s$). Thus the paper is, in a sense, a study of this line system. Among

[^0]the results is a generalization of the foregoing Kneser result to n dimensions. This in turn leads to the result that those hyperplanes which contain less than n points of C_{n} are exactly those hyperplanes which contain at least one line l. This result is related to a result, implicit in a paper of Scherk [4], which states that the above hyperplanes are exactly those hyperplanes which contain certain limiting positions of the lines l.
2. Multiplicities. As all the critical boundary cases involve multiple intersection points, these points will have special importance. In this section we record the definition for multiplicity and note some known results which we shall use.

Definition 1. A linear subspace Q is defined to intersect C_{n} exactly k-fold $(0<k \leqq n-1)$ at s if $(k-1, s) \subseteq Q,(k, s) \nsubseteq Q$, and n-fold if $(n-1, s)=Q$.

A point P is defined to be included in $(n-1, s)$ exactly k-fold $(0<k \leqq n-1)$ if $P \in(n-k, s), P \ddagger(n-k-1, s)$, and n-fold if $P=(0, s)$.

The following multiplicity convention will be assumed throughout. Let $s_{1}, s_{2}, \cdots, s_{j}$ be any point system, and let s_{i} occur k_{i}-times $(1 \leqq i \leqq j)$ in this system. A linear subspace Q is said to contain this system provided $\left(k_{i}-1, s_{i}\right) \subseteq Q(1 \leqq i \leqq j)$. A point P is said to be included in the system $\left(n-1, s_{1}\right),\left(n-1, s_{2}\right), \cdots,\left(n-1, s_{j}\right)$ provided $P \in\left(n-k_{i}, s_{i}\right)$ $(1 \leqq i \leqq j)$. Unless otherwise stated the points of any given set are not necessarily all distinct.

For reference we state the easily proved:

Lemma 1. For $n \geqq 2$, the projection of C_{n} from one of its curve points s^{\prime} is a C_{n-1}. The space $(k, s), s \neq s^{\prime}, 0 \leqq k \leqq n-2$, projects into the space (k, s) of the projected C_{n-1} and the space $\left(k, s^{\prime}\right), 1 \leqq k \leqq n-1$, into the space $\left(k-1, s^{\prime}\right)$ of C_{n-1}.

By use of Lemma 1, it can be proved by induction that C_{n} satisfies the sharpened order condition, that no hyperplane cuts C_{n} in more than n curve points where multiple intersections are now counted with their proper multiplicity. This leads to the fact that the system s_{1}, $s_{2}, \cdots, s_{k+1}(0<k \leqq n-1)$ is included in a unique k-space which we designate by $\left[s_{1}, s_{2}, \cdots, s_{k+1}\right]$. We note without proof that C_{n} satisfies the sharpened differentiability condition that $\left[s_{1}, s_{2}, \cdots, s_{k+1}\right]$ converges to (k, s) as $s_{1}, s_{2}, \cdots, s_{k+1}$ all approach s.

Use will be made of the duality theorem of Scherk [3] which states that all the $(n-1, s)$ build the dual of a C_{n}. This implies that
no point P is contained within more than $n(n-1, s)$ and also that the intersection of ($n-1, s_{1}$), $\left(n-1, s_{2}\right), \cdots,\left(n-1, s_{k}\right)(1 \leqq k \leqq n)$ approaches $(n-k, s)$ as $s_{1}, s_{2}, \cdots, s_{k}$ all approach s in any way whatsoever.
3. Notation. Throughout the paper the symbols l, l^{μ} will be tacitly assumed to represent lines each of the points of which is within n distinct $(n-1, s)$ of a given $C_{n} ; L, L^{\mu}$ will be assumed to represent the ($n-2$)-spaces with the property that every hyperplane through such a space cuts C_{n} in n distinct points.

Where a proof involves both C_{n} and C_{n-1} the symbol $(k, s)_{n-1}$ will be used to designate the osculating k-space of the curve C_{n-1}.

4. A construction for the lines l.

Theorem 1. If, for $n \geq 2, A$ and B are any two distinct points of a given line l, then curve points s_{i}, t_{i} of C_{n} exist so that $A \in\left(n-1, s_{i}\right)$, $B \in\left(n-1, t_{i}\right)(1 \leqq i \leqq n)$ and $s_{1}<t_{1}<s_{2}<\cdots<s_{n}<t_{n}<s_{1}+1\left(=s_{n+1}\right)$.

Conversely if A and B are points for which $A \in\left(n-1, s_{i}\right), B \in(n-$ $\left.1, t_{i}\right), s_{1}<t_{1}<s_{2}<t_{2}<\cdots<s_{n}<t_{n}<s_{1}+1\left(=s_{n+1}\right)$, then $A B$ is a line l.

