
SOME EXTENSION THEOREMS FOR CONTINUOUS FUNCTIONS

E R N E S T MICHAEL

1. Introduction. In a recent paper, J. Dugundji proved [ 11, Th. 4.1] that

every convex subset Y of a locally convex topological linear space has the

following property:

(1) If X is a metric space, A a closed subset of X, and / a continuous

function from A into Y, then / can be extended to a continuous function from
x into y.

Let us call a topological space Y which has property (1) an absolute ex-

tensor for metric spaces, and let absolute extensor for normal (or paracompact,

etc.) spaces be defined analogously. According to Dugundji's theorem above,

the supply of spaces which are absolute extensors for metric spaces is quite

substantial, and it becomes reasonable to ask the following question:

(2) Suppose that Y is an absolute extensor for metric spaces. Under what

conditions is it also an absolute extensor for normal (or paracompact, etc.)

spaces?

Most of this paper ( § § 2 - 6 ) will be devoted to answering this question and

related questions. The related questions arise in connection with the concepts

of absolute retract, absolute neighborhood retract, and absolute neighborhood

extensor (in § 2 these are all defined and their interrelations and significance

explained), and it is both convenient and natural to answer all the questions

simultaneously. Assuming that the space Y of (2) is metrizable, we are able to

answer these questions completely (thereby solving some heretofore unsolved

problems of Arens [2, p. 19] and-Hu [18]) in Theorems 3.1 and 3.2 of § 3 ;

§ § 4 and 5 are devoted to proving these theorems. In § 6 we show by an example

that things can go completely awry if Y is not assumed to be metrizable.

Our final section ( § 7 ) , which is also based on Dugundji's [11, Th. 4.1],
deals with simultaneous extensions of continuous functions. It is entirely in-
dependent of § § 2 - 6 , and is the only part of this paper which might interest
those readers who are interested only in metric spaces.

We conclude this introduction with a summary of some of the less familiar
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or possibly ambiguous terms used in, this paper. All our normal spaces are

assumed to be Hausdorff. A perfectly normal space is a normal space in which

every closed subset is a Gg (i.e., the intersection of countably many open

sets). A covering I) of α topological space X is called locally finite [ 10,

p. 66] if every x in X has a neighborhood which intersects only finitely many

V G I). A topological space X is paracompact [ 10, p. 66] if it is Hausdorff,

and if to every open covering U of X there corresponds a locally finite open

covering I) of X such that every V 6 U is a subset of some [/ £ U. (Every

paracompact space is normal [10, Th. 1], every metric space is paracompact

[22, Cor. 1], and a Hausdorff space is paracompact if and only if it is fully

normal [22, Th. 1 and Th. 2].) A metrizable space is topologically complete

if it can be given a complete metric which agrees with the topology. A topo-

logical space is σ-compact if it is the union of countably many compact sub-

sets.

2. Definitions and interrelations. Let us begin this section by formally

defining the concepts which were mentioned in the introduction, and which will

be the objects of investigation of most of this paper. For convenience, we will

use the following abbreviations:

AE - absolute extensor

ANE = absolute neighborhood extensor

AR = absolute retract

ANR = absolute neighborhood retract

DEFINITION 2.1. A topological space Y is called an AE (resp. ANE ) for

metric spaces if, whenever X is a metric space and A is a closed subset of X9

then any continuous function from A into Y can be extended to a continuous

function from X (resp. some neighborhood of A in X ) into Y. Similarly if "met-

ric" is replaced by the name of some other kind of space in the above.

DEFINITION 2.2. A topological space Y is called an AR (resp. ANR) for

metric spaces if, whenever Y is a closed subset of a metric space X, there

exists a continuous function from X (resp. some neighborhood of Y in X) onto

Y which keeps Y pointwise fixed. Similarly if "metric" is replaced by the name

of some other kind of space in the above.

REMARK. Observe that if Y is an AE (resp. ANE) for a certain class of

spaces, then Y is a fortiori an AR (resp. ANR) for this class of spaces.
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The concepts defined in Definition 2,2 are essentially due to Borsuk [4 and

5], who proved [5 , p. 227] that every finite simplicial complex is an ANR for

compact metric spaces; this was, in fact, Borsuk's motive for introducing

ANR's. More recently, Hanner [17] generalized that result by showing that every

locally finite simplicial complex is an ANR for separable metric spaces. Finally

this result was generalized still further by Dugundji [ 12, Th. 5.2], who proved

that every simplicial complex with J.H.C. Whitehead's CW topology is an ANE

for metric spaces.

