SOME SPECIAL EQUATIONS IN A FINITE FIELD

L. CARLITZ

1. The equation (1.1). Let fi (u), i=1, «++, r denote polynomials with co-
efficients in the finite field GF (¢), ¢ = p™. We consider the equation

(1.1) f1(§1)+'”+fr(§r)= o (fi,CACGF(q));

let N denote the number of solutions of (1.1).
For B € GF(q), put

n-1

e(ﬁ)=ez'rrit(,5)/}” t(B)=B+BP+"'+BP
Then we may write

(12) gV =2e(-af) 2= e(Bf, (&) +---+BL(EN,
B

AR

where the summation extends over all numbers 3, &, of GF (¢). Now put

(1.3) S(f) = 2 e(f(€),
£

where f is any polynomial with coefficients in GF (g ). Then (1.2) becomes

gN=q¢ + 2 e(-ap) [] S(Bf).
B#o

=1

2. Estimate for N. If deg f < 2, S(f) can be evaluated explicitly. However,
we are primarily interested in the case deg f > 2. An estimate for S(f) is given

by the following:

THEOREM 1. Ifk=deg f < p, then

(2.1) S(f) = 0(q'1/%) (g —>®).
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Mordell [7] has proved (2.1) in the case n=1, that is, ¢ = p. However,
examination of his proof shows that (2.1) holds for all n > 1 provided we
have deg [ < p.

If we substitute from (2.1) in (1.4) we have at once:

THEOREM 2. The number of solutions of (1.1), where deg f,=k; < p, is
given by

1 1

(2.2) N=gqg"!+0(™) W=-—+eeet—]|.
k, ky

This result is trivial unless w > 1, which will evidently be satisfied for

r sufficiently large.

Hua and Vandiver [ 5] and Weil [9] have discussed the number of solutions

of (1.1) in the special case fi(x) =xki; their results are considerably better
than (2.2).

If gi(u), i=1,..., 1, denote a second set of polynomials with coefficients
in GF(q) and such that deg g; < k;, then an estimate can be obtained for the

weighted sum

Se= S elg (£ 445 (E)),
fls""f

r

where the summation is extended over all ¢ satisfying (1.1). Indeed, we have

5, %:e(—-a,B) ; > e[Z (Bf; (&) + gi(fi))]

2t i=1

2e(-aB) [ SBf, + g,
B i=t

1}

in the notation of (1.3); consequently if at least one g;(x) is of degree > 1,
it follows that

T

1 1
S =O r-w = — e —_—.
g (™) (w kl+ +k)

If all %; = 2 then an explicit formula can be obtained for ;.

3. Some special case. Let
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(3.1) flx) = C(lxel+u-+0(kxek (a; € GF(q));
Mordell has proved that
(3.2) S(f) = 0(g'+/120) (—

in the special case ¢ = p. Negative values of e; are permitted; however, in that
case it is assumed that in the definition of S(f), the summation is over £ # 0.
Clearly this does not affect the estimate (3.2). Here again we find that Mordell’s

proof applies to the general case. We state:

THEOREM 3. [f the integers e; in (3.1) are incongruent (mod q — 1), then
(3.2) holds.

(We remark that Min [6, p.139, Lemma 1] states that (2.1) is valid, with-
out mentioning the restriction & < p. However, his proof does not seem adequate.

For example, for k = p, the system
p . p .
Zx{:z y{. (]=1’...,p)
i=1 =1
does not imply that the y’s are a permutation of the x’s.)
By means of Theorem 3 we obtain at once:

THEOREM 4. Let f,(x), i=1,+.+,r, be polynomials of the type (3.1),
with k replaced by k;, and let no two exponents in f,(x) be congruent (mod

g —1). Then the number of solutions of

(3.3) () 4t (&) = o (£ #0)
is given by
(3 4) r-1 0( r-w) ____1__+ + 1

. qg  +Ulgq w = o . ok .

Once again we have w > 1 for r sufficiently large.

The most interesting case of (3.1) is perhaps f(x)=ox + Bx'l. The cor-

responding sum S(f) is the Kloosterman sum

(3.5) Ko, B) = 2 elaé+ B &)
£ #o
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Theorem 4 now implies:

THEOREM 5. The number of solutions &, # 0 of

Bl Br

(3.6) (xlfl+—+---+a,§r+—=o< (aa, B; #0)
3 3

is given by

(3.7) q"t + 0(g%%).

Indeed if we make use of Andre” Weil’s estimate [ 10] for (3.5)

‘K(C{, .B)l < 2‘11/2 ’

then (3.7) can be replaced by

(3.7)° g+ 0(g7?),

which is significant for r > 3.

