THE NUMBER OF FARTHEST POINTS

T. S. Мotzkin, E. G. Straus, ani) F. A. Valentine

1. Introduction. Consider a set S in a metric space E. For each point $x \in E$, let $y(x)$ denote a point of S which has maximum distance from x, and let $Y(x)$ be the set of all $y(x)$ with that property. It is our purpose here to study sets S for which certain restrictions are placed on the number of points in $Y(x)$. In $\S 2$ we analyze those sets S in the Minkowski plane for which $Y(x)$ has exactly one element for each $x \in S$. In § 3 we characterize those sets in the Euclidean plane E_{2} for which $Y(x)$ has at least two elements for each $x \in S$.

In order to achieve these ends we first establish some introductory results which hold in rather general spaces.

Definition l. Let S be a set in a metric space. If S is contained in a sphere of radius r, then its r-convex hull is the intersection of all closed spheres of radius r which contain S.

A set S is r-convex if it coincides with its r-convex hull [$2, \mathrm{p} .128$].
Lemma 1. Let S be a set of diameter d in a linear metric space. Then for each $x \in S$ the set $Y(x)$ lies in the boundary of the d-convex hull of S.

Proof. If $Y(x) \neq 0$, choose any point $y(x)$. Then S is contained in a sphere with center at x and with radius $d(x, y)$, where $d(x, y)$ denotes the distance from x to y. Since for $x \in S$ we have $d(x, y) \leq d$, there exists a point z on the ray $\overrightarrow{y x}$ such that the sphere with center z and with radius $d=d(z, y)$ contains S. The point y is thus clearly on the boundary of the d-convex hull.

Note. By virtue of Lemma 1, all results for compact S below will hold under the less restrictive assumption that S contain the intersection of its closure with the boundary of its d-convex hull.

Corollary l. Let S be a set in a linear metric space. Then for each x the set $Y(x)$ is contained in the boundary of the convex hull of S.

Received March 1, 1952. This work was performed on a National Bureau of Standards contract with the University of California, Los Angeles, and was sponsored (in part) by the Office of Scientific Research, U.S.A.F.

Pacific J. Math. 3 (1953), 221-232

This is an immediate consequence of the fact that S is contained in the sphere with center x and radius $d(x, y(x))$, provided $Y(x) \neq 0$.

Lemma 2. Suppose S is a set in a linear metric space, and let T be a set such that $Y(x) \neq 0$ for each $x \in T$. Then $d(x, y(x))$ is a continuous function of x on T.

Proof. Since $|d(x, z)-d(u, z)| \leqq d(x, u)$, and since

$$
\left|\max _{z \in S} d(x, z)-\max _{z \in S} d(u, z)\right|=|d(x, y(x))-d(u, y(u))|,
$$

we have $|d(x, y(x))-d(u, y(u))|<\epsilon$ if $d(x, u)<\epsilon$.
Lemma 3. Let S be a compact set in a linear metric space. If $x_{i} \longrightarrow x$, then all limit points of the sequence $\left\{y\left(x_{i}\right)\right\}$ lie in $Y(x)$.

Proof. Let $y_{i}=y\left(x_{i}\right)$ be a sequence of points. Let y be a limit point of the sequence $\left\{y_{i}\right\}$. Then the continuity of $d(x, y(x))$ implies that $d(x, y) \geq d(x, q)$ for all $q \in S$. Hence we have $y \in Y(x)$.

Lemma 4. Let S be a compact set in a linear metric space, and suppose $y(x)$ is single - valued on a set T. Then $y(x)$ is a continuous mapping of T into S.

Proof. Since $y(x)$ is single-valued, Lemma 3 implies that if $x_{i} \longrightarrow x$, then $y\left(x_{i}\right) \longrightarrow y(x)$.
2. Sets in M_{2} on which $y(x)$ is single - valued. Let M_{2} be a two-dimensional Minkowski space [2, p. 23]. We restrict our attention here to connected sets S in M_{2}. (See $\S 4$ for remarks about disconnected sets.)

Theorem l. Let S be a continuum (compact connected set) in M_{2}. If $y(x)$ is single-valued on S, then the set sum

$$
\sum_{x \in S} Y(x)
$$

is the entire boundary B of the convex hull of S; and this convex hull is d convex, where d is the diameter of S.