The following propositions summarize the known relations between the

various concepts defined above. Propositions 1 and 3 are due to Hu [18], and

parts of Proposition 2 are essentially due to Dugundji [ 11 ] and Hanner [ 16 ].

PROPOSITION 2.3 (Hu). Let Y be a separable metric space. Then Y is

an AR (resp. ANR ) for metric spaces if and only if Y is an AR (resp. ANR)

for separable metric spaces.

Proof. This follows at once from [18, Th. 3.1].

PROPOSITION 2.4. Let Y be a metric space. Then Y is an AR (resp. ARN)

for metric spaces if and only if Y is an AE (resp. ANE) for metric spaces. This

assertion remains true if "metric" is everywhere replaced by "paracompact" 9

or "normal", or "perfectly normal".

Proof. The "if" assertions are clear (see the Remark after Definition 2.2),

so let us turn to the "only if" assertions. Here the metric case was proved by

Dugundji [11, Th. 7.1]; to prove the results in the other cases, we shall use the

method employed by Hanner in his proof of the normal case [ 16, Th. 3.1 and

Th. 3.2].

Let X and Y be topological spaces, A a closed subset of X9 and f:A —* Y

a continuous function. Let XυY denote the disjoint union of X and Y, and let

Z be the identification space which we get from X u Y by identifying x 6 A

with f(x) E Y. To prove our results, it is sufficient, as in Hanner's proof of

the normal case, to show that if X and Y are both paracompact (resp. normal,

perfectly normal), then so is Z. For normal spaces this was proved by Hanner

[16, Lem. 3.3], and for perfectly normal spaces the proof is almost the same as

that for normal spaces; this leaves paracompact spaces, where our proof depends

on the following two facts. The first of these is a characterization of para-

compact spaces which the author will prove in another paper, and the second is

an immediate consequence of the first.
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( 1 ) If Z is a Tιspace9 then Z is paracompact if and only if it has the

following property: If E is a Banach space, and if u is a l.s.c. 1 function from

Z to the space C(E) of nonempty, closed, convex subsets of E, then there

exists a continuous u:Z —> E such that u{z) E u(z) for every z in Z.

( 2 ) Let X be a paracompact space, E a Banach space, w:X — * C ( E )

a l.s.c. function, and A a closed subset of X. Then any continuous v:A — > E

such that v(x) E w{x) for every x in A can be extended to a continuous

w : X — > E such that w (x) E w (x) for every x in X.

We shall also need the following elementary facts about Z . L e t g be the

natural mapping from X u Y onto Z, and denote g\ X by h and g\Y by k; a l so

denote k(Y) by Y ' As observed by Hanner, A; is a homeomorphism onto Y'9

and h\X — A is a homeomorphism onto Z — Y'. It follows that a function u with

domain Z is continuous if and only if u | Y ' a n d uh are both continuous.

Suppose now that X and Y are paracompact, and let us prove that Z is a l so

paracompact. Since Z is certainly 7\, we need only show that Z has the property

in ( 1 ) . Suppose, therefore, that E is a Banach space, and H: Z — > C ( E ) a

l . s .c . function; we must find a continuous u:Z—*E such that u(z) G u(z)

for every z in Z . Now Y ' is paracompact, and u\ Y' is l . s . c ; hence, by ( 1 ) ,

there exis t s a continuous r:Y'—* E such that r{z) E u(z) for every z in Y '

Let w = uh, let h'=h\A, and let v = rh'\ then X, A, w, and v satisfy the as-

sumptions of ( 2 ) , and hence, by ( 2 ) , v can be extended to a continuous

w:X—* E such that w(x) E w{x) for every x in X. Now define u:Z — > £ by

"u(z) = r{z)iίzeY', and u ( z ) = u Λ - H z ) if z G Z - Y " ' . Clearly u{z)£u{z)

for every z in Z, and α is continuous, s ince u \ Y ' = r and uh - w are both con-

tinuous. This completes the proof.

Final ly, let us mention the following result of Hu [ 18, Th. 3 .2] .

PROPOSITION 2.5. (Hu) // Y is a completely regular space which is an AR

(resp. ANR) for completely regular spaces, then Y is an AE (resp. ANE) for

normal spaces.

