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1. Introduction. In the class of abelian groups every element of which (except

the identity) has infinite order, the subgroups of the additive group of rational

numbers have the simplest structure. These rational groups are the groups of rank

one, or generalized cyclic groups, an abelian group G being said to have rank one

if for any pair of elements, a ^ 0, b ^ 0, in G, there exist integers m, rc, such that

ma — nb ψ 0. Although many of the properties of these groups are known [ l ] , it

seems worthwhile to give a simple characterization from which their properties

can easily be derived. This characterization is given in Theorems 1 and 2 of §2,

and the properties of the rational groups are obtained as corollaries of these

theorems in §3. In §4, all rings which have a rational group as additive group are

determined.

Let pi, p 2 > , pi, * * be an enumeration of the primes in their natural

order; and associate with each pj an exponent kj, where kj is a nonnegative inte-

ger or the symbol °°. We consider sequences i; kγ , k2 > * * , λy, , where i is

any positive integer such that (i,py) = 1 if kj > 0, and define {i; kγ , k29* * •>

kj9 •) = (ι; kj) to be the set of all rational numbers of the form ai/b, where a

is any integer and b is an integer such that b — Ώp.pJJ with τij < kj> Then each

sequence determines a well-defined set of rational numbers. The symbol Π desig-

nates a product over an arbitrary subset of the primes that satisfy whatever condi-

tions are put on them; Π designates a product over all primes that satisfy the

given conditions.

2 Characterization of the rational groups. We show that the nontrivial sub-

groups of R are exactly the subsets (i kj) defined in the introduction.

THEOREM 1. The set (i;kj)is a subgroup o//?+, the additive group of rational

numbers. We have (i kj) — (i'; k 'j) if and only if i — i', kj = k y for all /.
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Proof. If ai/b £ (i kj), ci/d £ (i kj), then b = H^pp, d = Π ^ . p J ^

[ i , rf] — Ώp.psJ, where SJ — max {ΠJ, mj) < kj» Writing [b, d] = bb' = dd', we

have

ai ci _ b1 ai d'ci __ (6'α ~ d1 c)i r~ ( ^ \

7 ~ 7 ~ ΐ ΰ Π "EMJ ~ ΪMΪ
 e U; jh

It is clear that different sequences determine different subgroups.

In the sequel we need the following properties of a subgroup G ψ 0 of R+.

(1) Every ζ £ G has the form ζ = ai/b, {ai, b) - 1, where i is the least

positive integer in G.

For every ζ we have ζ = m/b, where (m, b) = 1; and if i is the least positive

integer in G, then m = αi + r and m — ai C G imply r = 0.

(2) If αί/6 C G, ΐ C G, and (α, 6) - 1, then i/b C G.
For there exist integers k, I such that ka + Zό = 1 and

(3) If ai/b C G where i is the least positive integer in G, and (α, b) = 1,

then (i, i) = 1.

By (2), t/fc C G; and if (£, 6) ^ 1, h/b' C G with A < ί. Then b' (h/b') -

h C G.

We assume in the proof of the remaining properties that the elements of G are

written in the canonical form ai/b with {ai, b) — 1 and i the least positive integer

in G.

(4) If αi/6c C G, then i/6 C G.

For cαΐ/όc = α£/6 C G and ί/i C G by (2).

(5) If ai/b, ci/d- € G, and if {b, d) = 1, then i/M £ G. For by (2) we have
For by (2) we have

i (kb + ld)i ki li

6d 6d d b

TίfEOREM 2. If G ^ 0 is a subgroup of /?+, ί/iê i iAere exists a sequence

{i; kι , k2 , ' ' *, kj, •) such that G — {i; kj).

Proof. By (1), every ζ £ G has the form ζ = αι/6, {ai, b) = 1, where i is the
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least positive integer in G. We write all elements of G in this form. If, for every

I, there exist ai/b £ G such that p . \b, let Ay — °°. If not, let Ay — max A such

that p . I b for some ai/b £ G. Since (ai, b) = 1, we have (ί, py) = 1 if Ay > 0. By

the definition of i and kj, G is contained in (ΐ Ay). Now every element of {i; kj)

has the form ai/{pn^ p* Γ ) , where ΠJ < kj and (a, p " * p " r ) = 1. By (4) and

the definition of Ay, G contains every i/p^J with ΠJ < kj, and by(5), G contains

<u/(p?1 p? r). Hence G = (*; Ay).