Proof. According to Corollary 1, we have

$$
\sum_{x \in S} Y(x) \subseteq B
$$

By Lemma 4, the mapping $y(x)$ yields a continuous mapping of S into B. Now the only connected sets in a simple closed curve are: (1) a point, (2) a simple arc, (3) the whole closed curve. For cases (1) and (2), let

$$
A \equiv \sum_{x \in S} Y(x)
$$

then the mapping $y(x)$ of A into itself must have a fixed point $x_{0}=y\left(x_{0}\right)$, so that $\left\{x_{0}\right\}=Y\left(x_{0}\right)=S$, in which case the theorem is trivial. Thus $A=B$ in all three cases. Moreover, since by Lemma 1 the set $A=B$ lies in the boundary of of the d-convex hull of S, the boundary of the d-convex hull must coincide with B.

Since there is no continuous mapping without fixed points of a closed twocell into itself, Lemma 2 and Theorem 1 imply that, for single - valued $y(x)$, the connected bounded set S must contain the entire boundary of its convex hull, but not all of the interior of that hull (unless S consists of a single point). It may suffice, in some cases, to delete one single point from the interior of a convex set; for instance, in the case of a circular disc in E_{2}, the deletion of the center makes $y(x)$ single - valued throughout.

In the remaining theorems and lemmas we restrict our attention to sets in E_{2}.
Definition 2. By a normal to a convex curve C at a point $x \in C$ we mean a line perpendicular to a line of support to C at x.

Notation. We designate a line of support at x by $L(x)$, and the corresponding normal by $N(x)$. Further, for a point $y \in S$, we let $x(y)$ be a point in S such that $y=y(x)$, and let $X(y)$ be the set of all $x(y)$.

Theorem 2. Suppose S is the boundary of a compact convex set in E_{2}, and suppose $y(x)$ is single-valued on S. Then:
(1) The set $X(y)$ consists of all points of intersection of the normals to S at y with $S-y$. If S has a tangent at y, then $x(y)$ is single-valued and continuous at y.
(2) The mapping $x(y)$ is monotonic; that is, the order of $x\left(y_{1}\right), x\left(y_{2}\right)$, $x\left(y_{3}\right)$ on S has the same sense as that of y_{1}, y_{2}, y_{3}.

Proof. (1) If $x=x(y)$, then the circle with center x and radius $d(x, y)$ contains S. Hence the tangent to this circle at the point y is also a line of support to S, and the radius lies in a normal to S at y.

Now, let $y_{i} \longrightarrow y, y_{i} \in S$, and choose $x_{i}=x\left(y_{i}\right)$. Then, due to the continuity of the mapping $y(x)$, each limit point of $\left\{x_{i}\right\}$ is in $X(y)$. Thus if S has a tangent at a point y, then the mapping $x(y)$ is one-to-one and continuous at y.

To complete the proof of (1), suppose S has a corner at y. Then the farthest points of intersection from y of the normals at y with S fill out a closed subarc of S, which we denote by S_{1}; the end-points of S_{1} we denote by u_{l} and u_{r}. There exists a sequence $y_{i} \in S$ with $y_{i} \rightarrow y$ such that the normals to S at the y_{i} are unique and approach the left normal at y. Hence, by the above, $x\left(y_{i}\right)$ converges to u_{l}, and hence $u_{l} \in X(y)$. Similarly, $u_{r} \in X(y)$. The three lines determined by u_{l}, u_{r}, and y divide the plane into seven closed sets, and the arc S_{1} is contained in that unbounded one which has $u_{l} u_{r}$ as part of its boundary. We denote that set by A. Since each of the two circles with centers u_{l} and u_{r} which pass through y contains S, it follows by the law of cosines that $y(u)=y$ for all ${ }_{u} \in A$. Hence $S_{1} \subseteq X(y)$. According to Theorem 1 , the curve S contains no straight line-segment, and thus any normal to S intersects S in exactly two points. Hence the common part $\left(S-S_{1}\right) \cdot X(y)$ is the null set, so that $S_{1}=$ $X(y)$.
(2) The above facts, together with the fact that each $u \in S$ is contained in some $X(y)$, imply that the transformation $x(y)$ maps connected sets into connected sets, even though the mapping need not be single-valued and therefore not necessarily continuous. The single-valuedness of $y(x)$ implies that if $y_{1} \neq y_{2}$, then $X\left(y_{1}\right) \cdot X\left(y_{2}\right)=0$. If the transformation $x(y)$ failed to be monotonic, it would have a fixed point $y=x(y)$; but this is impossible unless S is a single point. Hence condition (2) must hold.

