ON SELF-ADJOINT DIFFERENTIAL EQUATIONS
OF SECOND ORDER

RuTts LiNnD POTTER

Introduction. This paper is concerned with the behavior near x = @ of

solutions of the self-adjoint differential equation
(1) lr(x)y’1"+p(x)y=0,

where 7(x) > 0 and r(x) and p(x) are continuous for positive values of x. A
solution is said to oscillate near x = « if it has no largest zero. We study the
oscillation and boundedness of solutions of equations of the form (1). Repeated
use is made throughout the paper of the Sturm comparison and separation theo-
rems and of two theorems due to Leighton [6; 5]. Leighton’s theorems are the

following.

THEOREM L,. If r(x) and p(x) are continuous and r(x) > 0 on the in-
terval 0 < x < w, and

o dx x
lim / =« and lim / p(x)dx = o,
1 1

xX—00 r (x ) X—00

then every solution of (1) vanishes infinitely often on the interval (1, ®©).

THEOREM L,. Ifr(x) and p(x) are continuous, and r(x)p(x) is a positive
monotone function of x for x large, a necessary condition that solutions of (1)

be oscillatory near x = «c is that not both limits

x dx x
lim f , lim f p(x)dx
X—00 1 r (x ) x—00 J1

exist and are finite.
We proceed to the study of conditions under which solutions of equation (1)

Received May 5, 1952. The author is indebted to Professor Walter Leighton for helpful
suggestions in the preparation of this paper. Part of the work was done while the author
was employed under contract N9onr-95100 with the Office of Naval Research.

Pacific J. Math. 3 (1953), 467-491

467



468 RUTH LIND POTTER

are oscillatory.

1. Oscillation theorems. In this first section we consider the so-called

“‘normal’’ form of equation (1) in which r(x) = 1. It will be useful to set

p(x) =h%(x),

where h(x) is positive and of class C? when x > @ > 0. Equation (1) then
becomes

(1.1) y+ B3 (x)y = 0.

To study the oscillation of solutions of equation (1.1), it is useful to consider

also the equations

(1.2) (A2 (x)z°1"+ 2z =0,
1 B2 (x)  A"(x)
1.3 ‘1 - =
(1.3) [A(x)n”] +[ e 0 + 5 ]7] 0,
1 B (x)  h(x) ]
1.4 ‘1 - - =0.
(1.4) [A(x)] +[ ) o 5 14

Nonnull solutions of these four differential equations are oscillatory® or non-
oscillatory simultaneously, for one may readily verify that the derivative of
a solution of (1.1) is a solution of (1.2), equation (1.3) is obtained from (1.1)
by the substitution 7 = A"'/2(x)y, and (1.4) is obtained from (1.2) by the sub-
stitution ¢ =AY/ 2 (x)z.

We define
1 R (x) A (x)
].. H = —
(1.5) 1 (%) [h(x) () 2 ]
and
1 B2 (x)  R(x)
(16) Hz(x)=[h(x)_4/z(x) T T2 ]

1A solution is said to be oscillatory on an interval if it vanishes infinitely often
on the interval.
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It follows from Sturm’s comparison theorem that if H,(x) < 0 or H,(x) < 0 for

large values of x, the solutions of (1.1) are nonoscillatory. Similarly, it follows

from Theorem L, that if?
x dx
lim / = o0,
a h(x)

solutions of (1.1) are oscillatory if

lim /x H (x)dx
a

I
+
8

or if

lim /x Hy(x)dx = + .
a

We proceed with a proof of the following result.

THEOREM 1.1. If

lim f" Hy(x)dx = + o,
a

the solutions of (1.1) are oscillatory.

Note first that lim fax k™' (x)dx cannot be finite, for then A’(x) — — w;
and A (x ) could not be positive, as assumed. An application of Theorem L, com-

pletes the proof of the theorem.
The following lemma will be useful in the sequel.