Proof. Let $P(s)$ be the intersection $l \cap(n-1, s)$. Note that l 丰 ($n-1, s$); for otherwise l would contain a point of ($n-2, s$), which point would be within $(n-1, s)$ at least twice contrary to the definition of l. Therefore $P(s)$ is defined uniquely for all s. As s moves continuously on C_{n} in a fixed direction, $P(s)$ moves continuously on l because ($n-1, s$) is continuous. Also, $P(s)$ moves continuously in a fixed direction; for if $P(s)$ were to experience a reversal of direction at $P\left(s_{0}\right)$ then, in every curve neighborhood of s_{0}, points s_{L}, s_{R} would exist so that $s_{L}<s_{0}<s_{R}, P\left(s_{L}\right)=P\left(s_{R}\right)$. Then, as $P(s)$ is continuous,

$$
P\left(s_{0}\right) \in \lim _{s_{L} \rightarrow s_{0}, s_{R} \rightarrow s_{0}}\left(n-1, s_{L}\right) \cap\left(n-1, s_{R}\right)=\left(n-2, s_{0}\right)
$$

and l would contain a point not in n distinct $(n-1, s)$ contrary to the hypothesis. Let $\left(n-1, s_{i}\right)\left(1 \leq i \leq n ; s_{1}<s_{2}<\cdots<s_{n}<s_{1}+1\left(=s_{n+1}\right)\right)$ be the complete set of ($n-1, s$) which contain A. As s increases continuously from s_{1} to $s_{2}, P(s)$ makes one complete circuit of l in a fixed direction. Consequently it crosses the point B exactly once. Hence t_{1} exists on C_{n} so that $B \in\left(n-1, t_{1}\right)\left(s_{1}<t_{1}<s_{2}\right)$. Likewise within each arc $s_{i}<s<$ $s_{i+1}(2 \leqq i \leqq n)$, a point t_{i} exists on C_{n} so that $s_{i}<t_{i}<s_{i+1}, B \in\left(n-1, t_{i}\right)$. Thus the theorem is proved.

To prove the converse, let C be any interior point of one of the segments $A B$ of the line through A and B, and D any interior point
of the other segment. As $P(s)$ is continuous and

$$
P\left(s_{1}\right)=A, \quad P\left(t_{1}\right)=B
$$

at least one solution $P(s)=C$, or $P(s)=D$ must exist for which $s_{1}<s<$ t_{1}. Likewise each of the $2 n \operatorname{arcs} s_{i}<s<t_{i}, t_{i}<s<s_{i+1}(1 \leqq i \leqq n)$ contains at least one solution $P(s)=C$ or $P(s)=D$. But as C is contained in at most $n(n-1, s)$ there must be exactly n solutions $P(s)=C$. As these are all distinct and C is arbitrary, $A B$ is a line l. The proof is now complete.

This proof of the converse, due to Dr. P. Scherk, replaces a more complicated one of my own. I should like to take the opportunity to thank him for many helpful suggestions which have contributed to the readability of the paper.

5. Hyperplanes with a given number of curve points.

Lemma 2. If, for $n \geqq 3, C_{n-1}$ is the projection of C_{n} from one of its points s, then a line l of C_{n} is projected into a line l of C_{n-1}.

This is proved in [1].

Lemma 3. For $n \geq 3$, the projection of $a C_{n}$ from a line l is a C_{n-2} 。

Proof. No hyperplane through l can cut C_{n} in more than $n-2$ points. This is true for $n=2$ as it is equivalent to the fact that a line l of C_{2} cannot contain any curve points. Assume the assertion is true for $C_{n-1}(n>2)$. Let H be a hyperplane which contains l. The result is clear if H contains no points of C_{n}. Let \bar{s} be a point of C_{n} within H. Project from s. Then C_{n} is projected into a C_{n-1} by Lemma 1 , and l into a line l of C_{n-1}, by Lemma 2 , which is within the projection \bar{H} of H. By the induction assumption \bar{H} contains at most $n-3$ points of C_{n-1}. Therefore H, which contains the points C_{n} into which these are projected together with s contains at most $n-2$ points of C_{n}.