4. Another special case. Let p > 2. Theorem 4 applies to f (x) = x* + 272,

and indeed (3.7) furnishes on asymptotic formula for the number of solutions of

(4.1) oclff+§-l—+---+0(r§f+l3—;=oc (oo, B; # 0).
& &

However it is of interest to note that certain exact results can be obtained. Let
N, and N, denote the number of solutions of (3.6) and (4.1), respectively. On
the one hand

(4.2) gN, = ¢+ 2 e(-ap) [] K(Ba, BB;);
57{0 =1

on the other hand

(4..3) qN2 = qr + 2: e(—C‘-B) I_I KZ(BO(I:’ 6ﬁi)y
B#o i=t

where
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(4.4) K(c, B) = 20 e(aé? + BE?).
& 7o

Let ¢(£)=+1 or —1 according as ¢ is a square or a non-square of GF (q).
Then (4.4) implies

K, (o, B) = O Q+y(ENelaé+ BEY) = K(a, B) + L(a, B),
£ #o

where

(4.5) L(x,B)= 2 y(&)elaé+ pE).
£ #o

Now it is not difficult to evaluate L (o, B8) explicitly (compare [8, p.1021).
We have

0 (y(ap)=-1)
L(O(., B) =
G(1) (e(2y) + e(-2y)) (aB =y2).

As for the Gauss sum G (1), we note [1, $3]

(4.7) G(a) = 2 e(aé?) =y(a)G(1) (x #0; G21) = qy(=1)).
3

Then by (4.3), (4.4), and (4.5),

(4.8) gN,=q¢" + 3 e(-ap) [] (K(Ba, BB;) + L(Ba, BB
B%o i=1

Comparison of (4.2) and (4.8) leads at once to:

THEOREM 6. Ify(a; B;)=-1,i=1, -+, 1, then the number of solutions
of (4.1) is equal to the number of solutions of (3.6).

5. Quadratic forms. In the remainder of the paper we shall be concerned with

a quadratic form

(5.1) Ouys evesu) = Z Ot U (O(ij CGF(q), 3=loh'j! £0).

i,j=1

We recall that the number of solutions Ny () of
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(502) Q(fls""fr)=o(~

is given [4, pp.47-48] by

gt + (¢° = ¢° V) Y ((=1)°5) (a0 =0)
(5.3)

g2t — g%t Y ((=1)%5) (o #0)
for r=2s;
(5.4) 7% + ¢ Y ((=1)° ud)

for r = 2s + 1, where in (5.4) it is understood that ¢y (0) = 0.

Now let f(u;, +++, u;) denote an arbitrary polynomial with coefficients in

GF(q), and let Nf( «) denote the number of solutions { of
(5.5) fQLpeees §) = e

Clearly the number of solutions ¢;, Cj of
(5.6) Q(fl,"‘aft)=f(£:1"",ét)

is given by

(5.7) N = 2 No(o) N(a).

We shall now show that the right member of (5.7) can be evaluated in certain

cases.

In the first place let f = u®. Then (5.7) becomes

N = 3 No(£F) = No(0) + 2= No(&F).
£ £ #o

Now apply (5.3) and we get, for r = 2s,
N=(g® '+ (g°-¢> D) y((=1)8)) + (g~1) (g** 1 =g 1 ¥ ((-1)°8)),
which is simply

(5.8) N = g% (r=2s).

i
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Similarly, application of (5.4) in the case r = 2s + 1 yields

q23+1 (kodd)
(5.9) N =

g 4 g5(g—-1) Y ((=1)55) (k even).
This proves:

THEOREM 7. The number of solutions of

Q& -es &) =k (k> 1)
is furnished by (5.8) and (5.9).
A slight generalization of Theorem 7 is contained in:

THEOREM 8. The number of solutions of
k
Q& s &) = S (k; > 1)
is given by

N =g 4 {(¢° ="M ¢" =" (g -1} ((~1)%5)

for r=2s;
PLAEE (Ckys ooy kt) 0dd)
N:
g% + ¢ (q- 1) y((=1)°9) ((kys voe s be) even)
forr=2s +1.

In the next place let f denote a polynomial such that f( (2, +++, {,) never
vanishes. Then since for r=2s, &« # 0, No(«) is independent of &, we see
that the number of solutions of (5.6) is given by

(5.10) N=q¢'tq* " - ¢°2 ¢ ((-1)°8)}

for r = 2s. On the other hand, for r = 2s + 1 we get

(5.11) N=g"" 4+ ¢ ¢ ((=1)°8) 20 w(f({p -y &)
&

1,-..,
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We state:

THEOREM 9. Let f be a polynomial such that f({ , +++, {,) never vanishes.
Then the number of solutions of (5.6) is furnished by (5.10) and (5.11).

Note that the right member of (5.10) is independent of the polynomial f. It

follows from (5.11) that the number of solutions of
O eens &yeny) = P UL wee s 8)

is the same for all values of m. Other special cases that lead to simple explicit

results are contained in the following two theorems:

THEOREM 10. Let f be a polynomial such that f({ , -+, {,) never van-

ishes. Then the number of solutions of
Q& oeer &yn) = 2L oo )
is given by
g+ " Y ((-1)°9).

