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FOURIER TRANSFORMS AND THEIR
LIPSCHITZ CLASSES

G. SampsoN AND H. Tuy

We define a class of functions A, for each a > (0. We show
that the Fourier transform of every function of A, exists and is
Lipschitz of order . We construct examples to show that the
converse is not true in general. However, we show that for a
certain class of function k (e.g., k € L) if its Fourier transform
k is Lipschitz of order o then k € A; for all 8 <a.

Boas ([1] and [2]) studied this problem in the case where the function
k is nonnegative and gave a complete solution in this case. In connec-
tion with this question several authors (e.g. Hirschman [5]; Liang Shin
Hahn (4], Drobot, Naparstek and Sampson [3]) have proved mapping
properties of convolution operators with kernel k, by studymg the
behavior of k. To be more precise, they have proved mapping theorems
when k € Lip(a) with additional conditions on k. In our applications
we prove a similar result (see §3, Theorem 4).

Notations and Definitions.

L,. shall denote the set of all Lebesgue measurable functions
integrable over all finite intervals. In this paper, the functions
f’g,k,“'ELloc-

For 0<a =1, a function f is Lipschitz of order a (f € Lip(a)) if
there is a positive constant A such that

sup |f(x +h) = f(x)| S A |n"

For o > 1, we say that a function f is Lipschitz of order a if
(@ f™e€L. for all m <[a] and

(i) f™€&Lip(a-—[a]).
When we use the symbol

b
fg(t,x)dt for —o=g<b=oo,

We are assuming that g(¢,x)€ L, as a function of ¢ for each x and
moreover the integral exists in the following sense:

©) J’g(tx)dt—IlmJ’ g (s, x)d

B—b
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We write h(x1, X3, **, X», y) = O(y*?) to mean that there exists a positive
number C independent of x, x,, -, X, y so that

Elég lh(xlsxb' 'y Xny y)'§ C,y ,a.
1=1=n

In particular, we say h (xy, X2, - - -, x,) = O (1) to mean that there exists a C
independent of x,, x,,- -, x, so that

sup |h(X, X555, %) | = C.

1=1=n

We number each section independently.
1. Sufficient conditions.

LEmMMA 1. Let a and b be numbers so that 0<a <b. Then for
each y >0

® [ efend=00e [ f6xd =00
0 y
0 -y
@ [ ierend=009e [ f6x)d =00,
. -
Proof. A similar lemma can be found in Boas’s paper [1]. Thus we

will be brief. We will prove (1); the argument for (2) is similar.
> : Let F(x,y)= fy t*f(t, x)dt, then we get
0

f "4, x)dt = F (x, 0)[2+ b f " IR, 1)

Since F(x,y)= O(y*) and also a < b then we are through.
& : Let F(x,y)=f f(t, x)dt, then we get
y

f " tof(t, x)dt = — t°F(x, £)]§ + b f " IR, )t
0 0

Since F(x,y)= O(y*™*), then we are through.

LEmMMA 2. Let h >0.
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©) If f h £(t,x)dt = O(h*), then
) J:Mf(t,x)sinthdt=0(h") for 0<a<l1
() J:/hf(t,x)(l—costh)dt=O(h"') for 0<a<2.

—1/h
We get a similar result for f(t, x)dt.

Proof. From Lemma 1 we get,

© [ f(t,X)=O(h“)<:>Jllhtf(t,x)dt=o(ha—1) or 0<a<i

1/h
) & f P x)dt = O(h™?) for 0<a <2.
0

To see this, it suffices to take y = 1/h, a = b — @ where b = 1 for (6) and
b =2 for (7).

The function ¢(t)= (th)'sinth is decreasing and nonnegative for
t€(0,1/h). By the second-mean-value theorem for integrals we get,

1/h &
f (4 ) (¢)dt = J' ff(tx)dt for some £ € (0,1/h).
0 0
Hence by hypothesis and (6) we conclude
1/h
[" fe e wa = 0= om)
0
Consequently, we have
1/h
J' £(¢, x)sin thdt = O (k).
0

The proof for (5) is similar with ¢ (t) = (th)™(1 —cos th).