The space of all 2 -spaces through l is an ($n-2$)-space S_{n-2} whose hyperplanes are the hyperplanes of the original space which contain l. The elements $[l, s]$ of S_{n-2} build a curve C, and C has order $n-2$ by the result of the previous paragraph. This implies

$$
\left[l, s^{\prime}\right] \geqslant\left[l, s^{\prime \prime}\right] \quad \text { if } s^{\prime} \neq s^{\prime \prime}
$$

Thus there is a one-to-one correspondence between the points of C_{n} and those of C. Where $0 \leqq k \leqq n-2$, let

$$
\left[l, s_{1}\right],\left[l, s_{2}\right], \cdots,\left[l, s_{k+1}\right]
$$

be given curve points of C. Because of the order condition these points span a $(k+2)$-space Q which contains l. If $s_{1}, s_{2}, \cdots, s_{k+1}$ all approach s, then $Q \rightarrow[l,(k, s)]$ because of the differentiability condition. Thus the set of elements $[l, s]$ of S_{n-2} is a C_{n-2} with osculating k-spaces $[l,(k, \mathrm{~s})]$. As this set is equivalent to the projection of C_{n} from l, the lemma is established.

Most induction proofs for the curves C_{n} make use of Lemma 1; in the following proof Lemma 3 is used for this purpose.

Theorem 2. Where $0 \leqq k \leqq n, k \equiv n(\bmod 2)$, let $s_{1}, s_{2}, \cdots, s_{k} ; t_{1}, t_{2}$, \cdots, t_{k} be any points of C_{n}; then:
(a) If, for $n \geqq 1, H_{1}, H_{2}$ be hyperplanes which contain $s_{1}, s_{2}, \cdots, s_{k}$; $t_{1}, t_{2}, \cdots, t_{k}$ respectively, and no additional points of C_{n}, then hyperplanes $H(p)(0 \leqq p \leqq 1)$ exist, continuously dependent on p, each of which contains exactly k points of C_{n} and for which $H(0)=H_{1}, H(1)=H_{2}$;
(b) If $s_{i}=t_{i}(1 \leq i \leqq k)$, then $H(p)$ can be chosen so that it contains exactly the points $s_{i}(1 \leqq i \leqq k, 0 \leqq p \leqq 1)$;
(c) if $n \geqq 2,0 \leqq k \leqq n-2$, for a given line l, a hyperplane H^{l} exists so that it contains exactly the points $s_{1}, s_{2}, \cdots, s_{k}$, together with the line l.

Proof. We first prove (c). If $n=2$ then $k=0$ and the result is equivalent to the fact that $H^{\prime}=l$ does not cut C_{2}. Assume the result for for all curves $C_{n-1}(n>2)$. Project from l. Thus C_{n} is projected into a C_{n-2}, by Lemma 3 , and $s_{1}, s_{2}, \cdots, s_{k}$ into points of C_{n-2} with the same numerical coordinates. If $k=n-2$, a unique hyperplane

$$
H^{\prime}=\left[s_{1}, s_{2}, \cdots, s_{k}\right]
$$

exists in the projected ($n-2$)-space through these points. If $k<n-2$, then by the induction assumption a hyperplane H^{\prime} exists in the projected space which contains exactly the points $s_{1}, s_{2}, \cdots, s_{k}$ of C_{n-2}. Consequently, if H^{l} is defined to be the hyperplane of the original space which is projected into H^{\prime}, this hyperplane contains exactly the points $s_{1}, s_{2}, \cdots, s_{k}$ of C_{n}. As $l \leqq H^{l}$, (c) is proved for C_{n}. The proof
can now be completed by induction.

To prove (a) and (b), consider first the case $k=0$. With this restriction neither H_{1} nor H_{2} contains points of C_{n}. As the curve is connected, it lies entirely within one of the two open regions of the projective space whose boundary is the set of points of H_{1} and H_{2}. Hence an affine coordinate system exists so that the equations of H_{1}, H_{2} are $x_{1}=0, x_{1}=1$, respectively, and C_{n} contains no points for which $0 \leqq x_{1} \leqq 1$. Now (a) and (b) follow for $k=0$ if $H(p)$ is defined to be the hyperplane with the equation $x_{1}=p, 0 \leqq p \leqq 1$.

Now let $k=n$; (b) is trivial in this case. Let $f_{i}(p)(0 \leqq p \leqq 1,1 \leqq$ $i \leqq n)$ be any real-valued continuous functions for which $f_{i}(0)=s_{i}, f_{i}(1)$ $=t_{i}$. Then (a) follows if $H(p)$ is defined to be the hyperplane spanned by the points with coordinates $f_{i}(p)(1 \leqq i \leqq n)$.