LEMMA 1.2. If h(x) is a positive monotone function, a necessary condition
that solutions of (1.1) be oscillatory is that

x dx
lim/ = .
a h(x)

To prove the lemma let us suppose that its conclusion is false; that is,

I /‘x dx P
M h o ®

2All limits taken in this paper will be limits as x —> oo, Unless otherwise indicated,
ais a suitably chosen positive number.

suppose
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Then by a well-known theorem on infinite integrals, lim %A~ (x) = 0, so that
for any fixed value of n, A" (x) < (nx)7!, for x sufficiently large. Since so-

lutions of the equation

¥+ (nx) %y =0

are nonoscillatory whenever n > 2, an application of Sturm’s comparison theorem

ields the contradiction, and the truth of the lemma is established.
y

THEOREM 1.2, If
x
lim/ H(x)dx = o,
a

a necessary and sufficient condition that the solutions of (1.1) be oscillatory

m a h(x) = 0

The sufficiency of the condition follows from Theorem L, applied to equation

(1.3).

is that

To prove the necessity, let us suppose that

_ x dx <
llm/; h(x) .

Since

lim /x H (x)dx = o,
a

it is readily seen that lim A“(x) = + v, and hence A (x) is monotone for large
values of x. It follows from Lemma 1.2 that then the solutions of (1.1) are
nonoscillatory, contrary to the hypothesis.

The proof of the theorem is complete.
THEOREM 1.3. [flim [* A"'(x)dx = w and, for large values of x,

[ (x)]? < k% < 4,

solutions of (1.1) are oscillatory.
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Under the hypotheses of the theorem,

. x . 1, 1, x 1 dx
hm./a~ H(x)dx > lim E’l (x)—;/z (a)+‘/(z <I—Zk_2)h(x) = @,

so that Theorem L, implies that solutions of (1.3), and hence that solutions

of (1.1), are oscillatory.

THEOREM 1.4. If h(x)H,(x) is a positive monotone function, a necessary
condition that solutions of (1.1) be oscillatory is that

I /‘x dx
im e B (%) =+ @

To prove the theorem note first that it follows from Theorem L, that not

both the limits
. x  dx . x
lim ./a' Yt lim ./a. Hy(x)dx

can be finite., Suppose the conclusion of the theorem were false. Then the

positiveness of H,(x) would imply that the second limit above would also be

finite. From this contradiction we may infer the truth of the theorem.
The following result is useful in the application of the theory.

THEOREM 1.5. If lim A’(x) = L exists, solutions of (1.1) are nonoscil-
latory if L > 2, and oscillatory if L < 2.°

This theorem is proved by using Sturm’s comparison theorem with the aid

of the relation

h(x) = h(a) + fx h'(x)dx.

If L =2, solutions may or may not be oscillatory depending on A(x), as the
following example shows.
EXAMPLE 1.1. For the equation
,, a*+1/4 log2x
Y+ ————— =0,
x?log?x

3Part of this theorem is contained in a theorem of Hartman and Wintner [ 1],
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we have

xlogx

(a®+1/4 1og2x)1/2

h(x) =

and lim h’(x) = 2, whereas the solutions of the equation are oscillatory or not
according as a? > 1/4 or a? < 1/4.

COROLLARY L5 If lim [ A"' (x)dx = w0, and H,(x) and H,(x) are non-
negative and not identically zero for large values of x, a necessary condition
that solutions of (1.1) be nonoscillatory is lim A”(x) = 2.

If

x dx
lim/ = w,
a h(x)

and either
X
lim/ Hi(x)dx =
a
or

lim /‘x Hy(x)dx = w0,
a

application of Theorem L, to (1.3) or (1.4), as the case may be, shows that
solutions of (1.1) are oscillatory. Therefore, if solutions of (1.1) are assumed

nonoscillatory,

lim fxﬁl(x)dx <o
a

and

lim /‘x H,(x)dx < w,
a

in which case lim A°(x) may be seen to exist. Since

x 1 1, x 1 .2
L Hy(x)de = = h7(x) = —h7(a) + 1/4] 7 s T4~ h77 () 1ds,
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x 1, 1, x 1
/a Hy(x)d == Sh(x) + < (a)+1/4/a -

) [4-2"%(x)]dx,

and the limit of the difference of the two integrals exists, lim A’(x) exists.

Moreover, since
x
0 </ (H(x) + Hy(x)]dx,
a

lim £°%(x) < 4. Therefore, by Theorem 1.5, lim ~h’(x) =2, and the corollary

is established.

An extension of Theorem 1.5 to the more general equation (1) can be made

if either
x  dx
lim/ =
a r(x)

or

x
lim/ p(x)dx = .
a

We assume that r(x) > 0 and p(x) > 0, and that r(x) and p (x) are functions
of class C* when 0 < a < «.