Corollary 2. Suppose C is the boundary of a compact convex set S. Let $\alpha \beta$ be a diameter of C, and let $N(\alpha, \beta)$ designate the common normal to C through α and β. Then $y(x)$ is single - valued on C if and only if for every pair of points $u, v \in C$ which lie on the same side of $N(\alpha, \beta)$, the normals $N(u)$ and $N(v)$ intersect at an interior point of S.

Proof. First observe that, for any compact convex set S with $\alpha \beta$ as a diameter, if $x \cdot \alpha \beta=0$, then x and $y(x)$ must lie on opposite sides of $N(\alpha, \beta)$.

To prove the necessity, observe that α and β are involutory points in the sense that

$$
y(y(\alpha))=\alpha \text { and } y(y(\beta))=\beta
$$

Hence the necessity follows from the monotonicity of $y(x)$ as described in

Theorem 2.

To prove the sufficiency, first choose $x \in C-(C \cdot \alpha \beta)$. Suppose $y(x)$ is not single-valued, and choose $u, v \in Y(x)$. As mentioned above, $y(x)$ and x lie on opposite sides of $N(\alpha, \beta)$. A circle with center x and radius $d(x, u)$ is tangent to C at both u and v, and the normals $N(u)$ and $N(v)$ intersect at x, which is not interior to S. Hence $y(x)$ is single-valued for $x \in C-(C \cdot \alpha \beta)$. By continuity it follows also that

$$
y(\alpha)=\beta, y(\beta)=\alpha .
$$

This completes the proof.
In the following we shall extend the generalized notions of curvature described by Bonnesen and Fenchel [2, pp. 143-144]. Choose a point $x \in C$, where C is a closed convex curve together with a line of support $L(x)$. The circle tangent to $L(x)$ at x and passing through a point $p \in C-x$ must have its center $z(p)$ on the normal $N(x)$ to $L(x)$ at x. Establish an order on $N(x)$ in terms of the distance from x, and let

$$
\left.\begin{array}{l}
E_{s}(x, \delta(x)) \equiv \sup _{p} z(p) \\
E_{l}(x, \delta(x)) \equiv \inf _{p} z(p)
\end{array}\right\} p \in \delta(x)-x
$$

where $\delta(x)$ is an arc of C containing x. We define four types of centers of curvature as follows:

$$
\begin{gathered}
E_{s}(x) \equiv E_{s}(x, C), \quad E_{l}(x)=E_{l}(x, C) . \\
E_{o}(x) \equiv \lim _{\delta(x) \rightarrow x} E_{s}(x, \delta(x)), \quad E_{i}(x) \equiv \lim _{\delta(x) \rightarrow x} E_{l}(x, \delta(x)) .
\end{gathered}
$$

Clearly $E_{l}(x) \leq E_{i}(x) \leq E_{o}(x) \leq E_{s}(x)$ relative to $N(x)$.
Definition 3. The sets

$$
\sum E_{s}(x), \sum E_{o}(x), \sum E_{i}(x), \text { and } \sum E_{l}(x)
$$

(x ranges over C) are respectively called the superior evolute, the outer evolute, the inner evolute, and the inferior evolute of S, and are denoted by $E_{S}, E_{o}, E_{i}, E_{l}$.