In particular this establishes (a) and (b) for C_{1} and C_{2}. Assume both results for all $C_{n-1}(n>2)$. We may assume $0<k \leqq n-2$. Let l be arbitrary. By (c), hyperplanes H_{1}^{l}, H_{2}^{l} exist which contain exactly the points $s_{1}, s_{2}, \cdots, s_{k} ; t_{1}, t_{2}, \cdots, t_{k}$, respectively, together with the line l. Let $\overline{H_{1}}, \overline{H_{1}^{l}}, C_{n-1}$ be the projections of H_{1}, H_{1}^{l}, C_{n}, respectively, from s_{1}. By the induction assumption (b), hyperplanes $\bar{H}(p) \quad(0 \leqq p \leqq 1)$ exist in the projected space, continuously dependent on p, each of which contains exactly the points s_{2}, \cdots, s_{k} of C_{n-1}, and for which

$$
\bar{H}(0)=\overline{H_{1}}, \bar{H}(1)=\overline{H_{1}^{l}} .
$$

Let $H(p) \quad(0 \leqq p \leqq(1 / 3))$ be the hyperplane of the original space which is projected into $\bar{H}(3 p)$. Then $H(p)$ depends continuously on p, contains exactly the points $s_{1}, s_{2}, \cdots, s_{k}$ of C_{n}, and $H(0)=H_{1}, H(1 / 3)=H_{1}^{l}$. Likewise $H(p)((2 / 3) \leqq p \leqq 1)$ exists so that it depends continuously on p, contains exactly the points $t_{1}, t_{2}, \cdots, t_{k}$ of C_{n}, and for which

$$
H(2 / 3)=H_{2}^{l}, H(1)=H_{2} .
$$

After a projection from l, a similar argument can be used to construct a hyperplane $H(p)((1 / 3) \leq p \leq(2 / 3))$ which depends continuously on p, contains exactly k points of C_{n}, and for which

$$
H(1 / 3)=H_{1}^{l}, \quad H(2 / 3)=H_{2}^{i} .
$$

This proves (a) for C_{n}. Also (b) is clear if $H(p)$ is defined as above with the additional conditions that

$$
H_{1}^{\prime}=H_{2}^{\imath}=H(p) \quad((1 / 3) \leqq p \leqq(2 / 3)) .
$$

The proof can now be completed by induction.
6. Hyperplanes which do not contain n points of C_{n}.

Definition 2. $\sum\left(C_{n}\right)$ is the set of all points included in at least one space L of the curve $C_{n}(c f . \S 3)$.

Lemma 4. If, for $n \geqq 3, \bar{P} \in \sum\left(C_{n-1}\right)$, where \bar{P} is the projection of a point P from a point s^{\prime} of $C_{n}, P \neq s^{\prime}$, and C_{n-1} that of C_{n}, then $P \in \sum\left(C_{n}\right)$.

Proof. If $\bar{P} \in \sum\left(C_{n-1}\right)$, then points $s_{1}, s_{2}, \cdots, s_{n-1} ; t_{1}, t_{2}, \cdots, t_{n-1}$ of the projection C_{n-1} exist so that

$$
\bar{P} \in\left[s_{1}, s_{2}, \cdots s_{n-1}\right] \cap\left[t_{1}, t_{2}, \cdots, t_{n-1}\right]=L
$$

and

$$
s_{1}<t_{1}<s_{2}<\cdots<t_{n-1}<s_{1}+1
$$

by the dual of Theorem 1. Moreover,

$$
\left[s_{1}, s_{2}, \cdots, s_{n-1}\right],\left[t_{1}, t_{2}, \cdots, t_{n-1}\right]
$$

may be chosen to be any two distinct hyperplanes through L within the projected ($n-1$)-space. Therefore these hyperplanes may be chosen so that $t_{n-1}<s^{\prime}<s_{1}+1$. Let the numbers

$$
s_{1}, s_{2}, \cdots, s_{n-1}, t_{1}, t_{2}, \cdots, t_{n-1}, s^{\prime}
$$

now represent points of C_{n}. Then $P \in\left[t_{1}, t_{2}, \cdots, t_{n-1}, s^{\prime}\right]$. As t_{1}, t_{2}, $\cdots, t_{n-1}, s^{\prime}$ are represented by linearly independent vectors the intersection

$$
\prod_{i=1}^{i=n-1}\left[t_{1}, t_{2}, \cdots, t_{i-1}, t_{i+1}, \cdots, t_{n-1}, s^{\prime}\right]=s^{\prime}
$$

Hence, because $P \neq s^{\prime}$, at least one value i exists with

$$
P \notin\left[t_{1}, t_{2}, \cdots, t_{i-1}, t_{i+1}, \cdots, t_{n-1}, s^{\prime}\right] \quad(1 \leqq i \leqq n-1)
$$

