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1. Introduction. Let Vn be a hypersurface immersed in a Euclidean space

Sn + ι . Let P be a point of Vn corresponding to the point P ' of the hyperspherical

representation Gn of Vn. Let V denote the extension of a region φ of Vn, and

V* the extension of the corresponding hyperspherical region φ' of Gn. If the

region around P tends to zero, the ratio V*/V tends to a limit Γ, which is called

the spherical curvature of Vn at P [ 1 , pp. 258-261], It is found that Γ = |Ω/g | ,

where g = |g | and Ω = | Ω . . | are respectively the determinants of the coef-

ficients of the first and the second fundamental forms of Vn. In this note, some

properties of the spherical curvature are studied, and new interpretations of the

Gaussian curvature are derived.

The notation of Eisenhart [2] will be used for the most part.

2. Some properties. Let a real and analytic hypersurface Vn be defined by

y α = y a ( x \ . . . , x n ) ( α = 1, ••• , n + 1 ) ,

referred to a Cartesian coordinate system ya in a Euclidean space Sπ + 1 . Let a

vector-field v in Vn be defined by

va = pidya/dxi {i = 1, ••• , n),

where the va are real and analytic functions of the xι Let C be a curve of Vn

The normal curvature vector of v with respect to C at P is defined as the normal

component of the derived vector of the vector-field v along C at P [ 3 ] . Let K

denote a nonzero extreme value of the magnitudes of the normal curvature vectors

of v with respect to all curves of Vn at P. Then K, which is called a principal

curvature of v at P9 is defined by

(2.1) | Ψ ( 7 - κ 2 g ι 7 l = 0 ,
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where

Since | | Ψ | 7 | | is of rank 1, there is one such extreme corresponding to a vector-

field v. Its value is evidently equal to

(2.2) κ = (ψ..

where //, y is the fundamental tensor of the hyperspherical representation Gn»

The extreme of the principal curvature of a vector-field v at P9 as the field

varies, is defined by

(2.3) lfy-κ 2* i ;. |-0.

There are n such extremes 5̂ . corresponding to the principal directions for the

tensor Hij. Their product is found to be

since H = \Hi. \ = Ω2/g, [ 1, p. 260]. The principal directions for the tensor

H.. and those determined by the tensor Ω̂  . are identical, since the principal

curvature of a principal vector-field can easily be shown equal to the normal

curvature of the corresponding line of curvature. Hence we have:

THEOREM 2.1. The spherical curvature of a Vn at P is equal to the product

of the extreme principal curvatures of vector-fields in Vn at P, which is the same

as the product of principal curvatures of Vn at P.

Since SΛ + 1 is Euclidean, the equations of Gauss are

(2.4) Rijkl = Qik Qμ - Qa Ωβ .

Multiplying (2.4) by g and summing with respect to i and kf we obtain

(2.5) Hμ = MQμ + Rjl9

where M is the mean curvature of Vnf and where R .̂  is the Ricci tensor. When

Vn is a minimal hypersurface, we have M = 0, and the Ricci tensor is identical
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with the fundamental tensor of Gn. If M ̂  0, we have

(2.6) HijP'pi-RijP'pi

if and only if v is an asymptotic vector-field. If v is a unit asymptotic vector-

field, we notice, from (2.2), (2.6), and the equality

k=ί

that the square of the principal curvature of v at P is numerically equal to the

sum of the Riemannian curvatures determined by v and n - 1 other mutually

orthogonal unit vectors orthogonal to v at P. Hence we have established the

following result:

THEOREM 2.2. The square of the principal curvature of an asymptotic

vector-field at P in Vn is numerically equal to the mean curvature of Vn at P for

the corresponding asymptotic direction.

The extreme of the principal curvatures K of asymptotic vector-fields at P in

Vn is defined by

There are n such extreme values corresponding to the principal directions for

the Ricci tensor JR̂  .. Their product is evidently equal to | Ω/g|, if Vn is minimal.

Hence we have:

THEOREM 2.3. The principal curvatures of asymptotic vector-fields at P

in Vn attain their extreme values in the principal directions for the Ricci tensor.

THEOREM 2.4. The spherical curvature of a minimal Vn at P is the product

of the principal curvatures of the n vector-fields at P corresponding to the

principal directions for the Ricci tensor.

