a SHORT PROOF OF PILLAI'S THEOREM ON NORMAL NUMBERS

John E. Maxfield

1. Introduction. The object of this paper is to give a short proof of the Pillai theorem [2] on normal numbers using the Niven-Zuckerman result [1] as a tool.

Definition 1. A number σ is simply normal to the base r if, in the expansion to the base r of the fractional part of σ, we have $\lim _{n \rightarrow \infty} n_{c} / n=1 / r$ for all c, where n_{c} is the number of occurrences of the digit c in the first n digits of σ.

Definition 2. A number σ is normal to the base r if $\sigma, r \sigma, r^{2} \sigma, \ldots$ are each simply normal to all the bases r, r^{2}, r^{3}, \ldots.

Theorem (Pillai). A necessary and sufficient condition that a number σ be normal to the base r is that it be simply normal to the bases r, r^{2}, r^{3}, \ldots.
2. Proof. The necessity of the condition follows from the definition of normality.

To prove sufficiency, assume that σ is simply normal to the bases r, r^{2}, \ldots. Let $A=\left(a_{1} a_{2} \cdots a_{v}\right)$ be any fixed sequence of digits (to base r), where $v=h r-s, h>0,0 \leq s<r$; and consider the occurrence of A in σ. Count the number of occurrences of A in the collection of sequences of length $h r$. There are s digits free after v of the $h r$ digits are fixed. Thus there are $(s+1) r^{s}$ different occurrences of A in these sequences.

For any positive integer n, define $f_{n}(A)$ to be the frequency of the occurrences of A in σ except in places where A will straddle the middle of sequences of length $2 h 2^{n-1_{r}}$ starting in places congruent to $1\left(\bmod 2 h 2^{n-1} r\right)$, or where A will straddle the middle of sequences of length $4 h 2^{n-1_{r}}$ starting in places congruent to $1\left(\bmod 4 h 2^{n-1} r\right)$, or \cdots, or where A will straddle the middle of sequences of length $2^{s} h 2^{n-1} r$ starting in places congruent to $1\left(\bmod 2^{s} h 2^{n-1} r\right)$, and so on.

Certainly $\lim _{n \rightarrow \infty} f_{n}(A)$, if it exists, will be equal to $f(A)$, the frequency of A in σ.

We have

$$
f_{1}(A)=\frac{(s+1) r^{s}}{h r r^{h r}}=\frac{1}{r^{v}}-\frac{v-1}{h r^{v+1}},
$$

Received July 5, 1951.
Pacific J. Math. 2 (1952), 23-24
since there are $h r$ digits of σ to base r in each digit of σ to base $r^{h r}$, and σ is simply normal to the base $r^{h r}$. The number of occurrences of A straddling the middle of blocks of length $2 h r$ is $(v-1) r^{2 h r+s}$. The frequency of these in σ, where the sequence of length $2 h r$ starts in a place congruent to $1(\bmod 2 h r)$, is

$$
\frac{(v-1) r^{2 h r+s}}{2 h r r^{2 h r}}=\frac{v-1}{2 h r^{v+1}}
$$

since there are $2 h r$ digits of σ to base r to each digit of σ to base $r^{2 h r}$.
Thus

$$
f_{2}(A)=\frac{1}{r^{v}}-\frac{v-1}{h r^{v+1}}+\frac{v-1}{2 h r^{v+1}} .
$$

Similarly,

$$
f_{3}(A)=f_{2}(A)+\frac{v-1}{4 h r^{v+1}}=\frac{1}{r^{v}}-\frac{v-1}{h r^{v+1}}+\frac{v-1}{h r^{v+1}}\left[\frac{1}{2}+\frac{1}{4}\right]
$$

and

$$
f_{n}(A)=\frac{1}{r^{v}}-\frac{v-1}{h r^{v+1}}+\frac{v-1}{h r^{v+1}} \sum_{i=1}^{n-1} 1 / 2^{i}
$$

It follows that

$$
\lim _{n \rightarrow \infty} f_{n}(A)=1 / r^{v}
$$

Accordingly, by the Niven-Zuckerman result [1], stating that a necessary and sufficient condition in order that a number σ be normal is that every fixed sequence of v digits occur in the expansion of σ with the frequency l / r^{v}, we see that σ is normal to the scale r.

References

1. Ivan Niven and H. S. Zuckerman, On the definition of normal numbers. Pacific J. Math. 1(1951), 103-109.
2. S. S. Pillai, On normal numbers, Proceedings of the Indian Acad. Sci., Section A, 12 (1940), 179-184.
