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FOURIER TRANSFORMS AND THEIR
LIPSCHITZ CLASSES

G. SAMPSON AND H. T U Y

We define a class of functions Aa for each a > 0. We show
that the Fourier transform of every function of Aa exists and is
Lipschitz of order a. We construct examples to show that the
converse is not true in general. However, we show that for a
certain class of function k (e.g., fc E L2) if its Fourier transform
fc is Lipschitz of order a then k E Ap for all j3 < a.

Boas ([1] and [2]) studied this problem in the case where the function
k is nonnegative and gave a complete solution in this case. In connec-
tion with this question several authors (e.g. Hirschman [5]; Liang Shin
Hahn [4], Drobot, Naparstek and Sampson [3]) have proved mapping
properties of convolution operators with kernel fc, by studying the
behavior of fc. To be more precise, they have proved mapping theorems
when fc E Lip(a) with additional conditions on fc. In our applications
we prove a similar result (see §3, Theorem 4).

Notations and Definitions.
L,oc shall denote the set of all Lebesgue measurable functions

integrable over all finite intervals. In this paper, the functions
/, g, fc, • • • E Lloc.

For 0 < a ^ 1, a function / is Lipschitz of order a (f E Lip(a)) if
there is a positive constant A such that

For a > 1, we say that a function / is Lipschitz of order a if
(i) /(m) E U for all m <[a] and
(ii) fM>eUp(a-[a] ) .
When we use the symbol

g(t,x)dt for - o o ^ a < fc ̂ o°.

We are assuming that g(t,x)ELloc as a function of t for each x and
moreover the integral exists in the following sense:

(0) f g(t,x)dt = lim (' g(t,x)dt.
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520 G. SAMPSON AND H. TUY

We write h (xu x2, • • •, xn, y) = O(ya) to mean that there exists a positive
number C independent of xu x2, • • •, *„, y so that

sup
x.ER

In particular, we say h (xu x2,'
m',xn)=O(l) to mean that there exists a C

independent of Xi, JC2, • • •, Jcn so that

sup |fc(jci,x2, '-,xn)\^C.

We number each section independently.

1. Sufficient conditions.

LEMMA 1. Let a and b be numbers so that 0 < a < b. Then for
each y > 0

(1) I* tbf(t,x)dt = O(ya)& I" f(t,
Jo Jy

(2)

/. A similar lemma can be found in Boas's paper [1]. Thus we
will be brief. We will prove (1); the argument for (2) is similar.

[y

^ : Let F(x,y)= tbf(t,x)dt, then we get
Jo

f" f(t,x)dt = r"F(x, t)\-+b f" r'-'Fix, t)dt.
h Jy

Since F(JC, y ) = O{ya) and also a < b then we are through.

<= : Let F(jc,y)= | f(t,x)dt, then we get
Jy

!" t"f(t,x)dt = - t"F(x, t)\l + b[ tb-'F{x, t)dt.
Jo Jo

Since F(x, y)= O(ya~b), then we are through.

LEMMA 2. Let h>0.
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(3) If P f(t,x)dt = O(ha),then
Jl/h

J 'l/h

f(t,x)sinthdt = O(ha) for 0<a<l
0

f(t,x)(l-costh)dt = O(ha) for 0<a<2.
0

r-Vh
We get a similar result for f(t,x)dt.

Proof From Lemma 1 we get,

r» ri/h
(6) f(t,x)=O(ha)€> tf(t,x)dt = O(ha~1) for 0 < a < l .

Jl/h Jo

t2

0

2) for 0 < a < 2 .

To see this, it suffices to take y = 1/h, a = b - a where b = 1 for (6) and
b = 2 for (7).

The function <p(t) = (th)'1 sinth is decreasing and nonnegative for
t E (0, I/ft). By the second-mean-value theorem for integrals we get,

ri/h ft
tf(t, x )(p (t)dt = tf(t, x )dt for some £ e (0,1/h).

Jo Jo

Hence by hypothesis and (6) we conclude

tf(t,xMt)dt = o(€1

0

Consequently, we have

f(t,x)sinthdt =

0

The proof for (5) is similar with <p(t) = (th)~2(l - cos th).

DEFINITION 3. Let a be a positive number. We say that k E Aa if
k E Lloc and satisfies the following two conditions:
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(8)

r f(t)e-adt = O(ha) and
Jl/h

r-i/h

k(t)e-ltxdt = O(ha).
J — 00

LEMMA 4. If k £ Aa then the Fourier transform k{x) =

(2irym f k(t)e-ltxdt exists for all x and k E L,.
J-00

Proof. Since k E Lioc by (8) we get that k exists for each JC. It also
follows that k E LM.

