EXTENSION OF A RENEWAL THEOREM

Davip BLAckwELL

1. Introduction. A chance variable x will be called a d-lattice variable if

(1) > Prix=ndl=1
n=-—o00
and
(2) d is the largest number for which (1) holds.

If x is not a d-lattice variable for any d, x will be called a nonlattice variable.

The main purpose of this paper is to give a proof of:

THEOREM 1. Let x,, x,, »++ be independent identically distributed chance
variables with E(x,;) = m > 0 (the case m = + © is not excluded); let S, =
%y + e+ +xp; and, for any h > 0, let U(a, h) be the expected number of integers
n > 0 for which a < Sp < a + h. If the x,, are nonlattice variables, then

U(a, h)— —, 0 as a — + 0, —®.
m

If the xp, are d-lattice variables, then
U(a,d)— —, 0 as a— + @©, — ©.
m

(If m =+ w, h/m and d/m are interpreted as zero. )

This theorem has been proved (A) for nonnegative d-lattice variables by
Kolmogorov [ 5] and by Erdss, Feller, and Pollard [ 4]; (B) for nonnegative non-
lattice variables by the writer [ 1], using the methods of [4]; (C) for d-lattice
variables by Chung and Wolfowitz [3]; (D) for nonlattice variables such that

the distribution of some S, has an absolutely continuous part and m < cc by Chung
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and Pollard [ 2], using a purely analytical method; and (E) in the form given
here by Harris (unpublished). Harris’ proof does not essentially use the results
of the special cases (A), (B), (C), (D); the proof given here obtains Theorem 1
almost directly from the special cases (A) and (B) by way of an integral identi-
ty and an equation of Wald.

2. An integral identity. Let N, be the smallest n for which S, > 0, and write
z, = SNI; let N, be the smallest n> 0, for which Sy 4+, ~Sy, > 0, and write
z,=5N, +N, = SNI’ and so on. Continuing in this way, we obtain sequences N,
Nyy +++524, 25, +++ of independent, positive, identically distributed chance vari-
ables such that

S

=z et zp.

Nl+"'+N 1

K
Let V' (t), R(¢) denote the expected number of integers n > 0 for which
T, =z ++++z, <t and -2 <S <0,

n 1

n <N, respectively. That V(t) < o follows from a theorem of Stein [ 6], and
that R (¢) < « follows from E (N, ) < o, which we show in the next section. The
integral identity is:

THEOREM 2." U(a, h) = foo [R(t—a) = R(t—a-Hh)]1dV(2).
0

Proof. If ny is the number of integers n with

Nyteeet N <o <N t+eee N, anda<S <a+h,

we have
E(ng|Ty =¢) =R(t-a) - R(¢t—a-h),

so that
Elme) = [TIRG=a) = RG—a-m1dF (),

where F (t) = Prt Ty < t}. Summing over K =0, 1, 2, +++, and using the fact
that

V()= X Fylo),
K =0
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we obtain the theorem.

3. Wald’s equation. The main purpose of this section is to note that £ (N )
is finite, so that an equation of Wald [ 7, p. 142] holds.

THEOREM 3. E(N,) < and mk (N,)=E(z,), so that m, E(z) are both

finite or both infinite.

Proof. In showing E(N,) finite, we may suppose {x,} bounded above; for
defining x¥ = min{s,, M} yields an NT > N ; choosing ¥ sufficiently large
makes E(x;“l) > 0, and E(N’;< ) < o implies £ (N, ) < w. Since

TK SN1 Fet Ny Nl +oeee +NK
K Ny + oo+ Ny ’ K ’

we obtain, letting K —> o and using the strong law of large numbers, first that
E(z,)=mE (N,) and next since if { x,} is bounded above and { z,} is bounded,

that £ (N, ) is finite in this case and consequently in general.
4. The d-lattice case. For d-lattice variables, Theorem 2 yields

[ =)

(3) U(nd,d) = Z r(s—-n)v(s) = Z r(s)v(s+n),

s =0 s =0

where r(s)=R(sd) =R([s—=1]1d) andv(s)=V(sd)=V([s-1]d). Now

00

2 r(s)= lim R(0) = E(V,) <.

s =0

Theorem (A) asserts that

vin)— , 0 as n — @, —©;
E(Zl)
applying this to (1) yields
dE(N)
U(nd,d) — —— , 0 asn—w, — ©,
" E(zy)

and Wald’s equation yields Theorem 1 for d-lattice variables.

5. The nonlattice case. For nonlattice variables we have, rewriting Theorem
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2 with a change of variable,
UCe,h) = [T IR = RG=B) dV (14 a).

For any M > 0, write
U(a, h) = II(M, a, h) + 1, (M, a, h),
where

M
I8 =./0. [R(t) —=R(t=A)1dV(t+a)

and

I =f°°[R(t) “RG=m)] dV(t+a).
0

2

Theorem B applied to { z,, } yields

V(e+h) =V(t)—

E(z,)
for all h > 6 as t — w, so that, since R (t) is monotone,
M M=-h
11=/ R(t)dl’(t+a)—/ R(t)dV(t+a+h)
0 0

1

N .
E(z))

M
f R(t)de, O as a— ®, — @
M-h

for fixed M, k. We now show that, for fixed 2, 12 (M, a, k) — 0 as }/ — o uni-

formly in a. We have

> M+(n+1)h
I =n§=_‘,0 /;th [R(t) = R(t=h)]1dV(t+a)

IN

> R (M) [V(a+M+(n+1)h) = Via+M+nh)],
n =0

where

Rl(M,n) =sup [R(¢) = R(t-1)]
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as t varies over the interval (M + nh, ¥ + (n + 1) k). Since, by Theorem (B),

V(ib+h) = V(b)—>

as b— @,

E(Zl)

there is a constant ¢ ( for the given &) such that
12 (Mya, k) <c z Rl(M,n) for all ¥ and a.
n =0
Now

> R (M, 2n) <E(N,) = R(M) and 3 R (M, 2n+1) < £(N) = RO,

n=0 n=0
andR(M)——-)E(Nl)as M — . Thus
IU(a,h) -—ll(M, a, h)| < (M, )

for all a, where €(¥, k) — 0 as 3/ — o« for fixed 4. Then

Vo h— 2N ) L/
'(ay b ~ < elm, h 1. (Mya,h) - / R d
a IR m + |1 a £z Ju-h (¢)dt
1 fﬂ[
R(t) dt — RE(N ,
+ £ Jus (¢) (1)‘
so that
hE(N,)
lim sup |U(a, h) -
a— o E(Zl)
(M, h) /M R(t)dt — hE(N
< iy = - .
< € + b(21) " t) dt 1)
Letting ¥ — o yields
RE(N,)
Ula, h)— as a — o,
£(z,)

1

and Wald’s equation yields Theorem 1 for a — . Similarly,
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U(a, k) < (M, ) + |1, (M, a, h)|
for all a, so that

lim sup U(a, h) < € (M, k)

a— -0

and U(a, h) — 0 as a—> — . This completes the proof.
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