THEOREM 1.6, If

I x dx
1m./:Z e @,
and

lim r(x)i[r(x)p(x)]-1/2 =L,
dx

the solutions of (1) are oscillatory if L < 2, and nonoscillatory if L > 2.

Transforming equation (1) by the substitution

e / r(d:)

leads to the equation



474 RUTH LIND POTTER

%y
— +r(x)p(x)y = 0.
a't2

The theorem follows immediately upon application of Theorem 1.5 to this equa-
tion. (Note that L < 0 is incompatible with the assumption r(x)p(x) > 0.)

THEOREM 1.7. If p(x) is positive for large values of x, and

lim f" p(x)dx =
a

and
d
limr(x) — [r(x)p(x)1Y2 =M,
dx

the solutions of (1) are oscillatory if M > —2 and nonoscillatory if M < -2.

If ¥ is a solution of equation (1), z =r(x )y’ is a solution of the differential

equation

0 [l
. p(x)z +r(x)z_ .

Thus the solutions of (1) and those of (1.7) are oscillatory or nonoscillatory
together. Application to equation (1.7) of the procedure used on equation (1)
in the proof of Theorem 1.6 establishes the stated result.

The examples which follow indicate the sensitivity of the results of this

section.
ExampLE 1.2. For
(1.8) ¥y + a*x"y =0,

we note that

B(x) = = (14202,
2a

To study the equation we distinguish three cases.

Case 1: n > —2. Then lim A°(x) =0, so that the solutions of (1.8) are
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seen to be oscillatory by Theorem 1.5.

Case 2: n < =2. Then lim 2’(x) = v, and Theorem 1.5 can again be applied,

showing the solutions of (1.8) to be nonoscillatory here.

Case 3: n=-2. Then lim A°(x)=1/a. The solutions are oscillatory if
a? > 1/4 and nonoscillatory if a? < 1/4, by Theorem 1.5. Theorem 1.5 fails
to give any information if a?=1/4 (lim A°(x)=2). In this case, however,

H,(x) = 0, and the solutions are nonoscillatory. The equation

y”+ 1/4x"% = 0
is thus in a sense a limiting equation.

ExampPLE 1.3. For

y” + (1/4x? + e¥)y =0,

since lim A“(x) =2, Theorem 1.5 gives no information about the solutions.
However, for large values of x, H,(x) < 0 and the solutions are accordingly

nonoscillatory.

EXAMPLE 1:4. Another equation for which lim 2°(x) = 2 is

y*" + 1/4 x"Hog™'x (1 + logx)y = 0.

The solutions of this equation are oscillatory by Theorem 1.1 since
x
lim/ H,(x)dx = c.
a

The limitations of the theory of this section are indicated by the fact that
from the theorems which have been given here it is not possible to determine

whether the solutions of the equation in Example 1.1 are oscillatory or not.

2. Counting the zeros of a solution. We consider first the differential
equation (1.1), where A(x) > 0 and of class C’ on the interval 0 < x < w.
Let N(a, x) represent the number of zeros of a solution y(x) of (1.1) on the
interval * (a, x) where @ > 0. This number differs by at most one for all so-
lutions, and hence for the present purpose can be considered as depending only
mating intervals it will be convenient to use the following conventions:

[a, b] means the interval a <x<b, (a, b] means the interval 2 < x < b, [a, b) means the
interval a <x <b, (a, b) means the interval a <x < b,
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on the differential equation and not on a particular solution.

In the preceding section it was shown that the solutions of equation (1.1)
are oscillatory whenever lim A“(x) < 2, and are nonoscillatory whenever
lim 2°(x) > 2. There are equations with oscillatory solutions and others with
nonoscillatory solutions for which lim A’(x)=2. Wiman [8] has given an

asymptotic formula for N (a, x) when lim 2°(x ) = 0:

1 rx dx
N (a, ~ — .
(a, %) ﬂv/c; h(x)

An asymptotic formula is readily found whenever 0 < lim 2°(x) < 2, by con-

sidering the set of differential equations

y”+ (m? + 1/4)x"% = 0,

where m is any real number. For a particular value of m, N(a, x) = z logx + k&
(k is a constant), and A “(x) = (m? + 1/4)" /2, "

THEOREM 2.1. If, in equation (1.1), lim A’(x)=m < 2,
1/1  1\Y2
(2.1) N(a, x) ~ —(— - —) logx.
7\ 4

Any differential equation included in Theorem 2.1 is also included in the

stronger Theorem 2.3 given below.