For such a value i

$$
\left[t_{1}, t_{2}, \cdots, t_{i-1}, P, t_{i+1}, \cdots, t_{n-1}, s^{\prime}\right]=\left[t_{1}, t_{2}, \cdots, t_{n-1}, s^{\prime}\right]
$$

Let t_{n} be a point of C_{n} with $t_{n}>s^{\prime}$. Then

$$
\left[t_{1}, t_{2}, \cdots, t_{i-1}, P, t_{i+1}, \cdots, t_{n-1}, t_{n}\right]
$$

approaches $\left[t_{1}, t_{2}, \cdots, t_{n-1}, s^{\prime}\right]$ as t_{n} approaches s^{\prime}. Because of the continuity of the curve points of $C_{n},\left[t_{1}, t_{2}, \cdots, t_{i-1}, P, t_{i+1}, \cdots, t_{n}\right]$ will contain a point t_{i}^{\prime} of C_{n} for which $s_{i}<t_{i}^{\prime}<s_{i+1}$ provided t_{n} is sufficiently
close to s^{\prime}. If t_{n} is such a point, and s_{n} is defined as s^{\prime}, then

$$
P \in\left[s_{1}, s_{2}, \cdots, s_{n}\right] \cap\left[t_{1}, t_{2}, \cdots, t_{i-1}, t_{i}^{\prime}, t_{i+1}, \cdots, t_{n}\right]
$$

and

$$
s_{1}<t_{1}<s_{2}<\cdots<s_{i}<t_{i}^{\prime}<s_{i+1}<s_{n}<t_{n}<s_{1}+1 .
$$

It follows from the dual of Theorem 1 and Definition 2 that $P \in \Sigma\left(C_{n}\right)$. The lemma is thus established.

Corollary. If, for $n \geqq 3, P$ is a point for which $P \in\left[\left(k, s_{1}\right), s_{2}\right]$ $\left(s_{1} \neq s_{2}, 0 \leqq k \leqq n-3, P \nRightarrow s_{2}\right) P \ddagger\left(k, s_{1}\right)$, then $P \in \sum\left(C_{n}\right)$.

Proof. If $n=3$ then $P \in\left[s_{1}, s_{2}\right]\left(s_{1} \neq s_{2}, P \neq s_{1}, P \neq s_{2}\right)$. Let t_{1}, t_{2} be points of C_{3} for which $s_{1}<t_{1}<s_{2}<t_{2}<s_{1}+1$. Then $P \notin\left[t_{1}, t_{2}\right]$; for otherwise $t_{1}, t_{2}, s_{1}, s_{2}$ would be coplanar in contradiction to the order condition. Hence $\left[P, t_{1}, t_{2}\right]$ is a plane. This plane must contain a third point t of C_{3}, as C_{3} is closed. Now $P \nRightarrow t$ because [s_{1}, s_{2}] cannot contain a third curve point. If \bar{P} is the projection of P from t then

$$
\bar{P} \in\left[s_{1}, s_{2}\right] \cap\left[t_{1}, t_{2}\right],
$$

where $s_{1}, s_{2}, t_{1}, t_{2}$ now represent curve points of the projection C_{2} of C_{3} from t. This implies, by the dual of Theorem 1 , that $\bar{P} \in \sum\left(C_{2}\right)$, and so by the Lemma that $P \in \sum\left(C_{3}\right)$. Thus the corollary is true for $n=3$. Assume it to be true for all $C_{n-1}, n>3$. The result for C_{n} then follows from the Lemma by a projection from s_{1} if the least possible $k=n-3$ and otherwise by a projection from a point of C_{n} different from s_{1} and s_{2}.

Lemma 5. (a) For $n \geqq 2, \Sigma\left(C_{n}\right)$ is open. (b) If a boundary point \bar{P} of $\sum\left(C_{n}\right)$ is approached by a sequence P^{μ} of points interior to $\Sigma\left(C_{n}\right)$, and \bar{L} is the limit of a space sequence L^{μ} for which $P^{\mu} \in L^{\mu}$, then (k, s) $(0 \leqq k \leqq n-2)$ exists for which $\bar{P} \in(k, s) \subseteq \bar{L}$.