DEFINITION 3. Let a be a positive number. We say that k € A, if
k € L,. and satisfies the following two conditions:
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f f()e~"dt = O(h*)  and
1/h

® "
f k(t)e~=dt = O(h*).

—a

LEmMma 4. If kEA, then the Fourier transform k(x)=
(27r)“”j k (t)e~*dt exists for all x and k € L..

Proof. Since k € L. by (8) we get that k exists for each x. It also
follows that k € L.

LEMMA 5. Let 0<a<1. Ifk €A, thenk ELipa NL..
Proof. By Lemma 4, k exists for each x and kK € L...

Now we show that K €Lipa. Let h >0,

K(x +h)= E(x) = Qm)™" f k(t)e= (e~ — 1)dt

—-1/h 1/h L
R RIRIR
—o —1/k 1/h
0 i/h
f +f =O0(h*) by Lemma 2.
-1/h 0

By hypothesis we get,

E’HLZ = O(h").

Therefore, k(x + h)— k(x)= O(h®).

We are going to show that the above lemma can be extended to
a >1and a € N* (N': set of positive integers). For a € N* we will give
another sufficient condition. We are able also to give a sufficient
condition on k so that k is differentiable.

LemmA 6. If k satisfies

<o for each x, then

©) ' fo "tk (t)edt

1 e—lrh — 1

h
lim | k(e ™
h—0* Jo

dt = —i f ) tk (t)e "™dt for each x.
0
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For the negative side we get a similar result.

Proof. 1t suffices to show

(10) lim f th(t)e= S0 gy f "t (t)edt
0

and

(1) fim f tk (£)e ™ t°h°“h dt =0.

Let € >0 be given and let x be such that (9) is true. Here, we keep
x fixed throughout the entire argument.

From (9), we conclude that there exists an N >0 and 0< h,<1/N
such that for all h satisfying 0 <h <h,

(12)

i/h
f tk (t)e ">dt ‘ <e

N

Since the function (1 — cos th) (th)™" is monotonic and nonnegative in
(N, 1/h) there exists a ¢ € (N,1/h) so that

(13) l f th (r)e= <82 =1 ) ' f tk(t)e""‘dtl
It follows from (12) and (13) that
(14) | f tk(t)e™ LI 2 th dtl<e.

On the other hand, since tk(t) € L,,, by the Lebesque dominated
convergence theorem (for N fixed),

N —_
lim | tk(t)e™ costh—1 dt =0.
h—0" 0 th
Thus we get (11).
Now to show (10).
From (9), there exists N, such that for all N

(15) N>N,> ‘ J; "tk (t)e=ds — L "tk (e ™dt | <
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Since (sinth)(th)™ is nonnegative and monotonic in (N, 1/h), then
by a similar argument, there exists a fixed N > N,, h, and h, < (1/N) such
that

1/h .
(16) l f tk(t)e""‘-SIt—I;lth dt l <e forall 0<h<h,
N
N : N
(17) l f t(t)e S0 gy f th(t)edt | < e
0 0

for all h satisfying 0<h <h,.

From (15), (16) and (17) we conclude that

® 1/h 4
! f tk(t)e"‘dt—f e (t)e= S 4 ' <3e
0 0 th
for all h satisfying 0<h < min (ho, h,).
Therefore we get (10) and we are through.

THEOREM 7. Leta>1,m <aandm €N'. Ifk € A, then kism
times differentiable at each x and k™ € L.. In fact

R™(x) = @y *(— i) f £k (t)e " db.

Proof. By Lemma 1,
» t/h
(18) j k(e™dt = O(h*) > f t=rk (t)e=dt = O(h™).
1/h 4
Hence by Lemma 1 again, for all m <a

(19) j T imk()edt = O (k).