Theorem 3. Suppose C is the boundary of the compact convex set $S \subset E_{2}$. If $y(x)$ is single-valued on C, then the superior evolute, and hence all four
evolutes, of C must be contained in S.
Proof. Since $y(x)$ is single-valued for each point $x_{1} \in C$, the proof of Theorem 2 implies that for any normal $N\left(x_{1}\right)$, the set $N\left(x_{1}\right) \cdot\left(C-x_{1}\right)$ consists of a single point, denoted by x^{\prime}. Choose $p \in C-x_{1}$. Since

$$
d\left(x^{\prime}, p\right)<d\left(x^{\prime}, x_{1}\right)=d\left(x^{\prime}, y\left(x^{\prime}\right)\right),
$$

it is clear that the perpendicular bisector B of the segment $x_{1} p$ intersects the segment $x_{1} x^{\prime}$. Hence

$$
B \cdot x_{1} x^{\prime}=z(p) \in S
$$

Theorem 4. Suppose the inner evolute of the boundary C of the compact convex set S is contained in $S-C$. Then $y(x)$ is single-valued on C.

Proof. Suppose there exists an $x \in C$ such that $y(x)$ is not single-valued. Choose $u, v \in Y(x)$. The circle with center x and radius $d(x, u)$ contains S and is tangent to C at u and v. Hence the arc $u v$ of $C-x$ contains a point w of minimal distance from x. The circle with center x and radius $d(x, w)$ is tangent to C at w, while a neighboring arc of w on C lies outside or on that circle. Hence C has a unique normal at w and $E_{i}(w) \geq x$, so that $E_{i}(w)$ is on or outside C.

Theorems 3 and 4 do not determine the single-valuedness of $y(x)$ on S if E_{i}, E_{o}, and E_{s} lie in S and contain points of C. This situation can be described as follows:

Theorem 5. Let S be a compact convex set with boundary C such that E_{s} (and hence each of the evolutes) of C lies in S. Then $y(x)$ fails to be singlevalued on C if and only if there exists a point $x \in C$ which lies on E_{i}, E_{o}, and E_{s}, and which is the center of a circular arc contained in $C .{ }^{1}$

Proof. To prove sufficiency, suppose there exists a point $x \in C$ which is the center of a circular arc $C_{1} \subset C$, and suppose $y(x)$ is single-valued on C. Then according to Theorem 2 the single-valuedness of $y(x)$ implies $x \in X(y)$ for each $y \in C_{1}$. Hence $C_{1} \subseteq Y(x)$, a contradiction.

To prove necessity, assume $y(x)$ is not single-valued on C. Choose u, $v \in Y(x)$, and let w be a nearest point to x of the $\operatorname{arc} C_{1}$ of $C-x$ joining u and v. In the proof of Theoram 4 we saw that $E_{i}(w) \geq x$; but since the evolutes are

[^0]in S, we have
$$
E_{i}(w)=E_{o}(w)=E_{s}(w)=x
$$
(Since E_{s} is bounded, C can contain no straight line segments.) Hence the circle with center x and radius $d(x, w)$ contains S. Thus $d(x, w) \geq d(x, u)$. From the definition of w it now follows that $d(x, z)=d(x, u)$ for each $z \in C_{1}$. Hence C_{1} Hence C_{1} is circular arc in C with center at x.

As seen earlier, if S is a simply connected set containing at least two points, then $y(x)$ is not single-valued on S. The situation is described more fully in the following theorem.

Theorem 6. Let S be a compact convex set in E_{2} with boundary C. Then $y(z)$ is single-valued if $z \neq E_{S}(x)$ for all $x \in C$; and $y(z)$ is not singlevalued if $z=E_{s}(x), z \neq E_{o}(x)$ for some $x \in C$.

Proof. Assume $y(z)$ is not single-valued; then there exist distinct points $u \in Y(z), v \in Y(z)$, and the circle with center z and radius $d(z, u)$ contains S and is tangent to C at u and v. Hence $E_{s}(u)=E_{s}(v)=z$.

Now suppose there exists an $x \in C$ such that $z=E_{s}(x), z \neq E_{o}(x)$. Then, since C is compact, there exists a point $u \neq x, u \in C$, such that

$$
d(z, u)=d(z, x)=d(z, y(z))
$$

Hence $u \in Y(z), x \in Y(z)$. Thus Theorem 6 is proved.
A few remarks about the four evolutes may be desirable at this point. The inferior and superior centers of curvature, $E_{l}(x)$ and $E_{s}(x)$, are determined by properties in the large. In fact, E_{l} contains the set of centers of those circles which are in S and which are tangent to C at not less than two points. Similarly E_{s} contains the sets of centers of those circles which contain C and which are tangent to C at not less than two points.