Proof. If $P \in \sum\left(C_{n}\right)$ then a space L exists for which $P \in L$. By the dual of Theorem $1, s_{1}, s_{2}, \cdots, s_{n} ; t_{1}, t_{2}, \cdots, t_{n}$ exist so that

$$
L \subseteq\left[s_{1}, s_{2}, \cdots, s_{n}\right] \cap\left[t_{1}, t_{2}, \cdots, t_{n}\right] \text { and } s_{1}<t_{1}<s_{2}<\cdots<t_{n}<s_{1}+1
$$

If P^{\prime} is sufficiently close to P then it is contained within an ($n-2$)space L^{\prime} which is so close to L that it has the form

$$
\left[s_{1}^{\prime}, s_{2}^{\prime}, \cdots, s_{n}^{\prime}\right] \cap\left[t_{1}^{\prime}, t_{2}^{\prime}, \cdots, t_{n}^{\prime}\right] \quad\left(s_{1}^{\prime}<t_{1}^{\prime}<s_{2}^{\prime}<\cdots<t_{n}^{\prime}<s_{1}^{\prime}+1\right) .
$$

By the dual of Theorem $1, P^{\prime} \in \sum\left(C_{n}\right)$ ，and so（a）is proved．
To prove（b），let H_{1}^{μ}, H_{2}^{μ} be any two hyperplane sequences with $L^{\mu} \leqq H_{1}^{\mu}, L^{\mu} \leqq H_{2}^{\mu}$ ，which converge to two distinct limits H_{1} and H_{2} ，re－ spectively．By the dual of Theorem $1, s_{1}^{\mu}, s_{2}^{\mu}, \cdots, s_{n}^{\mu} ; t_{1}^{\mu}, t_{2}^{\mu}, \cdots, t_{n}^{\mu}$ exist so that $s_{1}^{\mu}<t_{1}^{\mu}<s_{2}^{\mu}<\cdots<t_{n}^{\mu}<s_{1}^{\mu}+1$ and

$$
H_{1}^{\mu}=\left[s_{1}^{\mu}, s_{2}^{\mu}, \cdots, s_{n}^{\mu}\right], \quad H_{2}^{\mu}=\left[t_{1}^{\mu}, t_{2}^{\mu}, \cdots, t_{n}^{\mu}\right]
$$

As H_{1}^{μ}, H_{2}^{μ} converge，the sequences $s_{i}^{\mu}, t_{i}^{\mu}(1 \leqq i \leqq n)$ also converge．If s_{i}, t_{i} are the respective limits of these sequences，

$$
\bar{L}=\left[s_{1}, s_{2}, \cdots, s_{n}\right] \cap\left[t_{1}, t_{2}, \cdots, t_{n}\right] \text { and } s_{1} \leqq t_{1} \leqq s_{2} \leqq \cdots \leqq t_{n} \leqq s_{1}+1
$$

At least one equality sign must occur in this system，for other－ wise $\bar{P} \in \bar{L}$ and so $\bar{P} \in \Sigma\left(C_{n}\right)$ ；this is impossible as \bar{P} is a boundary point of the open set $\sum\left(C_{n}\right)$ ．We may suppose，after a possible adjust－ ment in the notation，$s_{1}=t_{1}$ ．Hence $s_{1} \in \bar{L}$ ．If $n=2$ this proves the Lemma，as

$$
\bar{P}=\bar{L}=s_{1}=\left(0, s_{1}\right)
$$

Assume it holds for all curves $C_{n-1}, n>2$ ．If $\bar{P}=s_{1}$ ，then it is already true for C_{n} ．If $\bar{P}=s_{1}$ ，project from s_{1} ．Let C_{n-1} be the projection of C_{n} and $\overline{P^{\prime}}$ that of \bar{P} ．Then $\bar{P} \notin \sum\left(C_{n-1}\right)$ ，for otherwise，by Lemma 4， $\bar{P} \in \sum\left(C_{n}\right)$ ．Moreover，

$$
\overline{P^{\prime}} \in\left[s_{2}, s_{3}, \cdots, s_{n}\right] \cap\left[t_{2}, t_{3}, \cdots, t_{n}\right]=\overline{L^{\prime}}
$$

and this space is approached by the system

$$
\left[s_{2}^{\mu}, s_{3}^{\mu}, \cdots, s_{n}^{\mu}\right] \cap\left[t_{2}^{\mu}, t_{3}^{\mu}, \cdots, t_{n}^{\mu}\right]
$$

where all the numbers now represent points of C_{n-1} ．Thus $\overline{P^{\prime}}$ is a boundary point of $\sum\left(C_{n-1}\right)$ ．Therefore by the induction assumption $(k, s)_{n-1}$ exists so that

$$
\overline{P^{\prime}} \in(k, s)_{n-1} \subseteq \bar{L} \quad(0 \leqq k \leqq n-3)
$$

Consequently， $\bar{P} \in\left[s_{1},(k, s)\right] \subseteq \bar{L}$ ．Because $\bar{P} \neq s_{1}$ ，it now follows from the Corollary to Lemma 4 that $\bar{P} \in(k, s)$ ，or $s=s_{1}$ and $P \in(k+1, s)$ ． Either of these possibilities shows the lemma to be true and so the proof is complete．