The Wiman formula can be extended to an equation of the form (1).

THEOREM 2.2, If

x  dx x
lim/ = o or lim/ p(x)dx = a,
a a

r(x)

then whenever

lim r(x)di-[r(x)p(x)]'l/2 =0

X

the relation

N(a, x) ~i./‘x vV px)rt(x)dx
7 Ja

holds.
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If lim (¥ r"'(x)dx = @, we apply to (1) the transformation

t = ‘L-x 1 (x)dx

and obtain

2

d
(2.2) —y+r(x)p(x)y=0.
de?

According to the Wiman theorem, the number of zeros N(ay, t) of a solution

y (¢) of (2.2) is asymptotically equal to
1 e
_f [r(x)p(x)]1'/2de,
7 Ja,
provided
d .
lim — [r(x)p(x)1"'/2 = 0.
dt

But this is equivalent, under the transformation, to the first half of the theorem.

If

X
limf p(x)dx = w0,
a

we apply the transformation

s = /;x p(x)dx

to equation (1.7), noting that the zeros of a solution of (1) and those of a

solution of (1.7) separate each other, and proceed as above.

An application of a variant of the foregoing method yields a generalization

of the Wiman theorem for equation (1.1).

THEOREM 2.3. If the function g(x)=1[x2A"%(x)~1/41""? is real and

positive, and

(2.3) limx[g ' (x)]"= 0,
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then

1 rx g(x)
N ~— dx .
(a, x) 77/; x

x
To prove the theorem we transform (1.1) by the substitution y = x'/?z and

obtain

(2.4) [xz°)" + g%(x)x"'z = 0.

The proof of the theorem may now be completed by applying Theorem 2.2 to
equation (2.4).

Theorem 2.3 is more general than the Wiman theorem. Applying the law of
the mean to A"'(x), we see that the Wiman condition, lim A*(x) =0, implies
lim %™ (x) = «, and it is readily verified that whenever the Wiman condition
is satisfied equation (2.3) holds. On the other hand, Theorem 2.3 applies to

differential equations for which the Wiman theorem is not available; e.g.,®

1+ logx
(2.5) y"+——g—y=0
4x? logx

It should be observed that Theorem 2.3 includes all equations covered by

Theorem 2.1, whereas Theorem 2.1 is not applicable to equation (2.5) since

lim A%(x) = 2.

Still more refined results are obtainable if instead of using the transformation

1/2

which led to equation (2.4), we use the substitution y = ¢'/*(x )z, where q(x)

is so chosen that [* q" ' (x)dx diverges more slowly than log x. This suggests

the use of the sequence
x logx, x logx logzx, ceo, x logx oo log %, + o
(cf. [6]).

To show that such a sequence can be used, the following theorem is in-

cluded.
THEOREM 2.4. In the differential equation

(2.6) lr, . (x)y") + p(x)y = 0,

5See Example 1.4, This equation was shown to have oscillatory solutions.
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(2.7)

and

(2.8)

then

(2.9)

where
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ro(x) = %, ra(x) = rpoy (x)log, %,
. d -1/2
lim rn_l(x)—[rn.l(x)p(x)] =0,
dx
p l(x) = o[rn-l(x)logflx],
1/2 - 0’

d -
lim rp (%) d_x [r,l(x)pl(x)]

py (x) = logt/2x {Lr.y (x)(log!/?x) 71" + p(x)logl/?x}.

Moreover, (2.9) does not imply (2.7).

The proof is clear once the limits in question are evaluated.

3. Boundedness of the solutions of a particular equation. In this section we

study the question of boundedness near x = + @ of solutions of the self-adjoint

differential equation

(3.1)

[r(x)y ] = p(x)y = 0.

We assume that r(x) and p(x) are positive continuous functions of x for x

large, and that r“(x) is continuous.

A caNONICAL FORM. It is useful to develop a canonical form for the

solutions of (3.1). This form is suggested by the special case

r(x)p(x) = k*.

In this instance the general solution of (3.1) may be written

clev(x) + cze'v(x),
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where v(x) = k7 [* p (x)dx, and ¢, and c, are arbitrary constants.