3. The Gaussian curvature. When n = 2, Γ is called the spherical curvature

of a surface S in an ordinary space. It coincides in absolute value with the

Gaussian curvature K of S. The principal curvature of a vector-field v in Vn for

rc = 2 coincides in absolute value with the principal curvature of v in 5, [3]

The extreme principal curvatures of vector-fields in Vn for n = 2 coincide in

absolute value with the principal curvatures of S. The mean curvature of Vn for
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n ~ 2 is identical with the Gaussian curvature of S. Hence Theorems 2.1 and 2.2

lead directly to the following new interpretations of the Gaussian curvature:

THEOREM 3.1. The Gaussian curvature of S at P is the product of the ex-

treme principal curvatures of vector fields of S at P, and is the negative of the

square of the magnitude of the Gaussian representation of a unit arc along an

asymptotic line from P in S.

Let p α and qa be two distinct conjugate vector fields in S. Then we have

where rf is the second fundamental tensor of 5. The principal curvatures of

the vector-fields p α and qa are respectively equal to

where ha „ is the third fundamental tensor of S. Hence their product is

(3.1) /

The expression on the right side of (3.1) is equal to eX, where e is +1 or-1

according as K is positive or negative at the point under consideration. At an

elliptic point, the principal curvatures of all vector-fields are of the same sign.

At a hyperbolic point, the principal curvatures of two vector-fields are different

in sign if they lie in different sections separated by the asymptotic lines of S.

Consequently, the principal curvatures of two conjugate vector-fields have

opposite signs, since conjugate directions are separated by the asymptotic

directions of the surface. Hence at an elliptic point of S, the product of the

principal curvatures of two conjugate vector-fields is positive; while at a hyper-

bolic point of S, it is negative. At a parabolic point the normal curvature of any

vector-field with respect to any curve is zero. We may consider that every di-

rection in S at a parabolic point is both an asymptotic direction and a principal

direction of a vector-field which is to be considered. Hence at a parabolic

point the principal curvature of any vector-field is zero; consequently, the

product of the principal curvatures of two conjugate vector-fields is zero. Thus

the following theorem is proved:
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THEOREM 3.2. The Gaussian curvature of S at P is the product of the

principal curvatures of any two distinct conjugate vector-fields in S at P.

The sum of the squares of the principal curvatures of the two conjugate

vector-fields is found to be

(epp)
2 + {ePq)

2 - MUp + κq) - 2K,

where Kp and Kq are the normal curvatures of the curves of the two fields, and

where M is the mean curvature of S. By Theorem 3.2 the above equation can be

written as

(3.2) (epp + ePq)
2 = M(κp + κq).

Since the product of the normal radii at a point in conjugate directions is a

maximum for characteristic lines, and a minimum for lines of curvature, and

since the sum of normal radii in conjugate directions is constant, we obtain

from (3.2) the following result:

THEOREM 3.3. The sum of the principal curvatures of two conjugate vector-

fields at P is the mean proportional between the mean curvature at P of S and

the sum of the normal curvatures in the two conjugate directions at P. The

square of the sum of the principal curvatures of two conjugate vector-fields at

P is a maximum for the principal vector-fields of S, and a minimum for the

characteristic vector-fields of S.

Let m (m > 2) directions be such that the angle of two adjoining directions

is 2π/m. Let the principal curvatures of the vector-fields in such directions be

denoted by ep , ep2, ••• , epm Then

1 m > 2 1
- Σ ( e p . ) 2 = - M 2 - K ,
m = ι 2

since

where Kp are the normal curvatures of the curves of the corresponding vector-

fields.
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THEOREM 3.4. One mth of the sum of the squares of the principal curva-

tures of m (> 2) vector-fields at P9 such that the angle of two adjoining vectors

of these fields at P is 2π/m> is constant and is the same for any m greater than

two. The constant is half of the square of the mean curvature of S minus the

Gaussian curvature of S at P.

It is easy to prove that the principal direction of a vector-field in S is or-

thogonal to the curve of the field if and only if the vector-field is an asymptotic

field. Let pa be an asymptotic vector-field in S. Then its orthogonal trajectories

are defined by

The principal curvature of the asymptotic vector-field p α is given by

which after simplification becomes

where Ίg is the geodesic torsion of the curve of the asymtotic vector-field.

THEOREM 3.5. The principal curvature of an asymptotic vector-field at P

in S is equal to the geodesic torsion at P of the curve of the field, or simply

the torsion at P of the corresponding asymptotic line.

From Theorem 3.1 and Theorem 3.5 we immediately obtain the first part of

the theorem of Enneper, that the square of the torsion of a real asymptotic line

at a point is equal to the absolute value of the total curvature of the surface

at the point. By the second part of the same theorem we notice that the principal

curvatures of the asymptotic vector-fields in S are different in sign.
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