Lemma 6．If，for $n \geq 3, l^{\mu}$ is a sequience which converges to \bar{l} ，and p an integer for which $\bar{l} \leqq(p, s), \bar{l}_{⿻ 三 丨 寸}(p-1, s)(0<p<n-1)$ then $\left[l^{\mu},(q\right.$, $s)] \rightarrow(q+2, s)(p-1 \leqq q \leqq n-3)$ ．

Proof. The space $\left[l^{\mu},(q, s)\right]$ is a $(q+2)$-space because $q<n-1$ while l^{μ} and (q, s) have no common points. Consider first the case for which $q=n-3, p=n-2$. If the lemma were false then a convergent subsequence of $\left[l^{\mu},(n-3, s)\right]$ would exist whose limit would be a hyperplane Q for which $Q \geqslant(n-1, s)$. As $\bar{l}^{\mu} \rightarrow l$,

$$
[l,(n-3, s)]=(n-2, s) \leqq Q .
$$

Consequently Q would cut C_{n} in s at least ($n-1$)-fold. As C_{n} is closed, Q would cut C_{n} in one additional point s^{\prime}, and $s^{\prime} \neq s$ as $Q \neq(n-1, s)$. Hence, if l^{μ} is sufficiently close to \bar{l}, $\left[l^{\mu},(n-3, s)\right]$ would cut C_{n} in a point $s^{\prime \prime}$ so close to s^{\prime} that $s^{\prime \prime} \neq s$. Therefore the hyperplane $\left[l^{\mu}\right.$, $(n-3, s)]$ would cut C_{n} in more than $n-2$ points in contradiction to Lemma 3. Thus $\left[l^{\mu},(n-3, s)\right]$ must approach $(n-1, s)$, and the lemma is proved in this case. In particular, it is completely proved for $n=3$. Assume it is established for all $C_{n-1}, n>3$.

Consider next the case for which $q<n-3$. Project from any point t of C_{n} different from s. As $t \notin(p, s), \bar{l}$ is projected into a line \bar{l}^{\prime}, and l^{μ} is projected into a line $l^{\prime \mu}$ defined for the projection C_{n-1} of C_{n} by Lemma 2, Clearly

$$
\overline{l^{\prime}} \leqq(p, s)_{n-1} \text { and } \overline{l^{\prime}} \leqq(p-1, s)_{n-1},
$$

for otherwise

$$
l \leqq[(p-1, s), t] \cap(p, s)=(p-1, s)
$$

Therefore, by the induction assumption, $\left[l^{\prime \mu},(q, s)_{n-1}\right] \rightarrow(q+2, s)_{n-1}$. This implies $\left[l^{\mu},(q, s), t\right] \rightarrow[(q+2, s), t]$, and, because t is arbitrary, that $\left[l^{\mu},(q, s)\right] \rightarrow(q+2, s)$. Thus the lemma is proved in this case.

Finally let $q=n-3, p<n-2$. If $\left[l^{\mu},(n-3, s)\right]$ does not converge to ($n-1, s$) this set contains a convergent subsequence with limit Q, $Q \neq(n-1, s)$. Now $1 \leqq p<n-2$, and so $n \geq 4$. Hence by the result of the previous paragraph $\left[l^{\mu},(n-4, s)\right] \rightarrow(n-2, s)$. Consequently $(n-2$, $s) \leqq Q$. This leads to the contradiction encountered in the first paragraph. Thus $\left[l^{\mu},(n-3, s)\right] \rightarrow(n-1, s)$, and the lemma is proved for C_{n}. The proof can now be completed by induction.

Definition 3. $\sigma\left(C_{n}\right)$ is the set of all hyperplanes each of which contains at least one line l of the curve C_{n}.
$\sigma\left(C_{n}\right)$ is the dual of the space $\sum\left(C_{n}\right)$.
THEOREM 3. For $n \geqq 2, \sigma\left(C_{n}\right)$ consists of all the hyperplanes which do not contain n points of C_{n}.