Since a convex curve C has curvature almost everywhere, we have $E_{i}(x)=$ $E_{O}(x)$ for almost all $x \in C$. Let us define

$$
E \equiv \sum_{E_{i}}(x) E_{o}(x)
$$

(x ranges over C), where, as usual, $E_{i}(x) E_{o}(x)$ denotes a closed segment. The number of normals to C through a point $x \in E_{2}$, as a function of x, is the same in each component of the complement of E. In the case where S is a compact convex set for which E is bounded, there are exactly two normals to C through each point x in the unbounded component of the complement of E (the
lines joining y to the nearest and farthest points on C). However, from each point $y \notin E$ on $E_{l}\left(E_{s}\right)$ there are at least four normals to C. [According to Theorem 6, there are at least two normals to the two or more points of tangency u, v of the inscribed (circumscribed) circle with center at y. In addition, there are lines joining y to nearest (farthest) points on each of the two arcs of C joining u and v.] Thus E_{l} and E_{s} do not intersect the unbounded component of \bar{E}. These statements imply the following:

Theorem 7. Let C be the boundary of a compact convex set $S \subset E_{2}$. Then $E_{S} \subset S$ if and only if $E_{o} \subset S$. Also $E_{s} \subset S-C$ if and only if $E_{o} \subset S-C$.

An example. Consider the family of ellipses $C(e)$,

$$
b^{2} x_{1}^{2}+a^{2} x_{2}^{2}=a^{2} b^{2}, a \geqq b .
$$

If the eccentricity e satisfies the condition $e \leq \sqrt{2} / 2$, then $y(x)$ is singlevalued on $C(e)$. If $e>\sqrt{2} / 2$, then $y(x)$ is not single-valued at $x=(0, \pm b)$. In each case the inner and outer evolutes coincide; they form the familiar astroid with cusps at

$$
\xi=\left(a_{1}, 0\right), \eta=\left(-a_{1}, 0\right), \tau=\left(0, b_{1}\right) \text { and } \rho=\left(0,-b_{1}\right)
$$

where $a_{1}<a$, and $b_{1}<b$ for $e<\sqrt{2} / 2$ while $b_{1}>b$ for $e>\sqrt{2} / 2$. The superior evolute E_{s} is the closed line-segment $\rho \tau$, and E_{l} is the closed line-segment $\xi \eta$. If $e \neq 0$, then $y(x)$ is single-valued on the complement of the open segment $\rho \tau-\rho-\tau$.

3. Sets on which $Y(x)$ contains at least two points.

Theorem 8. Let $S \subset E_{2}$ be a compact set of diameter d, and let D denote the set of end-points of diameters of S. If $Y(x)$ has at least two elements for each $x \in D$, then $Y(x)$ consists of exactly two points for $x \in D$, and D contains a finite number of points. The d-convex hull of S coincides with the d convex hull of D. [Since the latter is a Reuleaux polygon (see below), D must contain an odd number of points.]

Proof. Let $\Sigma \equiv\{C(x)\}$ be the family of circular boundaries $C(x)$ with centers $x \in D$ and with radii d. Let $x \in D$; then

$$
Y(x)=C(x) \cdot D .
$$

Since

$$
\operatorname{diam} Y(x) \leq \operatorname{diam} S=d,
$$

there exists a smallest arc A of $C(x)$ which contains $Y(x)$, and which has a length not exceeding $\pi d / 6$. Let x_{1} and x_{2} be the end-points of A. If a circle $C\left(x^{\prime}\right) \in \Sigma$ were to intersect $A-x_{1}-x_{2}$, then $C\left(x^{\prime}\right)$ would separate x_{1} and x_{2} since

$$
\text { length } A \leqq \pi d / 6
$$

But this contradicts the fact that $S \subset C\left(x^{\prime}\right)$. For any $x \in D$, we have $z=y(x)$ if and only if $x=y(z)$. Hence every $x \in D$ is a point of intersection of at least two circles of Σ. These facts imply that $Y(x) \equiv\left\{x_{1}, x_{2}\right\}$.