Having just covered the similarities between extensors and retracts, let us

end this section with some comments about their differences. Tfiese differences

occur in two ways:

1 A function u from a topological space Z to the space of nonempty subsets of a
topological space E is called Ls.c. (= lower semi-continuous ) if, whenever U is an
open subset of Ei then { z E Z \ ίΓ(z) n U ^ φ } is open in Z.
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(a) If y is not a metric (resp. paracompact, etc ) space, then Y is (vac-

uously!) always an AR and an ANR for metric (resp paracompact, etc ) spaces.

But y need by no means always be an AE or an ANE for metric (resp. para-

compact, etc.) spaces, and when it is, this is a fact which cannot be restated

in terms of retracts. As examples, we mention the theorems of Dugundji [11,

Th. 4.1] and [12, p. 9] which we have encountered earlier in this paper.

(b) If y is completely regular and has more than one point, then it is easy

to see that Y cannot be an AE or ANE for any class of spaces which contains

a nonnormal space. But such a Y may very well be an AR or ANR for completely

regular spaces (see Theorem 3.1 (e) and Theorem 3.2 ( e ) ) .

3. The theorems. We will now state the theorems answering question (2)

of the introduction.

THEOREM 3.1. Let Y be a metrizable space which is an AE (resp. ANE)

for metric spaces. Then:

(a) Y is an AE (resp. ANE) for spaces which are paracompact and per-

fectly normal.

(b) Y is an AE (resp. ANE) for paracompact spaces if and only if Y is

topologicallγ complete.

(c) Y is an AE (resp. ANE) for perfectly normal spaces if and only if Y

is separable.

(d) Y is an AE (resp. ANE ) for normal spaces if and only if Y is sepa-

rable and topologically complete.

( e ) Y is an AE (resp. ANE) for completely regular spaces if and only if

Y has at most one point.

THEOREM 3.2. Let Y be a metrizable space which is an AR (resp. ANR)

for metric spaces. Then:

(a) y is an AR (resp. ANR) for paracompact spaces containing Y as a

(b) Y is an AR (resp. ANR) for paracompact spaces if and only if Y is

topologically complete.

(c) y is an AR (resp. ANR) for perfectly normal spaces if and only if Y

is separable.

(d) y is an AR (resp. ANR ) for normal spaces if and only if Y is separable

and topologically complete.
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(e) Y is an AR (resp. ANR) for completely regular spaces if and only if

Y is compact (resp. locally compact and separable ).

The foregoing theorems make a rather formidable array of statements, but

because of their interdependence we will not have to prove all of them sepa-

rately. In fact, we will prove only the following assertions (whose labeling is

self-explanatory):

(*) l ( a ) , 2 ( a ) , l ( b ) "if", 2(b) "only if", 1 ( c ), l ( d ) " i f " , 2 ( e ).

Let us show that these assertions imply all the others. To begin with, the as-

sumptions on y made at the beginning of Theorems 3.1 and 3.2 are equivalent,

by Proposition 2.2. We therefore have the following implications:

K b ) "if"==> 2 ( b ) "if": by Remark after Definition 2.

2 ( b ) "only i f " = > K b ) "only if": by Remark after Definition 2.

1 ( c ) =Ξ> 2 ( c ): by Proposition 2.

K b ) "only if" and l ( c ) "only if" = > l ( d ) "only if": obvious.

K d ) = > 2 (d) : by Proposition 2.

l ( e ) : this follows from the definitions.

These implications, together with the assert ions ( * ) which we are going to

prove, cover all the asser t ions of both theorems.

Before concluding this section, let us comment on the novelty and signifi-

cance of the results ( * ) . Fi r s t of all, l ( d ) "if" has been proved by Hanner

[16, Th. 4.1 and Th. 4 .2] , and 2 ( e ) " i f" (AR) has been observed by Hu [ 1 8 ] ;

our proofs of these resul ts are short, and we include them for the sake of unity

of approach. Result K b ) "i f" follows easi ly from Arens ' [ 2 , Th. 4 .1] by means

of a technique due to Dugundji [ 1 1 ] . Resul t s l ( a ) , 2 ( a ) , 2 ( b ) "on ly if",

and l ( c ) " i f" are proved by minor variations of techniques due to Hanner [ 1 6 ] .

This leaves l ( c ) " o n l y if", 2 ( e ) "only if", and 2 ( e ) " i f" (ANR) as the only

results with some claim to originality; among these, l ( c ) "on ly if" solves a

problem of Arens [ 2 , p . 19], and the others solve some problems of Hu [ 1 8 ] .