Proof. By Lemma 3 each member of $\sigma\left(C_{n}\right)$ contains less than n
points of C_{n}. It remains to show that every hyperplane which contains less than n points of C_{n} contains at least one line l. Let H be a hyperplane and $s_{1}, s_{2}, \cdots, s_{n}$ be the points of C_{n} contained in H, where $0 \leqq h<n$. As C_{n} is closed, $h \equiv n(\bmod 2)$. By Theorem 2 (c), for a given line l, a hyperplane H^{l} exists which contains l and exactly the points $s_{1}, s_{2}, \cdots, s_{l}$ of C_{n}. By Theorem $2(\mathrm{~b})$, a system $H(p)$ ($0 \leqq p \leqq 1$) of hyperplanes exists, continuously dependent on p, each of which contains exactly the points $s_{1}, s_{2}, \cdots, s_{n}$ of C_{n} and for which

$$
H(0)=H^{\imath}, H(1)=H
$$

By Definition 3, $H(0) \in \sigma\left(C_{n}\right)$. Assume $H \notin \sigma\left(C_{n}\right)$. By the dual of Lemma 5 (a), $\sigma\left(C_{n}\right)$ is open. Therefore a least value \bar{p} of p exists for which $H(p) \notin \sigma\left(C_{n}\right)$. Let p^{μ} be a sequence for which $p^{\mu} \rightarrow p, p^{\mu}<p$. As $H\left(p^{\mu}\right) \in \sigma\left(C_{n}\right), l^{\mu}$ exists for which $l^{\mu} \subseteq H\left(p^{\mu}\right)$. By replacing p^{μ} by an appropriate subsequence if necessary we may assume l^{μ} converges. If \bar{l} be the limit of l^{μ} then, by the dual of Lemma $5(\mathrm{~b}),(k, s)$ exists so that

$$
\bar{l} \leqq(k, s) \leqq H(\bar{p}) \quad(1 \leqq k<n-1)
$$

We may assume $(k+1, s) \notin H(\bar{p})$; for otherwise (k, s) may be replaced by an osculating space of a greater dimension so that this relation holds. Consequently s occurs exactly $(k+1)$-fold in the set $s_{1}, s_{2}, \cdots, s_{h}$, and $k+1 \leqq h \leqq n-2$. This is impossible if $h \leqq 1$ in which case $H \in \sigma\left(C_{n}\right)$. In particular this proves the theorem for $h \leqq 3$. We assume therefore $n>3$. As $k \leqq n-3$ and $\bar{l} \leqq(k, s)$, the number q of Lemma 6 may be specialized to k. It follows then from this Lemma that $\left[l^{\mu},(k, s)\right] \rightarrow$ $(k+2, s)$. Hence, as $\left[l^{\mu},(k, s)\right] \subseteq H\left(p^{\mu}\right)$, $(k+2, s) \leqq H(p)$. This contradicts the fact that $s_{1}, s_{2}, \cdots, s_{h}$ are the only points of C_{n} in $H(p)$ among which s occurs exactly $(k+1)$-fold. Therefore $H \in \sigma\left(C_{n}\right)$. Thus the theorem is established.

7. A characterization of the lines l.

Theorem 4. For $n \geqq 2$, a straight line is a line l if, and only if, every hyperplane through l contains less than n points of C_{n}.

Proof. Let m be a straight line which is not a line l. Then at least one point P exists on m which is not within n distinct ($n-1, s$). A sequence of points P^{μ} exists with $P^{\mu} \rightarrow P$ for which each P^{μ} is within less than $n(n-1, s)$. (This can be conveniently proved by induction in the dual formulation.) lf A is a point of m for which $A \neq P$ then $\left[A, P^{\mu}\right] \rightarrow m$. By the dual of Theorem 3, L^{μ} (cf. §3) exists for which $P^{\mu} \in L^{\mu}$. Now $\left[A, L^{\mu}\right]$ contains $\left[A, P^{\mu}\right]$ and also n points of C_{n} by the
definition of L^{μ}. The limit of a convergent subsequence of $\left[A, L^{\mu}\right]$ is a hyperplane which contains m together with n points of C_{n}. This proves that if every hyperplane through a straight line contains less than n points of C_{n} then every point of the straight line is within n distinct ($n-1, s$) and so must be a line l.

No hyperplane through a line l can contain n points of C_{n} by Lemma 3. Thus the proof of the theorem is complete.

References

1. D. Derry, The duality theorem for curves of order n in n-space, Canadian J. Math. 3 (1951), 159-163.
2. A. Kneser, Synthetische Untersuchungen über die Schmiegungsebenen beliebiger Raumcurven und die Realitätsverhältnisse specieller Kegelschnittsysteme, Math. Ann. 31 (1888), 505-548.
3. P. Scherk, Über differenzierbare Kurven und Bögen. Časopis pěst. Mat. Fys. 66 (1937), 165-191.
4. P. Scherk, On differentiable arcs and curves. IV. On the singular points of curves of order $n+1$ in projective n-spacs, Ann. of Math. 46 (1945), 68-82.

University of British Columbia

[^0]: Received August 25, 1952, and in revised form March 2, 1954.