/h
Thus t"k(t) € Ap-m

It follows from Lemma 4 that

20) £.(x) = @)~ iy f £k (t)e " de

©
—o0

exists for each x and f, € L..
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To prove the theorem, we first show that k'(x) exists for each x.
Since k € A,, by Lemma 4 k exists and we have,

k(x + h)—k(x)
h

-1,

=@y {[ ke -na+ [+ [T+ [0

—o —1/h

~1/h

Since k € A, (a >1) by (8) we have lim, o h ™" (jm + f
1k

—o

) —0. By(19)

and Lemma 6 with m =1, it follows that k'(x) = f,(x).
The theorem is then true for m =1. Now we suppose that the
theorem is true up to m — 1, i.e. K™ (x) = f,_,(x).

k™ x +h)— k") _ (-1 BETh) = 2(x)
A h

where g(t) = t™ 'k (t).
Since @ — m +1>1, the above argument starting with (19) can be
applied to g(¢) and we get,

" tg(t)e=dr.

lim ﬁx + h)_g(x)= _ i(z,n.)—llZJ’

hs0* h
Thus K™(x) = f,(x).
THEOREM 8. Let a >0 and a & N*.
If k € A, then k €ELipa N L..
Proof. For 0 < a <1, this is Lemma 5.
Now look at the case where @ >1. By Lemma 4, k exists for each x

and k € L.. Due to Theorem 7 we can conclude that for all m = [«],
k™ exists and k™ € L.. Moreover

(1) kED(x) = (= iyIQRm )" f ek (t)e=dt.
From (19) we get

[t (tye=ds = O (et

/h
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Hence t"lk(t) € A,(o. 1t follows from Lemma 5 that
N
tlk (t) € Lip (a — [a]).

Hence by (21) we get our result.

THEOREM 9. Let a €N*. If k € L,,. and satisfies

22) f "tk (= 1)e™=dt = O(1)
and
23) f k(% 1)e™=dt = o (h")

then k ELipa N L.
Proof. First assume o =1. By (23), k € A,. By Lemma 4, k

exists for each x and kK € L.. In (23) we are using the little ““*”
notation. We note

24) k(x + hhl— k(x)_ Q)" h {j_:/h-{- J:/:; + L; }

Hence by Lemma 6 and (23) we get

B'(x)= —iQm)™ J' the (1)e = dt

From (22) we conclude that K is absolutely continuous. Hence k €
Lip (1).

For the case @ >1, we use induction. The argument is similar to
that given in Theorem 7 and will be omitted here.

2. Necessary conditions. We know that for each o (0=
a < 1) there exists a function g such that § €Lip(a) but g& A,. We
give this example in §4. However, we have succeeded in showing that
k € Lip (a) implies k € A, for all B <a with some other conditions
placed on k. One of the conditions that kK must satisfy is the following:

) f n k(w)e™dw = iQ2ar)™ f k(2x + o K@ +1) gungy,
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Condition (1) is merely Parseval’s identity, however we have only been
able to show (1) holds for a certain class of functions. This result
appears in Lemma 3. In the case where k €L, (1=p=2) and Kk is
continuous, we can show (1) holds (the argument is similar to that given
in Lemma 3).

Another condition that appears is,

DEeFINITION 1. Let € 20. We say that f € V, if there exists some
constant A such that

(2) -[,.XIEA ,f(2x+t)_f(x+t)ldx=0(1)'

|x |1—£

It is obvious that if f€ L, then fE€ V, for € <1/p. Furthermore, all
constant functions belong to V, for all e 0.

THEOREM 2. If some 0<e<1, k €ELipa NV, 0<a=1)and k
satisfies (1) then k € A, for all 0< B <a.

CoROLLARY. Let k €L, for some 1<p=2. If k € Lip (a), then
k€A, forall 0<B<a.

REMARK. In the above corollary k is defined as usual in the L,

sense (l/p+1/gq=1). We note that for O<n=v=2n
v 22n v

f k(w)e "™dw =f + - -+f where 1/2 = ¢ = 1. Next we note that a

n

formula similar to (1) holds for the term
f k(w)e "™dw, 12=c=1.