In the next section we will prove l ( a ) , 2 ( a ) , and the " i f" parts of the

other ( * ) asser t ions; in the section after that we will prove the "only if"

parts . The lemmas and propositions in these sections have some independent

interest, and are sometimes stated with greater generality than i s needed in

their application.



SOME EXTENSION THEOREMS FOR CONTINUOUS FUNCTIONS 795

4. P r o o f s of suf f ic iency. A s s e r t i o n s l ( a ) , 2 ( a ) , l ( b ) " i f " , l ( c ) " i f " ,

and l ( d ) " i f " wi l l be p r o v e d after L e m m a 4 . 3 . A s s e r t i o n 2 ( e ) " i f " will^ be

p r o v e d af ter L e m m a 4 . 6 .

In t h e fo l lowing l e m m a s , R**° w i l l d e n o t e a c o u n t a b l y i n f i n i t e c a r t e s i a n

p r o d u c t of r e a l l i n e s .

LEMMA 4.1. Every (complete) metric space can be embedded homeomorphi-

cally as a (closed) subset in a Banach space. Every (complete) separable

metric space can be embedded homeomorphically as a (closed) subset in R **°.

Proof. It is well known (see, for instance [2θ]) that every metric space

can be embedded isometrically in a Banach space, and the first sentence fol-

lows from this fact. It is also well known [19, p. 104] that every separable

metric space X can be embedded in R**°, which proves the second sentence with

parenthetical words omitted. If X is moreover complete, then it is a G§ in

R*° [19, p. 215]. By [ 19, p. 151], X is therefore homeomorphic to a closed

subset of R N o x R**°, and the latter space is homeomorphic to /?**°. This com-

pletes the proof.

The proof of the following lemma uses an idea which the author found in

Hanner [16] who in turn ascribes it to Fox [13].

LEMMA 4.2. Let X be a normal space, A a closed Gg in X, and g a contin-

uous function from A into a metric space E. Then there exists a metric space F

containing g(A) as a closed subset, and a continuous function h from X into

F which agrees with g on A.

Proof. Let G = E x /, where / is the closed unit interval, and identify E with

Ex{0\ C G. Let F-G — (E — g(A)). Since A i s a closed G§ in the normal

space X, there ex i s t s a continuous function φ from X into the nonnegative

real numbers, which is zero exactly on A. Final ly we define h:X—>F by

h{x) = (g(x)9 φ(x))f and we see that F and h satisfy all our requirements.

LEMMA 4.3. Let X be a topological space, A a closed subset of X, M a

metric space, and f a continuous function from A into M. Suppose either that

M is a complete metric space, or that A is a Gg in X. Suppose also either that

X is paracompact, or that X is normal and M separable. Then there exists a

metric space F containing M as a closed subset, and a continuous function from

X into F which agrees with f on A.

Proof. If X is paracompact, embed M in a Banach space E according to
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Lemma 4.1. By [2, Th. 4.1] we may extend / to a continuous function g from

X into E. If M is complete, then we may suppose that M is closed in E$ and we

are through. If A is a G§ in λ, we need only apply Lemma 4.2.

If X is normal and M separable, embed M in R^° according to Lemma 4.1.

The proof now proceeds exactly as above, except that we use the Urysohn-

Tietze extension theorem instead of [2, Th. 4.1]. This completes the proof.

Proof of I ( a ) , l ( b ) "if", l ( c ) "if", and l ( d ) "if". T h e s e a l l f o l l o w

almost immediately from Lemma 4.3.

Our next two lemmas deal with locally compact spaces, and are stated

without proof. The crux of Lemma 4.4 is essentially stated as an exercise

in [6] and proved in [8] ; the first proof which the author saw was due to J. Tits.

LEMMA 4.4. The following properties of a H aus dor ff space X are equivalent:

a) A7 is locally compact.

b) If X is a dense subset of a Hausdorff space Y, then X is open in Y.

c) If X is a subset of a Hausdorff space Y9 then X = Un C, where U is

open in Y, and C is closed in Y.

LEMMA 4.5. Let X be a locally compact space? and A a σ-compact subset

of X. Then there exists an open, σ-compact subset Z of X which contains A.

One part of the following lemma is trivial, while the other part is not; we

state them together to emphasize the parallelism.

LEMMA 4.6. Let X be a completely regular space, and A a compact (resp.

locally compact and σ-compact) subset of X. Then X (resp. some neighborhood

V of A in X) can be embedded in a compact (resp. locally compact and σ-com-

pact) Hausdorff space Z such that A is closed in Z.