Define

$$
H \equiv \prod_{x \in D} K(x)
$$

where $K(x)$ is the closed circular disk with center x and with radius d. Then each $x \in D$ lies in the interior of all $K(x) \subset I$ except $K\left(x_{1}\right)$ and $K\left(x_{2}\right)$, where $Y(x)=\left\{x_{1}, x_{2}\right\}$. Hence x is a corner-point of the boundary of H. As above, let A_{1} and A_{2} be the smallest arcs of $C\left(x_{1}\right)$ and $C\left(x_{2}\right)$ containing $Y\left(x_{1}\right)$ and $Y\left(x_{2}\right)$, respectively. We have shown that $A_{1} \cdot A_{2}=\{x\}$; and A_{1} and A_{2} are in the boundary of H. Thus x is an isolated corner of the boundary of H. Hence D contains a finite number of points, and by definition the boundary of H is the boundary of the d-convex hull of D. It is clearly a Reuleaux polygon, that is, a convex circular polygon whose arcs have radii d, and whose vertices are the centers of these arcs [2, pp. 130-131].

Finally, each of the circles in Σ contains S, and hence $S \subset H$.
Corollary 3. Let S be a set satisfying the conditions of Theorem 8. Then $Y(x) \subseteq D$ for each $x \in S$.

This is an immediate consequence of the fact that D consists of the vertices of H.

Theorem 9. Let $S \subset E_{2}$ be a compact set such that $Y(x)$ has at least two elements for each $x \in S$. Then S lies in the union of a finite number of linesegments. Moreover, if $Y(x)$ has exactly two elements for each $x \in S$, then S cannot be connected.

Proof. Since $Y(x) \subseteq D$ for each $x \in S$, the fact that $Y(x)$ has a least two elements implies that x lies on the perpendicular bisector of the line joining two elements of D. Thus S is a subset of the set obtained by taking the union of the intersections of these perpendicular bisectors with H.

Since the set H has at least three corners x_{1}, x_{2} and x_{3}, let $S_{i}(i=1,3)$ consist of those $x \in S$ such that $\left\{x_{i}, x_{2}\right\} \subseteq Y(x)$. Each set S_{i} is nonempty since S_{i} contains the center of the smaller are of H joining x_{i} and x_{2}. From the continuity of $d(x, y(x))$, it follows that S_{i} is closed. Hence if S is connected, then $S_{1} \cdot S_{2} \neq 0$ (since S is compact), and thus there exists an $x^{\prime} \in S$ such that $Y\left(x^{\prime}\right) \supseteq\left\{x_{1}, x_{2}, x_{3}\right\}$. This establishes the theorem.

We also obtain the following result due to Bing [1].
Corollary 4. Let S be a bounded set in E_{2} containing at least two points, and having the property that with every two points $x \in S, y \in S$ there exists a $z \in S$ such that the triangle $x y z$ is equilateral. Then S is the set of vertices of an equilateral triangle.

Proof. The closure \bar{S} of S must also satisfy the hypothesis stated. Consider the set D of Theorem 8 relative to \bar{S}. If $x \in D$, and $\{y, z\} \subseteq Y(x)$, then $d(y, z)=$ d, so that x, y, z form the vertices of a Reuleaux polygon, and therefore by Theorem 8 we have $D=\{x, y, z\}$. Now let u be the centroid of the triangle x, y, z. By Theorem 9, S is contained in the segments $x u, y u$, and $z u$. Suppose $v \in$ $(S \cdot x u-x)$; then $Y(v)=\{y, z\}$. But v, y, z is not equilateral; hence $S \cdot x u=$ x. Similarly, $S \cdot y u=y, S \cdot z u=z$. Consequently, $S=\{x, y, z\}$.
4. Remarks and problems. Several questions are raised by our theorems.
(1) If we try to characterize disconnected sets in E_{2} for which $y(x)$ is single-valued, we see that this condition is not very restrictive. In fact, given any set S which contains at least one point of the boundary of its r-convex hull H for some radius r, we can adjoin a single point z to S, such that z lies on an interior normal to H at a point of $H \cdot S$, and such that $y(x)$ relative to $S+\{z\}$ is single-valued on $S+\{z\}$.
(2) The characterization of connected sets S in $E_{n}(n>2)$ for which $y(x)$ is single - valued on S offers considerable difficulties. The mapping $y(x)$ still yields a continuous map of S into the boundary of its convex hull, but it need no longer be an onto mapping. For example, the torus, both the solid and its surface, will have single-valued $y(x)$ for suitable ratios of the two radii. The argument that a nontrivial compact S which contains no indecomposable continua cannot be simply-connected holds, however, regardless of dimension, since every continuous mapping of such a simply - connected set S into itself has fixed points [4].
(3) The generalization of the discussion of multivalued $y(x)$ suggests the
following problem: Let S be a compact set in E_{n} such that $Y(x)$ has at least k elements for $x \in S$. Does it follow that S lies in the union of a finite number of ($n-k+1$)-dimensional planes? (Note that in the case $k=1$ this is no restriction, while for $k>n+1$ there would be no sets S.) Are there any sets for which $k=n+1$?

