
ON UNIFORM DISTRIBUTION MODULO A SUBDIVISION

W. J . L E V E Q U E

1. L e t Δ be a s u b d i v i s i o n of t h e i n t e r v a l ( 0 , oo): Δ = ( z0, zl9 ) , w h e r e

0 = zQ < zγ < ••• a n d lim zn = oo.
n —*oo

For z n - 1 < x < zn9 put

x-
*-it (*)Δ =

' A 8(x) a

so that 0 < (x)^ < l Let {x̂  j be an increasing sequence of positive numbers. If

the sequence ί ( ^ K l is uniformly distributed over [0, 1], in the sense that the

proportion of the numbers \ ^ 1 ) Δ , , \XjJ ^ which lie in [0, (X) approaches (X as

k—»oo, for each OLE [0, 1), then we shall say that the sequence {x^ \ is uni-

formly distributed modulo Δ. If Δ is the subdivision Δo for which zn = n, this

reduces to the ordinary concept of uniform distribution (mod 1), since then [x]\ =

[x]9 δ(x) = 1 for all x9 and ( ^ ) Δ = x - [x] is the fractional part of x. Even in

other cases, the generalization is more apparent than real, since the uniform dis-

tribution of one sequence (mod Δ) is equivalent to the uniform distribution of

another sequence ( mod 1). But most of the known theorems concerning uniform

distribution (mod 1) are not applicable to the sequences 1\XL)Λ \$ if Δ is not Δo>

for in such theorems x^ is ordinarily taken to be the value f(k) of a function

whose derivative exists and is monotonic for positive x. Here, on the other hand,

(xfc)Δ = φiXfr) (mod 1), and φ9 although a continuous polygonal function, is

not necessarily everywhere differentiable; and unless 8{x) is assumed mono-

tonic, φ' is not monotonic even over the set on which it exists. This lack of

monotonicity introduces serious difficulties; it is the object of the present work

to show how they can be dealt with in certain cases.

For brevity, "uniformly distributed" will be abbreviated to "u.d." . The sym-

bols " t " , " / " , "V and " V indicate monotonic approach: increasing, non-

decreasing, decreasing, and non-increasing, respectively.

Received December 3, 1952.

Pacific J. Math. 3 (1953), 757-771

757



758 W. J. LeVEQUE

2. Put

N(a,χ) Σ 1, N(x) = N(lfχ);

xk< x

then {x^ I is u.d. (mod Δ) if and only if, for each CC £ [0, 1),

_ N ( 0 L 9 x )
lim = α.

THEOREM 1. A necessary condition that \x^ \ be u.d. (mod Δ) is that

as n —• oo.

For suppose that {x, \ is u.d. (mod Δ). Then since

we have

2, zn) N({zn + zn+ι )/2) -N(zn)

2

ΛK1/2, *„

N(zn)
+ 1 -

N(zn) (N{l/2,zn) \ i N(zn)

l + — - r - l — J ^ J -1 - 1 - -

as Λ —> oo, and so

In the same way it can be shown that

and consequently N( zn) ~ V̂
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3. The following theorem, due in a slightly different form to Feje'r (see [ 1,

p. 88-89]), expresses the fact that if / is sufficiently smooth and [ / ( * ) ] is

constant over increasingly long intervals as x increases, such that the length of

the n-th interval is of smaller order of magnitude than the total length of all

preceding intervals, then f(k) is u.d. (mod 1):

Suppose that f(x) has the following properties:

( i ) f is continuously differentiable for x > x0,

(i i) f(x) t oo as x t oc,

( i i i) / ' (%) \ 0 as x t oo,

(iv) xf/(x)—> oo as x—>oo.

Then f(k) is u.d. (mod 1 ) .

The following theorem uses the same general idea:

THEOREM 2. Suppose that, for a given subdivision Δ and a sequence \x^ 1,

N(zn) ~ N( zn-1) —* oo as rc —> oo. Then \ xk \ is u.d. ( mod Δ) if the following

conditions are satisfied:

( 0 N(zn-ι) ~ W(z n) as n—> oo,

( i i ) except possibly on a sequence of intervals [ z n . - l f

 znt) such that

m

(1) Σ, W ^ , ) - tf(*»f-i)) - o(N(znJ)9J

the relation

holds as n —> oo, the maximum and minimum being taken independently, for given

n £ nif n29 , over all k for which at least one of Xjc^ϊ cmd x^ is in [ zn~u zn].