And now the Corollary follows.
Proof of Theorem 2. Let

kK@x+1t)—k(x +1)
p .

e(x,t)=

From (1) it follows for v >1 (note k € L,,.)

Q) o m
=<I ’”"+I"’" +f u)(‘P("J)"P(X+7T/v,t))e"”‘dx.

= —2m/v wl

For the middle term on the right hand side of (3) we note that there is
some constant C such that,

le(x,)|=C|x|*" and |o(x+(m/v))|=C|x+ (x/v)[*"
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It follows that

) [T - ow™.

—27/v

For the remaining terms we write,

k@x+t)—k(x + t))

) (p(x,t)—qo(x+7r/v,t)=¢(x,v,t)+1r/v< *(x + /o)

where

W, v, 1= KDk "(i":(ﬁf;{,’)”” £)+E(x + (m/o)+ 1)

To complete our argument we need to show that

(J"’"/v+ j“v > Y(x,v,t)e”dx =0 ) VB <a.

—® )

The second term on the right hand side of (5) can be handled in a
—2m/v

straightforward manner. We will give the argument for J’ Ye™dx ;

—c0

the proof for f Ye™dx is similar. First let u =a/e and s=
wfv

- v*. We get

(6) , f:m YU(x,v,t)e " dx , = (f_: + j;—zm) [¢(x,v,t)|dx.

Since k € Lipa we have
[ (x, v,0)| = Co™ |x + (m /o)
for some constant C independent of x, v, and . It follows that

—27/v =27/v
@ [Teaniasco [ s = 0w ) Ve <a

For the other term we have,

. [ _|k@x+1t)—k(x +1)|
L l¢(x,v,t)|dx=f_m %+ (/o) [x + (@) &

+J»s |k@x + Qam/v)+ )= k(x +(m/v)+1)]
. [x + (m/o)[~ [x + (= /o)

dx.
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Since kK € V., by the second mean value theorem for integrals we

conclude that
® [ weunla=o0@.

Hence the proof is complete.

LemMmA 3. If k is a real valued function such that:

A

9) k is continuous at t,
b
(10) J k(w)e~dw = O(1)}' and
11) f %ﬂ du <o for some A >0.
lulzA

Then

jv k(W)e_"de=i(27T)_1/zlim k(2x+t)"‘k(x+t)
v/2

e—0" Jix|ze X

e'™dx.
Proof. From (10) it follows that,

(12) f: k(w)dw = O(1) and k€EL..

We will assume v >0, the proof for v <0 is similar. Let Ps;(u)=
8/(8*+ u®) which is the well-known Poisson kernel. We begin by

showing that
(13) f " k(u)e~"du = lim 1/m f e f "k (u)Ps(w — u)dudw.
v/2 50" v/2 —®

Using (12) we note that

v v/4 0
lim e™ (f +f >k(u)P8(w—u)dudw =0.
12 — 2v

80" Jyu

Hence since k € L,,. we get

! Refer to page 2 with g(u,a,b)= O(1).
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v

2v
lim e"""f k(u)Ps(w — u)dudw
v/4

50" Jop2
2v v
= lim 1/77[ k(u)f e "™ P;(w — u)dwdu.
50" v/4 v/2

Now (13) follows immediately.
By (10) and the second mean value theorem for integrals we get

(14) f T etk (u)edu = 2Qm) ™" J' k ()P (w — u)du.

From (13) and (14) and using the fact that k € L. we get

(15)1u k(w)e™dw = lim (217)"”[0 e“""fm e ®“k (u)e ™ dudw
v/2 80" v/2 —o

80"

= lim (L_”g + j,..-q;e ) ek (u)p(u —t,v)du

where p(u, v) = Qa) "*(iu)'(e™ — e™"?).
We note that there exists some constant C independent of § and €
such that

(16) f e k(u)p(u—1tv)du | = Ce.
lu—t]=se
By (11) we can conclude that,
lim ' e ku)p(u—t v)du =f k(u)p(u —t v)du.
60" Jju~tfze fu—tize

After substitution we have,

17) iJ',u_”gE k(u)p(u —t,v)du

A

- @m) " {f k(x+t)—k(2x+t)ew,dx_j k52x+t!e,.,,,dx}.
Ix|ze €2=|x|se

X X

We have,

j k52x+t!e""dx;,
eR=|x|se

X

e25|x|=e X l
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Since k € L. and k is continuous at t,

(18) lim @ e dy = 0.
0" €/25|x|<e

The conclusion follows from (15), (16), (17) and (18).