Proof. The assertion where A is compact is trivial. To prove the other as-

sertion, let Y be any compact Hausdorff space containing X, By Lemma 4.4,

there exists an open subset U of Y such that A is a subset of U which is closed

relative to U. Since U is open in Y, it is locally compact. Hence, by Lemma

4.5, there exists an open, σ-compact subset Z of U which contains A. Since

Z is open in U, Z is locally compact. Letting V = ZnX, we see that Z and V

satisfy our requirements. This completes the proof.

Proof of 2 (e) "if". This follows easily from Lemma 4.6 as follows: (We

will prove the part about ANR; the part about AR is even easier). Let Y be a
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locally compact, separable metric space which is an ANR for metric spaces,

and let Y be a closed subset of the completely regular space X. We must find

a neighborhood U of Y in X, and a continuous function g from U to Y which is

the identity on Y.

Since Y is a locally compact, separable metric space, it is σ-compact.

Hence, by Lemma 4.6, some neighborhood V of Y in X can be embedded in a

locally compact and σ-compact Hausdorff space Z such that A is closed in Z.

By [10, Th. 3], Z is paracompact. Since Y is a locally compact metric space,

it is topologically complete (for instance by [19, p. 200] and Lemma 4 4) .

Hence, by Theorem 3.2 (b), there exists a continuous function g from some

neighborhood W of Y in Z to Y such that g is the identity on Y. Letting ί/= WnV,

and f — g\U$ we see that all our requirements are satisfied. This completes the

proof.

5. Proofs of necessity. We start this section with the proof of 2 ( b ) "only

if". We will prove l ( c ) "only if" after Proposition 5.1, and 2 ( e ) "only if"

after Proposition 5.3

Proof of 2 ( b ) "only if". If "paracompact" were replaced by "normal" in

this assertion, and "metric" by "separable metric", then the assertion would

be contained in [16, Th. 4.1 and Th. 4.2]. To prove our assertion as it stands,

we need only modify the proof of [16,Th. 4.2]. We therefore invite the reader

to look at Hanner's proof of [ 16, Th. 4.2], and we will now point out the neces-

sary modification.

Instead of embedding X (this is the space in [16] which corresponds to our

Y) in the Hubert cube lω (which can only be done if X is separable), we embed

X in an arbitrary complete metric space M, and this space M will take the place

of lω throughout the proof. With that in mind, we now define Z just as Hanner

does, and the crux of the matter is that we must show Z to be paracompact

(Hanner only shows that Z is normal). Once this is accomplished, the remainder

of Hanner's proof goes through unchanged (except that lω is replaced by M)

to show that X is a Gg in M But this implies [19, p. 200] that X is topological-

ly complete, and our proof will therefore be complete.

We will use the notation of Hanner's proof (except that M replaces Iω).

Let { Ua \ be a covering of Z by open sets. Then, for each Ot, there exists an

open set Oα in M, and a subset Aa of Z - X', such that

Let O = U α 0 α . Since 0 is a metric space (and therefore paracompact [22,
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Cor. 1 ]), and since \0a\ is a covering of 0 by open sets, { 0a\ has a locally

finite refinement i V Ω !• Since each Vβ is open in 0, and since 0 is open in M,

it follows that each Vβ is open in M. Now let ID be the covering of Z whose

elements are the sets h"ι(Vβ) and the one-point sets corresponding to the

points of Z — h~ ( 0 ) . Let us show that 113 is a locally finite refinement of

! Ua}: It is clear that U) is a covering of Z by open sets, and that 1)J is a refine-

ment of ! Va\, so we need only show that ID is locally finite. If x £ Z - h"1 (0),

then {x \ is certainly a neighborhood of x which intersects only finitely many

elements of ID. If x £ h'ι(0), then there exists an open subset Sx of 0 such

that h(x) £ Sx, and such that Sx intersects only finitely many elements of

ί Vβ}. But then h'ι(Sx) is an open subset of Z which contains x, and which

intersects only finitely many elements of ID. This completes the proof.

The following proposition is more general than l ( c ) "only if".

PROPOSITION 5.1. // Y is a topological space which is an ANE for normal

spaces^ then every disjoint collection of open subsets of Y is countable.

