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OF THE HEAT EQUATION
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1. Introduction. In a recent paper Hartman and Wintner [3] consider solutions

of the heat equation

(1) uxx(x, t) - ut(x, t) = 0

in a rectangle R: 0 < x < \ (0 < t < k < oo). There they obtain necessary

and sufficient conditions for a solution of (1) in R to be representable in the

form

(2) u(x9 t) = f l ° G (x9 t; y 9 s) d A (y)

+ 1 Gγ{x, t;0,s)d B{s) - f GΎ{x,t;l,s)dC(s),
0 0

the Green's function G being defined by

where $ 3 is the well known Jacobi theta function. (The first integral in (2) is an

absolutely convergent improper Riemann-Stieltjes integral.) They proceed to

show that the functions representable in the form (2) exhibit the following be-

havior at the boundary of R:

(4) lim u(x9 t) = A\x)9

(5) lim u(x, t) = B'{t), lim u(x, t) = C\t)
% - 4 θ + X -» 1 -0

wherever the derivatives in question exist.

In the present note we present an improvement of (5) first given in the

author's thesis [2]. The admittedly slight mathematical improvement is physi-

cally significant. A solution of (1) which admits the representation (2) gives the
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temperature at time t and position x in an insulated rod of length unity and with

a certain initial temperature distribution, given essentially by (4), and imposed

end temperatures, given essentially by (5). We note that such solutions are not

uniquely determined by (4) and (5).

As x approaches the boundary of R along a line t - ί0, it seems intuitively

clear that the limit should be independent of values of B (or C) for t >_.t0.

Hence the expected result (for the left side of/?) would be

B(t - h) - Bit - ϋ,
lim u{x, t) = B (t - 0) = lim
x-> o+ A-»o+ — h

wherever this derivative exists.

2. Theorem. For the above improvement it is sufficient to establish the

following result.

THEOREM. // B{s) is of bounded variation on every closed interval of

0 < s < k < oc 9 then

lim fl Gγ(x, t; 0, s)dB(s) = B'(t-O)

wherever this derivative exists.

Proof. Let

u(x, i) = f Gγ(x, t\ 0, s) dB{s).

Then since

- c o - £ -
n = ~ oo

(see, for example, [ l , p. 307]), we can write

u(x, t) = — xπ~X/2 f* (t-s)~3/2 exp [ — ] d B (s)
2 o L 4 ( ί - s ) J

" π~ί/2

2 n = oo

nΦQ

Clearly the latter integral vanishes with x. Then denoting the first integral on
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the right by / and by setting z = x2/4 and t - s = l/ι>, we get

v = i/ί

If we define

α (v) =

where α is a suitable constant, then we have

r3/2 dB(t-l/r) (« > 1/ί),

(v < 1/t),

e~zv rfα(v).

To evaluate lim / we apply [4, Theorem 1, p. 181], which states: //

for any γ > 0 αrιy constant A we have

lim - A I < lim I α(ί) ί 7 Γ(γ

To this end we evaluate lim v~1/2 &{v). Now

- A

a(v) = υ " 1 / 2 / " r3 / 2 dB(t-l/r)

fv

 r*/2 d[B(t-l/r) - B(t-O)]

£ -1/2 r"
2 α

B i t - l/v) - B(t-O) B i t - I/a) - B (t - 0)
,3/2

,1/2

3

2"
rfr.
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As v —> oo the first expression on the right tends to - B (t - 0), if this derivative

exists, and the second vanishes. Now consider the integral term: given e > 0,

choose T so large that

B'(ί-O) -
fl(t-Q) - B ( t - l / r )

1/r
< € if r > T.

Then

- v~1/2 fV[B(t-O)~ BU-l/r)] rι/2 dr
2 r= a

~1/2 -O) - B(t-1/r)] r 1 ' 2 dr

+ — v
2

-1/2 r -O) - flU-l/r)

1/r

-1/2

The first integral on the right—»0 as t?—»oo, and

£ -1/2 /-^
2 ^ JT

r-l/2

where | η \ < 6 ior all values of v > T. Let v—>oo, then let 6—> 0; the right

side of the above equation approaches SB (t — 0). Consequently we now have

lira v'ι/2 a(v) = 2 δ ' ( ί - 0 ) .
V —»C5O

By applying the above-mentioned theorem with γ = 1/2, /I = π B (t — 0),

we now obtain

lim
z-* o

< lim i,.« B(v) - πι/2 fl'(i-O) = 0.

Hence

lim uU, ί) = lim I = B (t - 0).
X-> 0+ 2 ~» 0
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