LEMMA 5. Let 0 < a < 1. If k EAa then k E Lip a n Loo.

Proof. By Lemma 4, fc exists for each JC and k ELLX.

Now we show that fc E Lip a. Let h > 0,

fc(x + ft)- fc(x) = (2TT)-1/2 T

O
'-ilh ri/h fee ^

+ +

- o o J-l/h Jl/h)

ro ri/h

+ =O(fta) by Lemma 2.
J-1//I JO

By hypothesis we get,

r-i/h fee

+ =
J-oo Jl/h

Therefore, fc(x + ft)- k(x)= O{ha).
We are going to show that the above lemma can be extended to

a > 1 and a & N+ (N+: set of positive integers). For a E N+ we will give
another sufficient condition. We are able also to give a sufficient
condition on fc so that fc is differentiable.

LEMMA 6. If fc satisfies

(9) tk(t)e-'"dt /or eacft x, fften

fi/h e~lth-~\ f00

lim k(t)e ~itx , <fc = - i
h->0+ Jo ^ Jo

f e\ f
lim k(t)e ~itx , <fc = - i ffc ( 0 * "irx^ M eacft x.
h->0+ J J
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For the negative side we get a similar result.

Proof. It suffices to show

(10)

and

im fm tk{t)e-ltx^^dt = T tk(t)
-+0+ Jo til Jo

lim
h-+0+

e~ltxdt

f1 / h

lim
h-»o+ Jo

Let e > 0 be given and let x be such that (9) is true. Here, we keep
x fixed throughout the entire argument.

From (9), we conclude that there exists an N > 0 and 0 < h0 < 1/N
such that for all h satisfying 0 < h < h0

(12) I jVH tk(t)e"ttdt

Since the function (1 - cos th)(th) 1 is monotonic and nonnegative in
(N, l//t) there exists a £ G (JV, 1/h) so that

(13)
JN

tk(t)e
_itx cos th - 1

th

ri/h
tk(t)e~ltxdt

It follows from (12) and (13) that

(14) f
JN

cos th - 1
th dt <€.

On the other hand, since tk(t)ELloc, by the Lebesque dominated
convergence theorem (for N fixed),

lim
h-*0+ f

Thus we get (11).
Now to show (10).
From (9), there exists

(15) N>N /;

tk(t)e-itt

No such

tk(t)e-*

cos th —
th

that for

fN
'dt~

Jo

1

allN

tk(t)e~ilxdt
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Since (sin th)(th) 1 is nonnegative and monotonic in (N,l/h), then
by a similar argument, there exists a fixed N > No, h0 and hi < (1/N) such
that

(16)

(17)

_,tt sin th
' th dt <e for all 0 < h < h0

Jo
dt - fN tk(t)e~ltxdt

Jo
< e

for all h satisfying 0 < h <hx.

From (15), (16) and (17) we conclude that

r tk(t)eltxdt- [l

Jo Jo
< 3 e

for all h satisfying 0 < h < min (h0, hi).

Therefore we get (10) and we are through.

THEOREM 7. Let a > 1, m < a and m E N+. If k E:Aa then k is m
times differentiate at each x and fc(m)E Lx. In fact

k(m)(x)= (2TT)-1 / 2(- i)" T tmk(t)e-ltxdt.

Proof. By Lemma 1,

(18) k(t)e-udt = O(ha) >̂ ta+lk(t)e-"*dt =
Jl/h Jo

Hence by Lemma 1 again, for all m < a

(19) I" tmk(t)e-ltxdt =
Jl/h

Thus rfc(0GAa-m.

It follows from Lemma 4 that

(20) tmk(t)e-'*dt

exists for each JC and /m €E LM.
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To prove the theorem, we first show that k'{x) exists for each x.
Since fc E Aa, by Lemma 4 fc exists and we have,

h)-k(x)
h

r r-i/h ro rvh r» -\
= (2^)-^-' k(t)e-«(e-"-l)dt+\ +\ + .

U-» J-Vh JO Jl/h J

Since k G Aa(a > 1) by (8) we have l im^h" x (I + J ) = 0. By (19)

and Lemma 6 with m = 1, it follows that k'{x) = /i(x).
The theorem is then true for m = 1. Now we suppose that the

theorem is true up to m - 1 , i.e. fc(m~1)(^) = /m-i(^)-

where g(t)= tm-lk(t).
Since a - m + 1 > 1, the above argument starting with (19) can be

applied to g(t) and we get,

l i m g(x + M - s ( x ) = _ . inr t(t)e-,dL

h-*o+ n J_oo

Thus £<*>(*) = /m(x).

