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1. Introduction. Let μ ( e ) be a nonnegative additive set function on the

closed unit sphere K in three dimensions with μ(K) = 1. We shall regard μ as a

distribution of unit positive mass on K. Furthermore, we shall require that the

center of gravity of this distribution be at the origin; that is,

fκ xdμ = Jκ jdμ = fκ zdμ = 0.

Such μ will be called admissible distributions, and their Newtonian potentials

u(P), admissible potentials.

In 0. D. Kellogg's Foundations of Potential Theory [ l ] , there occurs on page

144 an exercise which amounts to the following: Show that a level surface of an

admissible potential which lies outside a concentric sphere of radius 10 varies

in distance from the origin by less than 1.2 per cent. The figure 1.2 appears to

be correct, as we shall show by an example, only when variation is interpreted

to mean variation from some intermediate sphere. Then with this interpretation,

Kellogg's figure is easily obtained by considering the expansion of the potential

in a series of spherical harmonics, whose use the set in which this problem

appears was designed to illustrate. However, since the estimates used are

fairly crude, the figure is not attained by any level surface.

In this note is solved the problem of exactly how much a level surface of

an admissible potential can depart from being spherical, and what distributions

give the extreme level surfaces. More precisely, we shall prove the following

theorem:

THEOREM 1. If a level surface of an admissible potential has minimum

radius r and maximum radius R, with r > 1, then

2R < [ ( r 2 + I ) 1 / 2 + ( r 2 + 5 ) ι / 2 ] .

This value is attained if and only if the distribution consists of two equal point
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masses at the ends of a diameter of K.

In Kellogg's example, we have r = 10, and for the extreme distribution given

above, R — r = .0148 r.

2. Extremes of an admissible potential. In order to prove Theorem 1, we

first prove two results concerning the maximum and minimum values of an ad-

missible potential at a fixed distance from the origin.

THEOREM 2. The value of an admissible potential at a point P at distance

a from the origin, a > 1, is at most a/(a2 - 1 ) . It equals this value if and only

if the distribution consists of two equal point masses at the extremities of that

diameter of K which passes through P.

We shall give proofs which depend only on the decreasing and convex nature

of the function 1/r. When this is done, our theorems, with appropriate changes

in the given bounds, will have been proved not only for Newtonian potentials,

but also for any potential based on a decreasing convex function, such as the

logarithmic potential.

Let then φ(r) be a strictly decreasing, strictly convex function of r for

r > 0. Potentials will be defined by

u(P)= £φ(r)dμ.

Let P be at distance a from the origin and let μQ be an admissible distribution

maximizing the potential at P. That such a distribution exists is an immediate

consequence of the notion of weak convergence of mass distributions [2, p. 1092].

It may be assumed that P is the point (α, 0, 0). It is at once apparent that μQ can

have no mass except on the %-axis, since any mass off this axis could be pro-

jected onto it without affecting the center of gravity, and at the same time be

brought closer to P, This would increase the potential at P, since φ is strictly

decreasing. Thus μQ is a linear distribution on the Λ -axis.

Let v{e) be any distribution of mass with center of gravity at 0 and such

that μQ(e) + λv(e) is nonnegative for small | λ | . Then (μQ + λv) /[I + λv(K)]

is an admissible distribution. If g ( λ ) is the potential at P of this distribution,

then g ' ( 0 ) = 0 because of the extreme nature of μQ This gives, by an easy

computation,

(1) u(P) = fφ(r)dv= v{K)uo(P),
Λ.

where u and u0 are the potentials of v and μ respectively. Suppose that the
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kernel of the mass μQ contains three distinct points: xϊ9 x2, #3. Let L{ be a

small interval about X(y and set

Let xi be the center of gravity of i^ ( e ) , and λi, λ2> λ 3 be parameters such that

Σ * i λ j i^ ( £ ) = Σ Xi λ i μo(Li) = 0 .

Then iy(e)= L j λj v j (e) satisfies the conditions at the beginning of this

paragraph, and so (1) is satisfied. Now by the mean value theorem,

u{P) = fκφdv= Σ λ* / φdvi = Σ λi μQ{Li) φ{a -
i ι i

where x' ζL L{. Thus it follows that

Σ [λi μo(Li)] ^ = 0
i

implies that

Σ λ £ μo(Li) φ(a- x'.) = uo{P) £ λ, μo(Li),

or

Σ [ λ i μo(Li)] [φ(a - x'.) - uo(P)] = 0 .
i

Hence there exists a constant (X such that

(2) φ(a - x\) - uo(P) = axt .