THEOREM 11. Let f be a polynomial such that f({ , «++, ¢,) never van-
ishes. Then the number of solutions &;, n, 4”]. of

Q& wes &) =1 f(Ls v &) (k>1)

is q”2s for r=2s, while for r=2s +1 the number of solutions is given by

qt+23 (k odd)
(5.12)

72 1 ¢%(g-1) Y ((=1)°5) Z ¢(f(€1"”’ét)) (k even).
Cly"',ét

In particular if { is the square of a polynomial then the second of (5.12) re-

duces to

gt + ¢S (g-1) Y ((~1)%9).

It is clear how Theorem 11 can be generalized to give the number of solu-

tions of
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Q<§1"'" é‘r) - Tlfl ...nf:)w f(gl’ ooy éz)‘

A word may be added about a generalization of a different kind. Let Q; de-
note quadratic forms in r; indeterminates and of discriminant 8; # 0. Then we

can treat such equations as
(5.13) Ql(fl""afrl)()z("]l""9r[r2)=a.

For example, the number of solutions of (5.13) for & # 0 is evidently

(5.14) 2= No,(B)Ng,(a/B),
B0

which can be evaluated by means of (5.3) and (5.4). In particular if r, and
r, are both even, then (5.14) becomes

S

(-1 (¢ =" (=1 5)) (627 = ™y ((-1)%8,)),

where r; = 2s;. In similar fashion we can determine the number of solutions of,

say,
(5.15) QU +++++0,,. V=%,
where no two (’s have any unknowns in common.

6. Bounds (¢=1). Returning to (5.11) and (5.12), we remark that since

an exact formula for such sums as

(6.1) S UL )

419"'7 Lt

is usually not available, it is natural to look for a bound. We shall consider

only the case t=1. Then for the sum

I(f)= 210,
4

it follows from a theorem of Weil [10] that

(6.2) T(f) = 0(q/?);

by more elementary methods one can prove the weaker estimate [ 3]
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T(f) = 0(g" %) (k=deg f),

where @3 = 1/4, 8} = 3/2(k+ 4) for k> 4.

Thus applying (6.2) or (6.3) we obtain asymptotic results for (5.11) and
(5.12) with ¢=1.

7. Extension of results of $5. The results of 5 can be extended by making

use of known results on the number of solutions of
(7.1) QUpy eee s U=

in polynomials U; € GF[q, x] of degree < m; Q has its usual meaning. For
simplicity we limit our attention to the case r= 2s. Cohen [2, p.556, Cor. 3]
has proved that the number of solutions of (7.1) with r = 2s is

(qS-A)q(s")(2m") (o £ 0)

(7.2) m-1

AT g™ 4 (g5 — A) q(s-l)(2m-l) Z AZ q-z(s-z) (« =0),
Z=0

where A = 1/ ((~1)°8). Then we have:

THEOREM 12. The number of solutions of

(7.3) Q(Up"',U25)=€]:l "‘4:% (k; Zl)

in polynomials U; of degree < m is

m=1
(qt__ (q__ l)t)[)\mqms ¥ (qs -2) q(s-l)(2m-l) 2 AZ q-z(s-z)}

z=0

(g1 (g =) gl me),
where A = ¢ ((=1)%§).
The proof is like that of Theorem 7.

THEOREM 13. Let f be a polynomial such that f({ ,«++, () never van-
ishes. Then the number of solutions of

Q(UU M} Uzs) = f(gl’ *ccy é;)
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in polynomials U; of degree < m and g}. € GF(q) is

qt+(5-1) (2k-1) (g5 =)).

THEOREM 14. Let f be a polynomial such that f((, «++, (,) never van-

ishes. Then the number of solutions of
] ky ke
Q(Ul,o.-,025)=7]l cee f(él’...’gw) (klzl)y

with deg U; < m, is q% times the number of solutions of (7.3).

The proof of these theorems is immediate.

Finally we mention problems like (5.13) and (5.15) in which the unknowns

are polynomials. Thus for example the number of solutions of

Q (Ul,"'s UZS,')U2(V1’...’ V282) = f(é‘,“‘y Ct)’

1
with deg U; < m;, deg U, < m,, where f never vanishes, is equal to

t+(sy-1) (2my-1) +(s5-1) (2my-1) (qsl B )\l) (qsz_ )\2) (q- 1),

where A; = ¢y ((-1 )%8;), and §; is the discriminant of Q;.

It may also be mentioned that in a problem like (7.3) we may restrict some
of the U; to be primary of degree m; the final formula is similar to that obtained

in Theorem 12. The same remark applies to the other theorems of this section.
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