THEOREM 8. Let a > 0 and a £ N+.

If k E Aa then fc G Lip a n LM.

Proof. For 0 < a < 1, this is Lemma 5.
Now look at the case where a > 1. By Lemma 4, k exists for each x

and k E L^. Due to Theorem 7 we can conclude that for all m %. [a],
k(m) exists and k(m)ELoo. Moreover

(21) fc([al)(x) = ( - 0Ial(2?r)-1/2 I" t[«]k(t)e-itxdt.
J-00

From (19) we get

Jl/h
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Hence t[a]k(t)E Aa-[a]. It follows from Lemma 5 that

t[a]k(t)G Lip (a-[a]).

Hence by (21) we get our result.

THEOREM 9. Let a G N+. If k G Lloc and satisfies

(22) I" tak(±t)e*ltxdt = O(l)
Jo

and

(23) T k(±t)e*ltxdt = o(ha)
Jl/h

then k G Lip a D £«,.

Proof. First assume a = 1. By (23), k G Ai. By Lemma 4, fc
exists for each x and k G L*,. In (23) we are using the little "°"
notation. We note

(24) ffc + M-f(») _ p . ^ -, f f-» + f"' + f" }.
n ij-oo j-i/h Ji/h J

Hence by Lemma 6 and (23) we get

k'(x)= -i{2ir)-m T tk(t)e-ltxdt.
J-00

From (22) we conclude that k is absolutely continuous. Hence k G
Lip (1).

For the case a > 1, we use induction. The argument is similar to
that given in Theorem 7 and will be omitted here.

2. Necessary conditions. We know that for each a ( 0 ^
a < 1) there exists a function g such that g G Lip (a) but gg: Aa. We
give this example in §4. However, we have succeeded in showing that
k GLip(a) implies k G Ap for all p <a with some other conditions
placed on k. One of the conditions that k must satisfy is the following:

(1) fc(w)e dw = I(2TT)
 m

Jv/2 J-QO

k(2x + t)- k(x
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Condition (1) is merely Parseval's identity, however we have only been
able to show (1) holds for a certain class of functions. This result
appears in Lemma 3. In the case where k E.LP ( l ^ p ^ 2 ) and k is
continuous, we can show (1) holds (the argument is similar to that given
in Lemma 3).

Another condition that appears is,

DEFINITION 1. Let e ^ 6. We say that / E V€ if there exists some
constant A such that

(2) f
Jlxl \X I

It is obvious that if / G Lp then / G V£ for e < 1/p. Furthermore, all
constant functions belong to Ve for all e S 0.

THEOREM 2. If some 0 < e < 1, fc G Lip a n Ve ( 0 < a i l ) and k
satisfies (1) tfien IcGA^ /or a// 0 < j8 < a.

COROLLARY. Let k E.LP for some 1 < p ^ 2. If k G Lip (a) , tfien
/ c6A^ /or all 0 < /3 < a.

REMARK. In the above corollary k is defined as usual in the Lq

sense (Up + 1/q = 1). We note that for 0 < n ^ t> ̂  Tn

I k(w)e~ltwdw = + • • • + I where 1/2 ^ c ^ 1. Next we note that a
J n J n J cv

formula similar to (1) holds for the term

k(w)e~ltwdw, 1/2^ c ^ 1 .

And now the Corollary follows.

Proof of Theorem 2. Let

fc(2x + t)- k(x + t)
<p (*> 0 = x

From (1) it follows for v > 1 (note k G Lloc)

2 T k(w)e"irwdw
Jv/2(3)

[
J-2n/v Jir/v

For the middle term on the right hand side of (3) we note that there is
some constant C such that,

and
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It follows that

(4) r° =o(ir«).
J-2ir/v

For the remaining terms we write,

(5) <p(x, t)-<p{x + ir/v, t) = i/K*, v, t)+ir/v

where

, k(2x 4-1)- k(x + t)-£(2x + (2TT/P)+ 0 + k(x + (TT/V)+ t)
' U " x+(n/v)

To complete our argument we need to show that

( f 2 7 r U + f ) ̂ (jCjv'̂ eWXdx = ° ( u ^ ) V i 8 < a -
The second term on the right hand side of (5) can be handled in a

r -lirlv
straightforward manner. We will give the argument for if/e ivxdx;

J-00
/•oo

the proof for ij/ewxdx is similar. First let fi=a/e and s =
Jir/v

- uM. We get

(6)

Since k E Lip a we have

, v, t)\ dx.