Proof. Suppose that there exists a disjoint collection U of nonempty open

subsets of y which is uncountable. Then there exists a subset B of Y which

contains exactly one point from every element of U clearly B is a discrete

space in the relative topology. Now by [3, Ex. H] there exists a perfectly

normal space X, and a discrete, closed subset A of X which is homeomorphic

to B, such that no collection of open subsets of X separates 2 A. Let / be the

homeomorphism from A onto B. By assumption, / can be extended to a con-

tinuous function g from some open neighborhood V of A in X into Y. But now

the collection of all V n g'1 (U), with U £ U, is a collection of open subsets

of X which separates A. This is a contradiction, and thus the proof is complete.

Proof of l ( c ) ί(only if". This now follows immediately from Proposition

5.1, since for metric spaces the property of Y in Proposition 5.1 is equivalent

to separability [21, p. 130 ].

LEMMA 5.2. Let ξ be an uncountable ordinal, and let Q be the space of

ordinals < ξ, in the order topology. For each α in Q, let

< 2 α = U ε Q \ q > α l ,

with the relative topology induced by Q. Also let X be a subset of the cartesian

If Y is a topological space, and B a subset of Y, then a collection U of open sub-
sets of Y separates B if U is a disjoint collection, and if each U C U contains ex-
actly one element of B.
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product of ^ copies of the real line, where X is a cardinal which is less than

the cardinality of ζ. Then :

a) // α < ξ, and f is a continuous function from Qa into X, then there

exists a β in Q such that (X < β < ξf and such that f(q) = f(£) for all q > β.

b ) If Ό is a neighborhood of ί ξ\ x A' in Q x X, then there exists an ordinal

a < ξ such that Qa x X C ϋ.

Proof, a ) If X = 1, then this is proved exactly like the assertion in the

middle of page 836 of [ 9 ] . In the general case, let λ C ULe\ RL, where I is

an index set of cardinality fcξ and RL is the real line for every t G I, and for

every t G I let πL be the projection from X into Rt Letting fL = f° πL for every

L G I, we have, by the first sentence of this proof, an indexed family \ βc\t el °f

ordinals in Q such that fi{q) = fι(ζ) whenever q > βL. Letting β be the smal-

lest ordinal which is larger than all the βL, we see that β satisf ies all our

requirements.

b) The assumptions on X imply that X has a basis of cardinality < fc< ,

and hence every covering of X by open se ts has a subcovering of cardinality

< fc$ Now for each x in λ7, we can find an Cλx in Q and an open neighborhood

Vx of x in λ such that QΛχ x Vx C Ό. Thus { Vx \x £ χ is a covering of λ by open

sets, and hence there exists a subcovering \VX\X£ χ'9 where X' has cardinality

< K . If now α is the smallest ordinal which is larger than all the Cix with

x G X\ then (X satisfies all our requirements. This completes the proof.

PROPOSITION 5.3. // Y is a completely regular space which is an AR

(resp. ANR) for completely regular spaces, then Y is compact (resp. locally

compact).

Proof. Since Y is completely regular, it may be embedded in a cartesian

product of real lines. Let fc$ be the-cardinality of this product, and let ζ be an

ordinal whose cardinality is greater than ^ and greater than the cardinality of

Y. Now let Q be the space of ordinals < ξ in the order topology, let X be a

compact Hausdorff space containing X, and let

Z = {QχX)-{\ξ\x{X-X)).

Since Q and X are completely regular, so is Z. Now { ζ\ x X i s closed in Z, and

{ ζ\ x X is homeomorphic to X, and therefore there exists a retraction / from Z

onto { ξ\ x X. For each x in X, let

L -f\(Qχ\χ\).
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By Lemma 5.2, there exists for each x in X a βx in Q such that

for all q > βx. Now let β be the smallest ordinal larger than all the βx; then

β < ξ, and

for all Λ; in X. Hence

f(\β\ x J ) = { £ } x * ,

and therefore X is compact.

Let us now consider the /4/V/? case. Suppose, therefore, that X is an ANR

for completely regular spaces. Let X9 Q9 and Z be as in the last paragraph.

Then, by assumption, there exists a retraction / from a neighborhood U of

\ ξ] x X in Z onto l f ( x l . Now by Lemma 5.2, there exists an ordinal α < ζ

such that Qa x X C £/, where ζ ^ α ^ ί ^ ^ ^ l ^ ^ ^ ϊ Proceeding just as in the

last paragraph (with Q replaced by Qa), we obtain a β in Qa such that

f((β,x)) = ( 6 * )

for all x in A. If we now define the continuous function

h : \ξ]xX—*\β}xλ

by

h({ξ,x)) = (β,x),

then the restriction of h ° / to ( ί/3}xA)n£/is a retraction of({/31χ,Y)nί/ onto

ί β i x λ : . Hence {j8 i x X is closed in U β ί x Z ) n [ / ; but (\β\xX)nϋ is an

open subset of the compact set \ β } x X, and therefore both (\ β] x X) nU and

\ β\ x X are locally compact. Hence X is locally compact, which is what we

had to show.