If I L( I—> 0, then ~X{ and xΐ tend to %/. Equation (2) is false in the limit, s ince

it s t a t e s that the three points ( # ; , φ(a - Xj)), i = 1, 2, 3, are collinear, whereas

φ is strictly convex. Hence (2) is false for small \L(\9 and μQ has not three

points in i ts kernel.
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We now see that μQ consists of at most two point masses, mx at xx and m2 at

x2, with mxxx + m2X2 = 0 and mx + m2 - 1. We may take xx > 0, x2 £ 0 H

this mass is distributed equally between the points j h l , then the increase in

potential at P is given by

— [ φ ( a - 1 ) + φ ( a + 1 ) ] - m x φ ( a - x x ) - m 2 φ ( a - x 2 )

Setting

φ(a - x) = ψ(x), xx/(xx - x2) = λ, -x2 /(xx - Λ2) = 1 - λ,

and making use of the fact that mxxx + m2x2 = 0, we see that this increase is

nonnegative provided

( 3 ) - [ψ(l) + 0 ( - l ) ] > λφ(x2) + ( 1 - λ)φ(xi).

But ΛΛ;2 + (1 — λ)xx = 0 , and we recognize the right member of (3) as the value

at 0 of the linear function agreeing at xx and x2 with φ. The left member is the

value at 0 of the linear function agreeing with φ at + 1 . Since φ is convex and

— 1 < _ Λ ; 2 < _ 0 < Λ ; < _ 1 , the inequality (3) is obviously true, and, in view of

the strict convexity of φ, the inequality is strict unless x2 = - 1, xx = 1. Thus

μ0 can contain nothing but masses 1/2 at + 1, so that with φ(r) = \/r we have

1 1

2 Lα~̂ T + ~ a2 - \

For future reference note that if the masses mx and m2 are moved from xx, x2

to 0, the decrease in potential at P may be written

λφ(x2) + (1 - λ) φ(xx) - ψ(0) > 0

in view of the convexity of φ The inequality sign will hold if either mass is

not at zero.

THEOREM 3. The value of an admissible potential at a point P at distance

a from the origin, a > 1, is at least ( α 2 + l ) ~ " 1 / 2 . It equals this value if and

only if the distribution lies on the equatorial great circle of K (regarding OP

as the axis of K).

Let μ be an admissible distribution minimizing the potential at P. If μ' is
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the distribution obtained by averaging μQ and the distribution obtained by re-

flecting μ in the %-axis, then μ' is admissible, symmetric with respect to the

%-axis, and minimizes the potential at P. Now μ̂  has no mass interior to K since

we could move all such mass cylindrically outward from the %-axis onto the

surface of K; this would leave unaltered the center of gravity and the total mass

but would decrease the potential at P. Thus μQ also has no mass interior to K.

Let v0 be the mass distribution, on the meridian semicircle of K in the xy-

plane for which γ > 0, obtained by concentrating all the mass on each set of

parallels of latitude on the set of intersections of these parallels with the semi-

circle. Then v0 has total mass 1, has its center of gravity on x — 0, and gives

the minimum potential at P. By reversing this concentration procedure it is a

simple matter to construct from any v0 with the three listed properties an ad-

missible distribution with the same potential at P. What we must show, then, is

that v0 consists of a point mass at (0, 1, 0); the method is analogous to that

in the proof of Theorem 2. If

θ(x) = φ (Vl + a2 + 2αz),

it follows that since φ is strictly decreasing and strictly convex, the same is

true of θ [3l Using θ instead of φ, we proceed exactly as in Theorem 2, the

final remark in that proof showing that only the point mass at x = 0 gives the

minimum potential,

3. Proof of Theorem 1. Let a level surface, u = u0, of an admissible po-

tential u have minimum radius r and maximum radius /?, with r > 1. Then from

Theorems 2 and 3 we get

l/y/r2 + 1 < u0 < R/(R2 - 1 ) .

This gives

R2 - Ryjr2 + 1 - 1 < 0,

which when solved for R is precisely the inequality stated in Theorem 1. In

order for the equality to hold, the distribution μ must maximize the potential

at a point at distance r and minimize it at a point at distance R. Again from

Theorems 2 and 3 this is possible if and only if μ consists of a pair of equal

and diametrically opposed point masses.
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