-2ir/v

for some constant C independent of x, v, and t. It follows that

(7)

For the other term we have,

, M ^ P |fe(2;c + 0fe(jc + r)| ,
, t>, t)\dx ^ i i ) / Mi-e i i / / M « dx
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Since k E Ve by the second mean value theorem for integrals we
conclude that

(8)

Hence the proof is complete.

LEMMA 3. If k is a real valued function such that:

(9) k is continuous at t,

(10) fb k (w )e ~mwdw = O (I)1 and
J a

(11) _LJ du<<*> for some A>0.

Then

I fc(w)e~irwdw = i(2?r)~1/2 lim —̂  ^ ^ ewxdx.
Jv/2 €->0+ J|x|^e X

Proof. From (10) it follows that,

(12) [ * k (w )dw = O (1) and k G L ,
J a

We will assume u > 0 , the proof for v<0 is similar. Let P8(u) =
5/(52+u2) which is the well-known Poisson kernel. We begin by
showing that

(13) T k(u)e-ltudu = lim 1/TT P e""" f" k(u)P8(w - u)dudw.
Jv/2 S-»0+ Jv/2 J-oo

Using (12) we note that

lim f" eltw(\Vl\ r)k(u)P8(w-u)dudw = 0.
S-»-0+ Ju/2 \ J - « J2u /

Hence since k E Lloc we get

1 Refer to page 2 with g(u,a,b)= O(l).
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lim
8->0
im r e-ltw[2V k(u)Ps(w - u)dudw
->0+ Jv/2 Ju/4

- lim 1/ir f " k(u) f" e-"Pa(w - u)dwdu.
8-*0+ Ju/4 Jv/2

Now (13) follows immediately.

By (10) and the second mean value theorem for integrals we get

(14) P e-slulk(u)elwudu = 2(2TT)"1/2 f" fe(w)P6(w - u)du.

From (13) and (14) and using the fact that k G L« we get

(15) T k(w)eirwdw = lim (2TT)"1/2 f° e"irw f" e~slulk(u)elwududw
Jv/2 S->0+ Ju/2 J-oo

= lim f f + f
S-»0+ \J|u-r|=i€ J|u-r|&e

where p(u, v) = (27r)-1/2(iu)-1(eIUU - e'"u/2).
We note that there exists some constant C independent of 8 and e

such that

(16) f e-sM(((u)p(u-t,v)du
J\u-i\St

By (11) we can conclude that,

lim f e~SMk(u)p(u-t,v)du = \ k(u)p(u - t,v)du.

After substitution we have,

(17) if k(u)p(u-t,v)du

t)-k(2x
Je/2£|x|Se X J

We have,

k(2x + t)
e'vxdx<

Je/2^|x|^£



FOURIER TRANSFORMS AND THEIR LIPSCHITZ CLASSES

Since fc£L. and k is continuous at t,

k(2x + t)

531

(18) lim e""dx=0.

The conclusion follows from (15), (16), (17) and (18).

3. Applications.
\ If fc(f) = ei|r|7(|*|6 + l) where a ( a - l ) ^ 0 and fc + a / 2 - l > 0 ,

then fc ELip(fe + a / 2 - 1). This follows immediately from Theorem 8
of §1, and van der Corput's Lemma (see [6]).

2. We adopt the following definitions:

DEFINITION 1. We say that fceL£ if for all / E L o (set of Lx

functions with compact support)

where C is independent of /.

DEFINITION 2. We say that fc ELf if for all / E L o , there is a
constant C such that

] \ ^ forall y >0.

Here, C is independent of / and y.

LEMMA 3. (Jurkat and Sampson). If kEL$ and \k(t)\dt =
is

O(l) for all s, then i" k{t)e~iadt = O(l).
J a

Proof. Let / be the characteristic function of [0,2fe] with b>
0. For all M E [0, ft] we have, for fixed JC,

(1)

But

f(u + t)k(t)e~itxdt =

f sup
sER

f2
Js

| fc (01 <fr = M.
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Therefore if

k(t)e~lxtdt

k(t)e~lxtdt ^ 2M the proof is over. Now suppose that

>2M. In this case, from (1) it follows that

(2) k(t)e-"f(u + t)dt fc(Oe-"<&|}

Since k E L *, there exists some constant C independent of x and b such
that

>\

(3)

(" k(t)e-""dt
Jo

Jo

b.

^ V C where C iisFrom (2) and (3) it follows that I k(t)e~lxtdt

independent of b and x. A similar argument works for b < 0 and hence
we get our result,

THEOREM 4. If k is real-valued and satisfies the following condi-
tions :

(4)

(5)

(6)

(7)

k E Lip a for some 0 < a < 1

|x|Afc(x)=O(l) for some A >0 , and

kEL*2.