Proof of 2 ( e ) "only if". This now follows immediately from Proposition

5.3 and Theorem 3.2 ( d ) .

6. An example. In [ 2 ] , Arens showed indirectly that there exists a compact,

convex subset of a locally convex topological linear space which, while certain-

ly an ΛE for metric spaces by [11, Th. 4.1], is not an ΛE for compact Hausdorff
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spaces. In this section we will prove this result (and a little more) by means

of a direct example, which should also indicate why we assumed the space Y

in Theorems 3.1 and 3.2 to be metrizable.

The proof of Proposition 6.1 is due jointly to V. L. Klee and the author,

and uses a suggestion by I. E. Segal.

PROPOSITION 6.1. Let X be the cartesian product of continuum many

closed unit intervals. Then there exists a closed, convex subset of X which is

not the image under a continuous function of any open subset of X.

Proof. Let us call a topological space separable if it has a countable dense

subset. Since the cartesian product of at most continuum many separable spaces

is separable [21, p. 139], it follows that X is separable. Hence any continuous

image of any open subset of X is also separable. To prove the proposition, it

therefore suffices to produce a closed, convex subset of X which is not sepa-

rable. This we will now proceed to do.

Let H be a Hubert space whose orthonormal dimension is the continuum.

Then H has continuum many elements, and is not separable. Let us show (using

a proof due to I.E. Segal) that H is not even separable in the weak topology.

In fact, if H were separable in the weak topology, there would exist a count-

ably dimensional subspace K of H which is weakly dense in H Since H is

countably dimensional, it is separable in the strong topology. Now by the Hahn-

Banach theorem, the strong closure of K is weakly closed and hence coincides

with //. But this implies that H is separable in the strong topology, contrary to

our assumption.

Now let S be the unit sphere of H in the weak topology. Then S is compact,

since H is reflexive. Also S is not separable since, as we have just shown, H

is not separable in the weak topology. To complete the proof, we must show

that S is homeomorphic to a convex subset of X. Now by definition,

where F is an index set whose cardinality is the continuum, and If is homeo-

morphic to the unit interval for every / in F. Now //*, the dual space of #, is

isomorphic to H [15, p. 31, Th 3] , and hence we may take F to be the unit

sphere of H*.

Define φ : S —>X by "(φ (x ) ) / = / ( % ) " ; then φ is a homeomorphism from S

onto φ{S) by definition of the weak topology, and φ (S) is clearly convex in X.

This completes the proof.
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COROLLARY 6.2. There exists a compact Hausdorff space which is a

convex subset of a locally convex topological linear space {and hence [ 11,

Th. 4.1] an AE for metric space) which is not even an ANR for compact

Hausdorff spaces,

7. Simultaneous extensions. The purpose of this section is to prove the

following theorem:

THEOREM 7.1. Let X be a metric space$ A a closed subset of X, and E a

locally convex topological linear space. Let C(X? E) denote the linear space

of continuous functions from X into E, and similarly for C{A, E). Then there

exists a mapping

φ : C{A$ E)-^>C(X> E)

satisfying the following conditions:

( a ) φ(f) is an extension of f for every f E C ( / 4 , £ )

( b ) The range of φ{f) is contained in the convex hull of the range of f

for every f £ C (A, E).

(c) φ is an isomorphism (i.e. a one-to-one^ bi-continuous linear trans-

formation) from C(A, E) into C{X, E)$ provided C(A, E) and C(X, E) both

carry the same one of the following three topologies:

(1) Topology of simple convergence [7, p.4]

(2) Topology of compact convergence [7, p. 5 ] 3 .

(3) Topology of uniform convergence [7, p. 5] .

Proof. We will show below that, in his proof of [11, Th. 4.1], Dugundji

has already constructed a mapping φ satisfying all our requirements. In fact,

Dugundji [ 11, Th. 5.1] and Arens [Z, Th. 2.6] have already observed that this

trivially satisfies some of our requirements; the only property of φ which will

need a nontrivial proof below is that φ is continuous for the topology (2).