Direct computation and an application of the fundamental existence theorem

for systems of differential equations yield the following result.
THEOREM 3.1. The general solution of (3.1) may be written

ciu (x)ev(x) + czu(x)e‘v(x),

where u(x) and v(x) are functions of class C* which satisfy the pair of equa-

tions
(3.2) rwdl(ru’)’ = pul = -1,
(3-3) ruzv'-— 1.

Since u(x) is a function of class C? satisfying (3.2) and (3.3), u(x) can-

not vanish.

THEOREM 3.2. The general solution of (3.2) is given by the relation
(3.4) u? = ay? + byl + 2cyyy,

where y, and y, are linearly independent solutions of (3.1) and a, b, and c are

any constants satisfying the relation
ab = -—k-z + 02,
if k is the constant

r(2) ly, (x)yj(x) = y/(x)y,(x)].

To prove the theorem, the solution given by (3.4) can be substituted directly
in (3.2).

BOUNDEDNESS OF SOLUTIONS OF (3.2). We first prove a lemma.

LevumAa 3.3. Let r(x), r’(x), and p(x) be continuous and r(x)p(x) be
positive and monotone for large values of x. If u(x) is a positive solution of
equation (3.2), the relations lim u(x)=co and lim u(x) < o cannot hold

simultaneously.

Suppose that the hypotheses of the theorem are satisfied when x > a, and
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that lim z(x) = 0 and lim u(x) < . Since u(x) is of class €2, there are an
infinite number of relative maximum points and of relative minimum points of

u(x) on (a, o). We rewrite the equation (3.2) in the form

(3.2)° (ru’)’ = r'lu'3(rpu4 -1).

From the hypotheses of the lemma, lim [r(x)p(x)] exists and is nonnegative.
If lim [r(x)p(x)] > 0, there exists a relative maximum point x,, of u(x) for

which
[r(xM)u'(xM)]'> 0 and r(xy)u’(xy) = 0.

This implies that there is a positive number € such that u“(x) > 0 when xy <
x < xy + €, which is impossible. If lim [r(x)p(x)] =0, from equation (3.2)’

we see there is a relative minimum point x,, of u (x) for which

[r(xm)u'(xm)]'< 0 and r(xp)u’(x,) = 0.

This implies that there is a positive number ¢ such that u’(x) < 0 when x,, <
x < xpm + €7, which is impossible.
Thus, in any case, the assumption lim u(x)= o and lim u(x) < @ leads

to a contradiction. The truth of the lemma follows.

THEOREM 3.3. Let r(x), r’(x), and p(x) be continuous, and r(x)p(x) be
positive and monotone increasing for large values of x. Then every solution

u(x) of equation (3.2) is bounded near x = «.

We recall that a solution u(x) of equation (3.2) cannot vanish, and note
that if u(x) is a solution, so is —u(x). Let a be a positive real number such
that the hypotheses of the theorem are satisfied when x > a. Suppose then that
u(x) > 0 and let m(x) and M (x) be respectively the minimum value and the

maximum value of u (x) on [a, x 1. Let x,, and xy be such that
ulxy,) =m(x), ulxy) = M(x).

Since
[r (x)u’(x)]1? = r(x)p(x)u?(x) + r(a)pla)u’®(a)

+ /x u? () r(x)p(x)] dx + w?(a) = uw2(x) + [r(a)u’(a)l?,
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it follows that

(3.5) [r(xp)u’(xm)]? + 012 < mi(x) + r(a)pla)m?(x) + 022,

(3.6) [repy)u’(xy)]? + 0;2 >M2(x) + r(a)pla)M*(x) + c;2,

where ¢, c,, c¢{, ¢, are real constants. We identify two cases according as

[r(x)u’(x)]? is bounded or not.

Case 1. If [r(x)u’(x)]? is bounded, it follows from inequality (3.6) that

M (x) is bounded, and hence that u (x) is bounded.
Case 2. If lim [r(x)u’(x)]% = o, we assume u (x) is not bounded. Then
limM(x) = « and limu(x) =

by Lemma 3.3. But equation (3.2)” then implies that (ru’)’ is eventually posi-
tive or lim [r(x)uz’(x)]*=w. It follows from inequality (3.5) that lim m (%)=
and hence that lim m (x ) = 0. Then by Lemma 3.3, u (x) is bounded.