3 Properties of the rational groups* In this section, properties of the rational

groups are obtained as corollaries of the theorems of § 1 .

C O R O L L A R Y 1 . The g r o u p ( i ; kj) i s a s u b g r o u p of ( i f A y ) if a n d o n l y if

j £ A yA y and i = mi'

COROLLARY 2. The group (i; kj) is cyclic if and only if kj < °° for all j and

kj = 0 for almost all j .

Proof. If (i Ay) is cyclic, it is generated by ai/b with {ai, b) = 1. Since every

element of (i Ay) has the form nai/b, we have a — 1 and 6 = Π t > 0 p .J. Con-

versely (i Ay) contains ι / Π ^ > 0 pW, and this element generates (i; kj).

COROLLARY 3. We have (£; Ay) = (*'; Ay) if and only if both kj = Ay for

almost all j , and, whenever kj ψ Ay, both are finite. Every isomorphism between

(i; kj) and (i*; Ay) is given by

αi

b

where

- = Π'

mαi

n6

π
finite

Π
finite

Proof. If (i; kj) = (i1; Ay), then i —> m ΐ ' A with (mι ;, n) = 1. If

then m7) —> mi' and ni —» mi', so that mrj = ni, or τ\ — ni/m.
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Hence ni/m —» i1. We write

then for nj < kj we have

Pί\~• paJ

while for n's < Ay we have

We have the following alternatives with consequences which follow from (3):

I. j = a i : nj - k'j < α/ < kj - n'j

II. j = ^« : «) "" fe; < K 1 *> ~ Λj

III. •" ^j < fey i n'j <

It follows that kj = °° implies k'j = °° and conversely. With both Ay and A y

finite we may choose ray = Ay and n y = A y and we have:

I.

II.

III.

= fe; - fey

= fey — fey

J Φ : fey = fey

We have Ay = A y if and only if / φ Oί/, / 'φ βm. In particular, we have Ay = A y

for almost all j . If Ay > A 'y, then j = OC/ and α/ = Ay — A 'y. If A y > Ay, then j — βm

and 6 m = A y — Ay.

Now i —> mi'/n implies αι/ό —> ami'/bn, so that the only isomorphisms

between (i; Ay) and (ί 1; Ay) are those described in the corollary. Incidentally, we
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have derived necessary conditions for the relation {i kj) = W; k'j)

With the necessary conditions satisfied, we check that the given correspond-

ence actually is an isomorphism. These conditions imply that the correspondence

is single-valued with a single-valued inverse from (i; kj) onto (i1; k'j). It is clear

that addition is preserved.

COROLLARY 4. The group (i; kj)admits only the identity automorphism if and

only if kj is finite for all j .

Proof. If kj is finite for all j , we have by Corollary 3, with kj — k'j for all / ,

that m — n = 1. Conversely, if any kj — °°, then the correspondence of Corollary 3

gives us nontrivial automorphisms.

The multiplicative group of the field of rational numbers, /?*, is a direct pro-

duct of the infinite cyclic subgroups of Rx generated by the prime numbers p, for

all k. Such a subgroup consists of the elements p, , p? , , 1, 1/W > ^/p&> * * *

COROLLARY 5. The group of automorphisms of (i; kj) is isomorphic to the

direct product of all of the infinite cyclic subgroups of Rx generated by those

primes p^ for which kj = °°.

Proof. By Corollary 3, there is a (1—1) correspondence between the automor-

phisms of (i; kj) and the rational numbers U/N with (M, N) = 1, where M and N

are arbitrary products of those primes for which kj = °°. This correspondence

clearly preserves multiplication and the set of all rationale M/N has the stated

structure as a group with respect to multiplication.

COROLLARY 6. For any two subgroups (i; kj) and (£'; k'j) of /?+, the set T

consisting of all ordinary products of an element of (i kj) with an element of

(i'; k 'j) is again a subgroup of R+.

Proof. We have T = (1 Kj), where

with Sj = minίoty, k'j) + min(θty, kj), where (Xy is the highest power of pj that

divides i, and Oί'y the highest power of py that divides i'.

COROLLARY7. // ( i ; kj) > (i ;; k'j) and ph' is the maximum power of pj such

that p.i divides i '/i , then the difference group (i kj) — (i1; k'j) is a direct sum
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of the groups Gj where

(i) Gj is the cyclic group,

«';*;>

Pri}

if kj is finite;

(ii) Gj is the group of type pc

(•';*}: J ΌR)

if kj is infinite and k'j is finite;

(iii) Gj — [θ] ifkj = k'j = 00,

4. Rings which have a rational group as additive group. The distributive laws

in any ring S with (i kj) as additive group are used to determine all possible

definitions of multiplication in S.

