A SHORT PROOF OF PILLAI'S THEOREM ON NORMAL NUMBERS

JOHN E. MAXFIELD

1. Introduction. The object of this paper is to give a short proof of the Pillai theorem [2] on normal numbers using the Niven-Zuckerman result [1] as a tool.

DEFINITION 1. A number σ is simply normal to the base r if, in the expansion to the base r of the fractional part of σ , we have $\lim_{n \to \infty} n_c/n = 1/r$ for all c, where n_c is the number of occurrences of the digit c in the first n digits of σ .

DEFINITION 2. A number σ is normal to the base r if σ , $r\sigma$, $r^2\sigma$, \cdots are each simply normal to all the bases r, r^2 , r^3 , \cdots .

THEOREM (Pillai). A necessary and sufficient condition that a number σ be normal to the base r is that it be simply normal to the bases r, r^2 , r^3 , ...

2. Proof. The necessity of the condition follows from the definition of normality.

To prove sufficiency, assume that σ is simply normal to the bases r, r^2, \cdots . Let $A = (a_1 a_2 \cdots a_v)$ be any fixed sequence of digits (to base r), where v = hr - s, $h \ge 0$, $0 \le s \le r$; and consider the occurrence of A in σ . Count the number of occurrences of A in the collection of sequences of length hr. There are s digits free after v of the hr digits are fixed. Thus there are $(s + 1)r^s$ different occurrences of A in these sequences.

For any positive integer *n*, define $f_n(A)$ to be the frequency of the occurrences of *A* in σ except in places where *A* will straddle the middle of sequences of length $2h2^{n-1}r$ starting in places congruent to 1 (mod $2h2^{n-1}r$), or where *A* will straddle the middle of sequences of length $4h2^{n-1}r$ starting in places congruent to 1 (mod $4h2^{n-1}r$), or ..., or where *A* will straddle the middle of sequences of length $2^{s}h2^{n-1}r$ starting in places congruent to 1 (mod $2^{s}h2^{n-1}r$), and so on.

Certainly $\lim_{n \to \infty} f_n(A)$, if it exists, will be equal to f(A), the frequency of A in σ .

We have

$$f_1(A) = \frac{(s+1)r^s}{hrr^{hr}} = \frac{1}{r^v} - \frac{v-1}{hr^{v+1}},$$

Received July 5, 1951.

Pacific J. Math. 2(1952), 23-24

since there are hr digits of σ to base r in each digit of σ to base r^{hr} , and σ is simply normal to the base r^{hr} . The number of occurrences of A straddling the middle of blocks of length 2hr is $(v-1)r^{2hr} + s$. The frequency of these in σ , where the sequence of length 2hr starts in a place congruent to 1 (mod 2hr), is

$$\frac{(v-1)r^{2hr+s}}{2hr\,r^{2hr}} = \frac{v-1}{2hr^{v+1}},$$

since there are 2hr digits of σ to base r to each digit of σ to base r^{2hr} . Thus

$$f_{2}(A) = \frac{1}{r^{v}} - \frac{v-1}{hr^{v+1}} + \frac{v-1}{2hr^{v+1}}$$

Similarly,

$$f_{3}(A) = f_{2}(A) + \frac{v-1}{4hr^{v+1}} = \frac{1}{r^{v}} - \frac{v-1}{hr^{v+1}} + \frac{v-1}{hr^{v+1}} \left[\frac{1}{2} + \frac{1}{4}\right]$$

and

$$f_n(A) = \frac{1}{r^{\nu}} - \frac{\nu - 1}{hr^{\nu + 1}} + \frac{\nu - 1}{hr^{\nu + 1}} \sum_{i=1}^{n-1} \frac{1}{2^i}$$

It follows that

$$\lim_{n\to\infty} f_n(A) = 1/r^{\nu}.$$

Accordingly, by the Niven-Zuckerman result [1], stating that a necessary and sufficient condition in order that a number σ be normal is that every fixed sequence of v digits occur in the expansion of σ with the frequency $1/r^v$, we see that σ is normal to the scale r.

References

1. Ivan Niven and H. S. Zuckerman, On the definition of normal numbers. Pacific J. Math. 1 (1951), 103-109.

2. S. S. Pillai, On normal numbers, Proceedings of the Indian Acad. Sci., Section A, 12 (1940), 179-184.

UNIVERSITY OF OREGON AND

NAVAL ORDNANCE TEST STATION