We give a companion result when r (x)p(x) is monotone decreasing.

THEOREM 3.4. If r(x), r’(x), and p(x) are continuous, and r(x)p(x) is
positive and monotone decreasing for large values of x, every solution u(x) of

(3.2) is bounded away from zero.
The proof of this theorem is similar to that of Theorem 3.3.

The following theorem specializes Theorem 3.3 to the ‘‘normal form’’ of

(1).

THEOREM 3.5. If p(x) > 0 and monotone increasing for large values of x,
then the differential equation

(3.7) y”—plx)y =0

is such that all solutions are monotone, and there is one solution y (x) which
approaches zero as x — «. Every solution of the differential equation (3.7)

which is linearly independent of y (x) is unbounded on (0, ).

The monotone character of the solutions is apparent from the fact that if
y (x) is a solution of (3.7), y”’(x) is eventually of one sign and hence so is

y“(x). The general solution can be written
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(3.8) y(x) = clu(x)e"(x) i Czu(x)e'v(x),

where u (x) is positive, and u (x) and v (x) are functions of class C? satisfying
(3.2) and (3.3). By Theorem 3.3, u(x) is bounded, and hence [v’(x)]! is

bounded. Thus v“(x) is positive and bounded away from zero. This implies

Eu(x)e'v(") = lim u(x)ev™ = 0.

We set

-v(x)

y, (x) = ulx)e
and let y, (x) be a positive solution linearly independent of y,(x). Since
limy/(x) = 0
and
v, (x)y, (%) = y/(x)y, (x) = ¢,
where ¢ is a nonzero constant,

lim y, () = cc,
and the theorem follows.

COROLLARY 3.5. If lim [* r"'(x)dx =, and r(x)p(x) is a positive
monotone increasing function of x for x large, there is one solution yl(x) of
equation (3.1) which approaches zero as x —» w. All solutions linearly in-
dependent of y, (x) approach + @ or — @ as x — ®. The solutions are all mono-

tone.
We letz = [ r"!(x)dx. Equation (3.1) becomes
%y
(3.9) — —r(x)px)y =0,

dt

where r and p are to be considered functions of t. The theorem follows from

Theorem 3.5 applied to equation (3.9).

THEOREM 3.6. Ifr(x), r’(x), and

e , 2
P(x)=p(x) Lr (x) l[r (x)
2 4

+ -—
r(x) r(x) r(x)
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are continuous, r(x) and P (x) are positive, and P (x) is monotone increasing

for x large, there is one solution y, (x) of equation (3.1) such that
lim rl/z(x)y1 (x) =0.

For every solution vy (x) which is linearly independent of ¥, (x), r1/2(x)y(x)
is not bounded.

To prove this theorem we transform equation (3.1) by means of the substitu-

tion z = rt/?

(x)y. The resulting differential equation is
z?” -~ P(x)z = 0.
Application of Theorem 3.5 to this equation yields the theorem.

ExampLE 3.1. For
(x2yl)f_ x2y - 0’

all solutions of the corresponding equation
2?udl(x%u’) = x%u] = -1

are bounded since [r(x)p(x)]’> 0 (Theorem 3.3 ). The general solution of the

given equation is

1
—(c e® + c ™).
%

ExamPLE 3.2. For the equation

1"x2—2 0
=Y T PR

X

[r(x)p(x)]” < 0. By Theorem 3.4, therefore, all solutions of

1 1 ‘ 1
—u? (—u') ——7(962—2)1; = -1

X

are bounded away from zero. Moreover, since

p(x) 1r”(x) r"*(x)
+ — — =
r(x) 2 r(x) 4r¥(x)
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by Theorem 3.6 there is a solution y, (x) of the given equation such that
lim x'ly1 (x) =0,
and for every linearly independent solution y (x ),

limx™'y(x) = w.
The general solution of this equation is

x -X
c .
lxe + sze

ExamPLE 3.3. Consider the differential equation

’, 3
y ' =lx +—— ]y = 0.
4x?

By Theorem 3.5, one solution of this equation approaches zero, and all solutions
which are linearly independent of this solution become infinite. The general

solution of the equation is

_ 2 - ox2
X 1/2p% /2+02x 1/24-22/2

THE RICCATI EQUATION ASSOCIATED WITH EQUATION (3.1). Since
the solutions of equation (3.1) are nonoscillatory, the transformation w=r(x)y 7y

applied to this equation leads to the relationship

(3.10) w’=px) - ri(x)w?,

which is valid for each solution y of (3.1) when x is sufficiently large. The
differential equation (3.10) can be used to obtain additional information on the

question of boundedness of solutions of (3.1).