3. Applications.

1. Mk(t)=e""/(t|"+1) where a(a—1)#0and b+a/2-1>0,
then k € Lip(b + a/2—1). This follows immediately from Theorem 8
of §1, and van der Corput’s Lemma (see [6]).

2. We adopt the following definitions:

DEeriNITION 1. We say that k € L2 if for all fE L7 (set of L.
functions with compact support)

[ ket =c|ire
where C is independent of f.

DErFINITION 2. We say that kK € L} if for all f€ Lj, there is a
constant C such that

(e

Here, C is independent of f and y.

J: k(x0)f (x t)dt I >y} léy—c;”f"g, for all y>0.

2s
Lemma 3. (Jurkat and Sampson). If k €EL% and I |k(t)|dt =

0(1) for all s, then f " k(e=dt = O(1).

Proof. Let f be the characteristic function of [0,2b] with b >
0. For all u €[0,b] we have, for fixed x,

) L " f(u + Ok (f)e=dt = ( L g L w") k(t)e~d.

But

2b—u .
f k(£)e-dt

b

f’|k(:)|d:’=M.

=sup
SER
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Therefore if

b
f k(t)e ™dt l =2M the proof is over. Now suppose that
0

b
' f k(t)e ™dt ' >2M. In this case, from (1) it follows that
0

fu

Since k € L3, there exists some constant C independent of x and b such

that
{ u:

@

“=tf(u + £)dt ( >% l Lb k(t)e™™dt l} ,3 b.

Lmkayﬂmﬂﬂu+g,>%|ﬁfkoyﬂuq},
3

U k(t)e‘“'d,, f | f(t)[dt.

b, —
From (2) and (3) it follows that f k(t)e™dt | =V C where C is
0

independent of b and x. A similar argument works for b <0 and hence
we get our result.

THEOREM 4. If k is real-valued and satisfies the following condi-
tions:

@ [“Ikoia= 0

(5) k ELipa for some 0<a<1
©6) |x PE(x)=O() forsome A >0, and
) keL?.

Then k EL5 for 1<p <,

b
Proof. By Lemma 3, (4) and (7) imply that f k(t)e ™dt = O(1). By

Lemma 3 in §2 we can conclude that (1) in §2 holds. Furthermore (6)
implies that k € V, for some € >0. Hence due to Theorem 2 in §2,
k € A, VB <a. The conclusion follows from [3, Theorem 1.17].
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4. Examples.

LEmMmA 1. Let I, m, a and b be given numbers. Set M =
max (|!|,|m|), L=min(|!|,|m]|) and V =max(a|,|b]|). Then,

b s
(1) J’ sin lu Zos mu . l - 0(1)
* sin lye™™
@ f —-——du’=0(1)
b u
3) if M and V are sufficiently large,
bsinlu _,. _
= ¢ du|=0O(ogV+L).
d
Proof. We get (1) since f sin u/udu | = A where A is a positive

constant independent of ¢ and d; also, (2) follows immediately from
(1). For (3) it suffices to dominate

@ :

bsinlu .
, Sin mudu

a

Since the expression (4) is even and symmetric in ! and m we can assume
w.lo.g. that 0<I=m. Furthermore, we can assume that 0=a <b
since the integrand is an odd function in u. Thus

®) fSi‘;’”sinmudu =l if 0sa<b<l,
©) f: = f +U1b <l+logh if 0<a=1<b,
and

@) f: <logh if 1<a<b.

Hence we get our result.