Give the name 8n to the interval [zn~v zn]9 and put

N(8n) =

It will be shown that

N(OL,Sn)lim = α ;
„_« N(8n)

n φn i, n2f ••
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in other words, that in the limit the Xjjs which lie in δn ^ 8n are u.d. there. This

implies the theorem, for using it, (1) , and ( i ) we have, for x £ δn.

α x) n~ ι

^ Σ

o

(α+ o(D)

α
+ o ( l ) = α +

where Σ denotes summation from ι/ = l t o v = / ι - l , v ^ w t, n 2 , .

To prove ( 2 ) , suppose that n-£ nί9 n2> , that zn^ι G (*, , A;, ] , and that

min {xk - x * . ) = Xn.

Then for hn <k < kn+19 we have Λ;̂  - x^ χ = ( 1 + 6 ^ ) ^LΛ, where €kn is a posi-

tive quantity tending to zero as n —»oo. Put

en = max e, ,

and put Δ%i = x» — x, . Now if

then

kn+2

S = 1

where € ^ = 0 ( 1 ) as n —» oo. But
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t

Σ, Δ *kn+s $ tXn + tβnXn < ^n + u€nXn
s = l

where u = N(zn) - yV(z n . 1 ) . Hence

zn ~~ zn-l zn "~ zn~\
< t < α
— —

Similarly,

- z n - l Zπ ~ z n - l
— en-uen<u < e'

so that

zn - zn-x)/Xn - e'n

( zn " zn-l)/Xn ~ e'n ~ U ~ ( zn - zn-x)/Xn - 6^ - u€n '

Since /V(2:π) ~Λ/(2n-1)—•oo as τι—>oo, also (z Λ - 2n - ι)/Λ!Λ—»oo, and so

But since

uXn =O(zn - z n - i ) ; thus

- 1 -

and therefore

This completes the proof.

In case Δ = Δ o and x^ = /(&), it is easily seen that the hypotheses of

FejeYs theorem imply two of the hypotheses of Theorem 2, namely that N(zn) -
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W(2τι-i) t oo and N(zn^v) ~ N(zn) as n—>cc. But I do not know whether Theo-

rem 2 includes FejeVs theorem; the most that I can show is that the exceptional

sequence { zUt \ = {n t } mentioned in ( i i ) of Theoremo2 is in this case of density

zero, which does not imply (1 ) for all functions / satisfying the hypotheses of

FejeVs theorem. Certainly, however, Theorem 2 deals with cases not covered by

the following direct extension of FejeVs theorem, since it does not require the

monotonicity of either zn — zΛ-i or Δ xk

THEOREM 3 The sequence \ x, ! is u.d. (mod Δ) if the following conditions

are satisfied:

( i ) zn - z n -i >:zn^γ - zn_2 /brτι = 2, 3,

( i i ) Δ#£ I 0 as k too,

(i i i ) Nίzn-^ ~ N(zn) as n—> oo.

We sketch the proof. Let φ be the continuous polygonal function such that

φ{xk) = k; then 0 <φ(x) - N(x) < I. Let { ek \ be such that ek = O ( Δ Λ ^ ) and

0 < ek < Δxk/2 for k = 1, 2, . Define φχ as follows:

φ ( * ) = / k φ ( t ) d t for xElx
1 2 e , J * - 6 . Ύ I 2

(4 = 2, 3,

Then φ is continuously differentiate, and is identical with φ except at the cor-

ners of φ, where it is smooth. For 0 < α < 1, n = 1, 2, 3, , put

p is continuously differentiate except at x = 1, 2, . A function p t can now be

defined in terms of p, just as φ was determined from φ9 so that pχ is everywhere

continuously differentiable, and p differs from p only on an interval about x =

n(n = 1, 2, •) whose length €^ is of lower order of magnitude than Δ#£ if
zn € [χL ,> XL ). If ^ = w + oc is such that