TueoREM 3.7. [f lim [7 rHYx)dx < w0 and lim 7 p(x)dx < o, all solu-

tions of (3.1) are bounded, and there is a positive constant ¥ such that

ly“(x)] < Mri(x).

It is sufficient to consider only positive solutions of equation (3.1). Ac-
cordingly, we suppose y (x) is any solution of (3.1) which is positive for x

large, and let b be a positive number such that both y (x) and y“(x) are of one
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sign when x > b. Equation (3.10) is then valid for such values of x, and w(x)
is of one sign. If w(x) < 0 when x > b, y(x) is bounded. If w(x) > 0, when
x > b it follows from equation (3.10) that

w'(x) < p(x)

and
w(x) < w(b) +f:p(x)dx <K,

where K is a constant. Hence

and

y(x)
y (b)

log

x dx
K[ < mw.
b r(x)
Thus, y (x) is bounded.

To prove the last statement of the theorem we apply the first part to the

equation

- [pHx)z’1 = rYx)z = 0,
for which z = r(x)y’ is a solution if y is a solution of (3.1).

Examples 3.1 and 3.2 show that the hypotheses of Theorem 3.7 cannot be

weakened to the convergence of only one of the integrals

f:%, faw p(x)dx.

4. Boundedness of nonoscillatory solutions of an equation of the form (1).
In this section we study the boundedness of solutions of an equation of the form
(1) when its solutions are nonoscillatory and both r(x) and p(x) are positive
and continuous functions of x for large values of x. ® It is known that a necessary

condition for the solutions of (1) to be nonoscillatory is that not both

6Sections 3 and 4 together discuss boundedness of nonoscillatory solutions whenever
p(x) is eventually one sign, for p(x) negative and positive respectively. The case
where p (x) is not of one sign is not studied in this paper.
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I /‘x dx
im u r(x)—CC

and

x
lim f p(x)dx = .
a

If r(x)p(x) is a monotone function, the convergence of both of the aforemen-

tioned integrals is a sufficient condition that (1) have nonoscillatory solutions

[51.
We state the principal theorem:

THEOREM 4.1. A necessary and sufficient condition that an equation of

the form (1) with nonoscillatory solutions have all solutions bounded near

< .
im - ©

Whenever the solutions of equation (1) are nonoscillatory, the transformation

x = is that

w(x)=r(x)y’/y leads to the Riccati equation

w2

r(x)

(4.1) w’'=-p(x) -

which is valid for each solution y (x) of (1) when x is sufficiently large.

Let y (x ) be a nonoscillatory solution of (1) such that y(x) > 0 and y“(x) # 0
whenever x > @ > 0, where a has been chosen sufficiently large that p(x) > 0
when x > a. It is sufficient to consider only solutions which are eventually
positive since the negative of a solution of (1) is also a solution. Then if

% > a, equation (4.1) is valid as noted above, and

w’(x) 1

< - .
wi(x) r(x)

Hence,

1 d 1
(12 N
a

w(x) r(x) wla)
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We assume that

T /’x dx <
o

Fw(x) >0,

)”(x) 1 [ x dx 1 ]'1
y (x) <r(x) /; r(x)+ wl(a)l

by equation (4.2), so that

x  dx 1
-/; erW(a)

where ¢ is a constant. Accordingly, y (x) is bounded. If w (x) < 0, then ¥ “(x) < 0,

logy (x) < log + c,

and y (x) is bounded. Thus, whenever

T /‘x dx
<o,
im e 1) o)

all solutions of (1) are bounded.

If lim ¥ r"'(x)dx = 0, it follows from equations (4.1) and (4.2) that w(x)

is a positive, monotone decreasing function with lim w(x)= 0. Therefore,

(4 3) limM=
) y(x)

for all solutions y(x) of (1). Let yl(x) and yz(x) be any two linearly inde-

pendent solutions of (1) which are positive for x large. From equation (4.3),

r(x)y, "(x) r(x)y, (x)
lim —— =0, lim—— =0
¥, (%) ¥, (%)

If ¢ is the nonzero constant such that
r(x) Iy (2)y, (x) -y, (x)y,"(x)] = ¢,
then

r(x)y, (x)  r(x)y, (x)
(4.4) - = .
y, (x) Yy () ¥, (2)y, (x)

c
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The limit of the left side of the equation (4.4) is zero. Therefore, since all

positive solutions of (1) are monotone increasing, at least one of y (x) and

1 j‘x dx
R TR e

not all of the solutions of (1) are bounded.