HEOREM 2. For each 0<a <1 there exists a function g €L,
T 2. F h 0 1 th ] i L
(1=p <) such that § ELipa but g& A..
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Proof. It suffices to show that there exists a g €L, such that
g € Lip(a) and for some sequences {h,}— 0, {x,}, and {B,}— = then

©®)

2/h,,
h;"f g(t)e™dt l >B, for |x-x,|=1/a,
1/hn

Consider

g()= i sin(m(t —cn)) 0

“om T ai(t - cy) Xlemon]
where vy is a fixed positive integer =3 and y Z(1—-a)™'. Also,
a, =2", b, =2a, and c, =3/2a,
)

and x; is the characteristic function of I.

To show that g(x) exists for each x ER, it suffices to show that
4 e Ll.

r HOEEDS m"’a;“fbml_fifliﬂt‘_%)ll dt
. > am

[t —cn|
522 1+log_1grrtam!<w.
mo1 m'an

Now we are going to show that § ELipa for y=(1-a)™.
Given h such that 2|k |<1, there exists an m so that,

(10) Yan<|h|=1/a,
m-—1 by o3 —
gx+h)—g(x)= >, l“’a,“'j —J——)S‘“t’_’c 1) g (g~ — 1)dt,
=1 ai 1
by o1 —_—
+ m1~7a-';laf Sin 'tn_(tc Cm) e—itx (e—uh - 1)dt
® b o3 —
(11) +( 2 ll—val—af Slntl(_tc C,) e—u(x+h)dt
I=m+1 ar 1
kil b ¢y —
_ 2 Jirg e sin /(¢ C'!e"“dt)
l=m+1 a t— G
= I] + Iz + I3.

We are going to show that each term on the right hand side of (11) is
O(h*) for y = (1 - a) ' separately.
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After substituting u =t — ¢, by (2) and (10) I, = O (h"°).
Since 0 < h <1/a.,., by the second mean value theorem for integrals
there exists & (a; < § < b)) such that

b sin I(t — ¢
& t—¢

llll<2 Smb’ ) gy |

1" as

After substitution u =t — ¢, by (3), (9) and (10) it follows
m=—1
|L/he|= C D, (ah) " "(loga, +1)= O(1).
=1

It remains to show I,= O(h*). By (2) we have,
(12) L/h* = O((ha,) m'™)=0(1)
if (ha,) " m"™ =1.

Since e™ —1=(costh —1)+isinth, by the second mean value
theorem for integrals and (3) we get

13) L/h® = O(m(a.h) )= O(l), if m(a.h)= =1.

Hence by (12) and (13) we conclude that L= O(h®) if y=Z(1—-a)™.
Now we are going to show that there exist some sequences {h,}— 0,
{x.}, and {B,}— = such that

1 (%™
X j g(t)e™dt l >B, for [x-—x.|=1/a.
n J1/hn

Consider h,, = 1/c,, and x, = m.

2/,

hae | g(t)e™dt = I+ 1,
1/hm

where
ie** 2am sinmv .
Ji= - ——— sin xvdv,
h min Am Jo
and
e 2em gin mo
Jo= T o 71 ——= cos xvdv.
h mm Am Jo
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From (1) of Lemma 1 we can conclude that J,= O(1). Hence it
suffices to show that |Jy(x)[=m /2 if |x — x. | = 1/a,.

= G mer | [+

It is clear that (y = 3)

m

= 0(1).

sinmov .
—— sin xvdv
0 (]

On the other hand,

Y sinmo
2mt j =, sin xvdv
1

lam _
-m HJ’ (cos (rr; x)v 4 cos (mv+ x)v) do.
1

We can easily see that for these x’s,

ml_,J'l“'" osgmv+xzv dv = 0(1).
1

For the remaining term we note that cosu =1—u?2. Therefore
for x satisfying |x — m|=1/a,,

m

Izam M dv|= m"’fzam (%—(m —x)zv> dv.
1 1

w22
= m (log am/z-w>.

8

Since (m —x)’a’.=1 we conclude that for m sufficiently large
The proof is then complete.
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