Then k ELp
pfor K p < o o .

Proof By Lemma 3, (4) and (7) imply that J k (t)e '^dt = O (1). By
Ja

Lemma 3 in §2 we can conclude that (1) in §2 holds. Furthermore (6)
implies that fc E Ve for some e > 0. Hence due to Theorem 2 in §2,
kGAp Vj8 < a. The conclusion follows from [3, Theorem 1.17].



FOURIER TRANSFORMS AND THEIR UPSCHITZ CLASSES 533

4. Examples.

LEMMA 1. Let I, m, a and b be given numbers. Set M =
max (| /1, | m |), L = min (| /1, | m |) and V = max (| a |, | b |). Then,

(1)

(2)

(3)

b sin/u cos ma
u

due'

du

r ^^—du
J-b M

if M and V are sufficiently large,

= O(logV + L).r sin

We get (1) since sin u
Jc

/udu ^ A where A is a positive

constant independent of c and d\ also, (2) follows immediately from
(1). For (3) it suffices to dominate

(4)
b sin lu . ,sin muduIJa "

Since the expression (4) is even and symmetric in I and m we can assume
w.l.o.g. that 0 < / ^ m. Furthermore, we can assume that 0 ̂  a < b
since the integrand is an odd function in u. Thus

(5)

(6)

and

(7)

Ja

sin lu
u sin mudu ^l if 0 ^

^ / + log b if O^a^

Ja
^ log fc if 1< a < b.

Hence we get our result.

THEOREM 2. For each 0 < a < 1 fftere existe a function g E Lp

(1 ̂  p < oo) sucft tftaf g G Lip a but gf£Aa.
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Proof. It suffices to show that there exists a g E Lp such that
g ELip(a) and for some sequences {&„}—»0, {xn}, and {2?n}-»o° then

(8)

Consider

f2/hn

g(t)e-«dt
Jllkn

>Bn for

sin(m(t-cm))

where y is a fixed positive integer S 3 and 7 ^ (1 — a)"1. Also,

am = 2m\ bm = 2am and cm = 3/2am

and Xi is t n e characteristic function of I.

To show that g(x) exists for each x £ R , it suffices to show that

(9)

f \g(t)\dt^±m^a
J-<*> m = 1

1°8(mfl»)

Now we are going to show that g G Lip a for y ^ (1 - a)"1.
Given /i such that 2\h | < 1, there exists an m so that,

(10)

2
/=1

f6' sin/(f

Jam t

(ID

We are going to show that each term on the right hand side of (11) is
O(ha) for y ^ (1 - a)"1 separately.
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After substituting u = t - ch by (2) and (10) I3 = O(ha).
Since 0 < h < l/am, by the second mean value theorem for integrals

there exists f, (a* < f, < bt) such that

'a", J(l t - c,

After substitution u = t - ch by (3), (9) and (10) it follows

\ijh-1 ̂
/ = i

fli + 0 =

It remains to show J2= O(ha). By (2) we have,

(12) I2/h°

( m y
Since e~irh - 1 = (cosf/i - 1)+ i sin th, by the second mean value

theorem for integrals and (3) we get

, if(13)

Hence by (12) and (13) we conclude that I2 = O(ha) if y g (1 - a)"1.
Now we are going to show that there exist some sequences {hn}-> 0,

{jcn}, and {!?„}-» oo such that

for

Consider /im = l/cm and xm = m.

f2/fc

where

il mYYl dm JO
sin mv

o V

and

l/2flm Q i T



536 G. SAMPSON AND H. TUY

From (1) of Lemma 1 we can conclude that J2= O(l) . Hence it
suffices to show that | / I(JC)| ^ m/2 if | x - xm | ̂  l/am.

It is clear that (y ^ 3)

m
1-7 J sin mi; .

si
o V

sin xvdv

On the other hand,

o !_„ i m sin mi; . ,2 m i y s i n xvdv

" ^ ^ | cos(m+x)v
|

+x)v\ dv

v J

We can easily see that for these JC'S,

!_v f ^flm cos (m + x )v ,
m1 T * *- di; =

Ji u

For t h e remaining term we no te that cos M ^ I - U2/2. Therefore
for x satisfying | x - m | ̂  l /am ,

m
l - y r am cos (m — x)v

dv ^ m |-» f ̂  (^ - (m - x fv) dv.

Since (m -xfal^l we conclude that for m sufficiently large
Sm/2.
The proof is then complete.
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