LEMMA. If S is a ring with additive group (i kj), then multiplication in S is

defined by

ai ci ac , N
— X — = — 1 X 1 .
6 d bd

Proof. We prove this by showing that

lai ci\ , x
bd[— X— = ac (i X i) .

\b d

We have

ac (i X i) = ai X ci (by the distributive laws in S)

[ αi ail Γci ci

— + • • • + — X — + • • • + —
6 6 J Id d

b summands d summands
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whence ac (i X i )

[ ai ci] \ai ci] ,, , ,. ., . , . o x

— X — + + — X — (by the distributive laws in S)
b d\ Lj 16 d\

bd summands

ai ci
Λ

6 d

THEOREM 3. // there is an infinite number of kj such that 0 < kj < °°, then

the only ring S with (i kj) as additive group is the null ring. If 0 < kj < °° for

only a finite number of kj, then S is a ring with additive group (i kj) if and only

if multiplication in S is defined by

bd Π' pp

where A ' and nj are arbitrary.

Proof. If S is a ring with additive group (i kj), then i X i = Ai/B £ (i;kj)9

where (Ai, B) = 1, B = Π p W, nj < kj. By the lemma, we have

ai ci acAί

b d ~ bdB

If 0 < kr < °°, this yields in particular

i i Ai

Therefore (pΓ, B) = 1, for otherwise we would have 2kr + nr < kΓ9 which is im-

possible. Hence, B = Π p?J is a product of primes for which kj = °°, and it is

necessary that p^ΓU. If there is an infinite number of primes py with 0 < kj < °°,

then A — 0 and (ai/b) X (ci/d) = O This proves the first statement in the theorem.

If 0 < kj < °° for only a finite number of primes p. , then

A = A' Π p)i
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Together with what has been proved above, this gives

acA' j Π Pj
ai ci _ \o<kj<co

X — • ,

b d _ , '

bd Π P?}

j

where A ' and nj > 0 are arbitrary integers.

Conversely, this definition of multiplication always makes (i; kj) a ring. Closure

with respect to X is insured by providing p .3 in the numerator when 0 < kj <°°,

and the associative and distributive laws are readily verified.

COROLLARY l The set {i; kj) is a subring of R if and only if there is no

kj such that 0 < kj < °°.

Proof. Let (i kj) be a subring of R and assume that for at least one kj we

have 0 < kj < °°. If 0 < kj < °° for infinitely many kj, then (ί kj) is not a subring

of R, since by Theorem 3 it is the null ring. If 0 < ky < °° for a finite number of

kj, then multiplication in any ring with (i kj) as additive group is given by the

formula of the theorem. Hence this must reduce to ordinary multiplication for some

choice of A ' and nj that is,

A' Π r J

Π'pW
= i; A' Π p / ' = i Π ' P ; ι .

By hypothesis, at least one pj with kj > 0 appears in the left member of the above

equality. Since no prime appears in both products, we have pj\i. This contradicts

(i, pj) = 1 for kj > 0.

Conversely, let every kj be either 0 or oo, By the theorem, we have

a t

6
X

Cl

d
bd

acΛ i

rr γ

and we may select A1 = i, Π ^.=00 pni ~ 1, yielding ordinary multiplication.

C O R O L L A R Y 2 . // ( i ; kj) is a subring of R , then ( i ; kj) is a ring under the
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multiplication

ax ci ac lei

b d ~ bd \ f

for arbitrary ei/f £ {i kj).

Proof. By Corollary 1, we have kj ~ 0 or kj = °°, so that every element of

(i kj) has the form

A'i

ir $*

and by the theorem these are just the multipliers which are used to define multi-

plication.

COROLLARY 3. If S is a ring with additive group {i; kj), then either S is a

null ring or S is isomorphic to a subring of R,

Proof. If S is not null, the correspondence

ai aA ai ci acAi
— —> — - , where — X — = ,
6 bB b d bdB

is (1~1) from S on a subset of R, and

ai ci (da + bc)i (da + bc)A __ aA cA

b d bd bdB bB dB '

ai ci acAi acA2 __ aA cA

b d ~ bdB bdB2 ~ bB dB

COROLLARY 4. All rings with additive group Λ+ are isomorphic to R.

Proof. The correspondence of Corollary 3 clearly exhausts R.
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