¥, () becomes infinite, and if

THEOREM 4.2. Solutions of (1) are nonoscillatory and bounded near x =
if r(x)p(x) is monotone decreasing and lim [ r"'(x)dx < oo, or if r(x)p(x)

is monotone increasing and lim [* p(x)dx < o.

A solution of (1) can be written in the canonical form u(x)sinv(x), where

u(x) and v(x) are functions of class C? satisfying [ 5], the pair of equations

wd [(ru’) + pul =1, ru?v’=1.

If r(x)p (x) is monotone decreasing, there exists [ 5] a positive number m such
that u (x) > m. Since lim [* " '(x)dx < o,

x dx x dx
limv(x) = lim [v(a)+f ——]<v(a)+m'21imf < w.
a

a r(x)u?(x) r(x)

Thus, solutions of (1) are nonoscillatory. An application of Theorem 4.1 now

yields the first part of the theorem.

The proof of the second half of the theorem is obtained by considering
equation (1.7). If y(x) is a solution of (1), r(x)y“(x) is a solution of (1.7).
But by the preceding paragraph, r(x )y ’(x) is nonoscillatory and bounded when
r"Y(x)p~'(x) is monotone decreasing and lim [ p(x)dx < . Therefore, y (x)

is nonoscillatory. That y (x) is bounded follows from a theorem of Leighton [3].

From equation (4.1) it is evident that whenever lim [* p(x)dx = «, w(x)
is negative for every solution y (x) of (1). This remark, together with the fact
noted in the proof of Theorem 4.1 that, when lim [F r"'(x)dx = w0, w(x) is

positive for every solution y (x) of (1), proves the following theorem:

TueoREM 4.3. If lim (¥ p(x)dx =w, all nonoscillatory solutions y(x)
of (1) have the property that y*(x) is monotone decreasing. If lim [¥ r"'(x)dx= oo,

all nonoscillatory solutions have the property that y*(x) is monotone increasing.

It should be observed that the restriction to nonoscillatory solutions in
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Theorem 4.1 is not superfluous. This is illustrated by the following example.

EXAMPLE 4.1. The differential equation
N2 1
(xy’) + =y =0
X

has the general solution

y(x) = c, sin log |x| + ¢ cos log |x

2

All solutions of the equation are bounded near x = w, whereas

x dx
limf = lim log
a )

rix

X

= .
a
From the theorems of this section it is evident that whenever the so-called

““normal form’’ of equation (1) with r(x) = 1 has nonoscillatory solutions, these

solutions cannot all be bounded.

5. Remarks on a theorem of Leighton. We recall that in Theorem L; Leighton
gives, as a sufficient condition for solutions of (1) to be oscillatory, that

x dx x
limf = o, limf p(x)dx = w.
a

a r(x)

In the paper [ 6] containing this theorem there was established the existence of
a sequence of tests for oscillation, each more sensitive than the preceding.
This sequence was obtained by successively transforming an equation of the

form (1) into an equation
lr,(x)y"1" + p,(x)y = 0,
where
ro(x) = x, rn(x) = rn_l(x)logn .

It might be asked whether there is some positive function R (x) with the property
that whenever (1) is transformed into an equation

[R(x)y’]’ + P(x)y =0,

the relations
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x  dx x
lim/ = w, limf P(x)dx = o
a R(x) a

would give a necessary as well as a sufficient condition for oscillation. That

there is no such function is shown by the following theorem.

THEOREM 5.1. If r(x) is a positive continuous function such that
. x -1
lim rHx)dx = o,
a

there exists a positive continuous function p (x) such that lim [¥ p(x)dx < «,

and solutions of the differential equation

[r(x)y’]"+ p(x)y =0
are oscillatory.

We set

1 x dx ]2
p(X)=r(;\:) [1+/:1 r(x)] )

The truth of the theorem then follows from Theorem 1.6.
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