We need the following fact, which is due to Dugundji [ 11 ] and was more

concisely stated and proved by Arens [2, Lem. 2.1]:

(*) There exists a locally finite covering I) of X — A by open sets, and as-

sociated with each V E I) an av E A and a continuous real-valued function

gy on X which vanishes outside F, such that:

( i ) 0 < gv(x) < 1 and Σj/ gy(x) = 1 for all x e X - A.

This topology is the same as the compact-open topology [ 1, Th. 9].



ERNEST MICHAEL 803

( i i ) If a G A, and x G V9 then ρ(a, ay) < 3 p ( α , x), where p is the

metric in X.

( i i i ) If / G C(/4, £ ) , then the function / : / Y — > £ , defined by "f(x) = x

for Λ; G A, and /(% ) = Σ j/ g ^ (%) f(ay ) " ϊoτ x G A - A, is continuous.

The mapping φ may now be defined by φ(/) = /, where / is as in ( i i i ) above.

It is immediately evident that φ is a one-to-one linear transformation which

satisf ies conditions ( a ) and ( b ) of our theorem. The continuity of φ~ι for any

of the three topologies follows from ( a ) and the definition of these topologies.

The continuity of φ for topology (3)-follows from ( b ) . The continuity of φ for

the topologies ( 1 ) and ( 2 ) , finally, will be an immediate consequence of the

following lemma:

LEMMA 7.2. // C is a finite (resp. compact) subset of X, then there exists

a finite (resp. compact) subset C of A such that f(C) is contained in the con-

vex hull of f( C )•

Proof of lemma. Let us define function u from X to the finite subsets of A.

If x G A, then we let

If x G X - A, then clearly x is in the closure of only finitely many V G I),

say Vl9 , Vn, and we set

u ( x ) = \ x y l 9 ••• > * v n K

Having thus defined u, we set

ec
u(x)

for every C C X. It is clear that f(C) is contained in the convex hull of / ( C ) .

If C is finite, then C is clearly also finite. It therefore remains to prove that

C is compact if C is compact. To do this, it is sufficient to show that u is

upper semi-continuous4, because then the compactness of C for compact C will

be an immediate consequence of [14, p. 151, 21.3.4].

4 A function h from a topological space Y to the space of nonempty subsets of a
topological space Z is called upper semi-continuous [14, p. 149] at a point y G Y if,
for every open subset U of Z which contains h {y ), there exists a neighborhood W of
y in Y such that h (y ) C U for every y G W; h is called upper semi-continuous if it
is upper semi-continuous at every y G Y,
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Let us first show that u is upper semi-continuous at points of X - A. Since

V is locally finite, the closures (in X - A ) of any subcollection of I) have a

closed (in X - A ) union. Hence if x G X — A, then

B = \J\V I v G U , * j? F i

is closed in Λ' - /4, where V denotes (and will always denote below) the closure

of V in X - A. Let

Then ί/ is a neighborhood of % in X, and U ( Λ ; ' ) C U(X) whenever ίc 'G (/; this

shows that u is continuous at x

Before proving the upper semi-continuity of u on /4, we need the following

consequence of ( i i ) :

( i i * ) If a G A9 and % G F, then p{a, av) < 4 p (α> % ) .

To see this , pick a y G F such that

p U , y ) < 1/3 p U , * ) ,

and then observe that

p(a, av) < 3 p ( α , γ) < 3 ( p ( α s x) + p(x, y ) ) < 4 p (α, Λ; ) .

Let us now prove that u is upper semi-continuous on A. Let α G /4, and

let V be an open subset of λ' containing u{a) - \a\. Pick 6 > 0 such that

ί y G X I p ( α , y ) < e\ C 6'.

Now let

W =\x e X\ p ( α , Λ?) < e / 4 i .

Then W is a neighborhood of α in X Ii x £ W nA9 then u{x)~ \x\, and thus

u ( x ) C U. Ii x £ W n ( X - A ) , t h e n p(a, a v ) < e w h e n e v e r x G F b y ( i i * ) ,

and thus again u(x) C U. Hence u is upper semi-continuous on A.

This proves the lemma, and hence also the theorem.

REMARK. It is an easy consequence of Proposition 4.3 that Theorem 7.1

remains true if the requirement that X is metric is replaced by the following

weaker requirement: A is metric, and one of the following three conditions
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holds: ( a ) λ' is paracompact, ( b ) X is normal and A is separable, ( c ) X is

completely regular and A is compact,

8. ADDED IN PROOF. Many of our resul t s have been obtained independently

by Olof Hanner [ 2 4 ] , who was kind enough to send the author a pre-publication

reprint of h is paper.
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