It seems likely that this generalization is false, since the argument which proved the finiteness of the set D in Theorem 8 fails for $n>2$.

In the case $k \geq n$, all points of D are vertices of their d-conves hull. Thus in this case D must surely be denumerable.
(4) Is it possible to generalize Corollary 4, as follows:

If the bounded set S in E_{n} contains at least two points; and if, for some $k \geq 2$, with every two points $x, y \in S$ there are $k-1$ points in S which together with x, y form the vertices of a regular k-simplex, does it follow that S is the set of vertices of a regular l-simplex, where $k \leq l \leq n$?
(5) Another question raised by Corollary 4 is the following:

What are the sets (bounded sets, compact sets) S in E_{2} which have the property that with every $x, y \in S$ there is a $z \in S$ such that $x y z$ is an isosceles triangle with vertex z and prescribed verticle angle α ?

For $\alpha<\pi / 3$, a nontrivial set with the stated property obviously cannot be bounded. For $\alpha=\pi / 3$, the question for the bounded case is answered by Corollary 4 . For $\alpha>\pi / 3$, there is a considerable variety of bounded sets, although none of them can be finite. In fact, for $\alpha>\pi / 3$ every S must be dense in itself; and thus, if closed, it must be perfect. The case $\alpha=\pi$ has been discussed by J. W. Green and W. Gustin [3]; for closed sets S, this case characterizes convexity.

An easy argument shows that for compact S, and $\pi / 3<\alpha \leq \pi / 2$, the entire line-segment joining two farthest points of S must be contained in S.

It may also be worth remarking that if S has the foregoing property for an angle α, then its complement has the same property for the angle $\pi-\alpha$. Thus the case $\alpha=\pi / 2$ is especially noteworthy, since in this case the class of all S with the stated property is closed under the operation of taking complements.
(6) Finally, one should compare the theorems about $Y(x)$ with those for $M(x)$, where $M(x)$ denotes the subset of S whose points have minimum distance from x. In particular the theorem of Motzkin [6, 7] (see also Jessen [5]) states that a closed set S is convex if and only if $M(x)$ is a single point for all x. This theorem does not correspond to any of the results on $Y(x)$ in $\S 1$. In fact, the
analogous assumption, concerning a (not necessarily closed) set S in E_{n}, that $y(x)$ be single - valued for all x, is satisfied if and only if S consists of a single point.

References

1. R. H. Bing, On equilateral distance, Amer. Math. Monthly 58 (1951), 380-383.
2. T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Julius Springer, Berlin, 1934; reprinted by Chelsea, N.Y., 1948.
3. J. W. Green and W. Gustin, Quasiconvex sets, Canadian J. Math. 2 (1950), 489507.
4. O. H. Hamilton, Fixed points under transformations of continua which are not connected im kleinen, Trans. Amer. Math. Soc. 44 (1938), 719-724.
5. B. Jessen, Two theorems on convex point sets (Danish), Mat. Tidsskr. B (1940), 66-70.
6. T. S. Motzkin, Sur quelques propriétés caractéristiques des ensembles convexes, Rendiconti della Reale Academia dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, 21 (1935), 562-567.
7. \qquad , Sur quelques propriétés caractéristiques des ensembles bornés non convexes, Rendiconti della Reale Academia dei Lincei, Classe di Scienze Fisiche, Mate matiche e Naturali, 21 (1935), 773-779.

[^0]: ${ }^{1}$ By "center of a circular arc" we mean the center of the circle to which the arc belongs.