κn~ι Λn

P X ( Λ ; ) = p(x), Φι(zn,ι + O L ( Z Λ - 2 Λ ^ 1 ) ) = ψ(znmml ¥a{zn-zn^ι))f

and

then
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A*k '

it follows that p'χ(x) / oo. Moreover, since

P ^ Λ + 1 ) ψ(zn) ^ N{zn)

px(n) ψ^Zn-i) N(zn-ι)

it follows that p'(x)/p (x) —>0 as x—> oo. But if / i s the function inverse to

p , these facts imply that /(x) t oo, f'(x) \ 0, and xf'(x) —» oo as x t oo. Since

f(k)—> #£ as the arbitrary numbers e^ and e'n approach zero, the conclusion fol-

lows from Fejer's theorem.

A trivial variation of Theorem 3 has, instead of ( i ) and (i i ) , the hypotheses

( Π zn - zn-ι ΐoc>

( i i ' ) i ^ t > Λ ^ for A = 2, 3, •••.

For then it will still be true that ρ[(x) / oo as # too.

4. It follows from Theorem 2 (and also from the variation of Theorem 3 just

mentioned) that if zn - zn-ι /coin such a way that zn^i ~ znf the sequence \ kθ\

is u.d. (mod Δ) for each θ > 0. In this section we examine the distribution of

{ kθ\ (mod Δ) when 8(x) \Q. This is a problem of a very different kind from the

earlier one; the result is expressed in the following metric theorem:

THEOREM 4. If 8(x) \ 0 and 8(x) = O ( Λ Γ ι ) then \kθ\ is u.d. (mod Δ) for

almost all θ > 0.

The proof depends on a principle used in an earlier paper [2]:

If C and e are positive constants and {/, } is a sequence of real-valued func-

tions such that

(3) < (/, A = l, 2,
— / i I 1 i fi \ 'max(l, \j-k\e)

then \fk(x)\ is u.d. (mod 1) for almost all x € (α, b).

This will be applied with fk(x) - φ(kx)f where φ is the function defined in

§ 1 ; it was noted there that the u.d. (mod Δ) of {xk \ is equivalent to the u.d.

(mod 1) of \φ(xk) 1. Let a and b be arbitrary positive numbers with a < b9 and

put
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ίb
 €i

J* Ja

since / , . and / .^ are complex conjugates, it suffices to consider the case / > k.

For fixed / and k9 denote by ξ , ξτ all the numbers of the form zm/j or zm/k

in the interval (α, 6), so named that ξ < < ξf. Then the function

f.(x) - fk(x) X~
xA(x) + B{x)

is linear in each interval

and Bj there. Hence

S{jx) 8(kx)j \δ(jx) 8{kx)

, ξj), A(x) and B(x) being certain constants

l=ι Jξl-y

Since / i s continuous,

and so for 1 < t < r,

Thus, using the relation

we have

l=ι

Bl =

n n - 1 / m

Σ ambm - Σ Σ «
m = l w ι = l \ / χ = /

iA,

6Λ £ α f

and so
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(4)
r-ι

At At \Ar\

B y t h e f a c t s t h a t ξ > a > 0, 8 { x ) \ O a s % — * o o , a n d

A,-—L-->..

it is clear that

At> C{j-k)>0

for t = 1, 2 , , r, s o that ( 3 ) wi l l fol low from ( 4 ) if it can be shown that for

some c, e > 0, the inequal i ty

r - l

At At+ι

holds. Moreover, writing

and

Σ i c . i - Σ c t - 2 Σ < : , - - - — - 2 Σ c t ,
t = I

where Σ is the sum over those t for which Ct < 0, we see that it suffices to

show that

We consider three cases. Suppose first that ί is such that ζt+ι = z

m/j f°Γ

some m, but that for no / is ^ ί + = z^/k. Then

A. =
7

1 8 ( z m ^ ) δ ( k ξ t ) ' ί + I 8 ( z m ) 8 ( k ξ t ) 9

s o t h a t A t + ι > A t , a n d t h e t e r m Ct d o e s n o t o c c u r i n Σ . I f
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then zm > Z{ and

Finally, if £ = z^/k for some Z, but £ j4 2^/7 for every m, then

Thus, writing δ ( x + ) and δ(%~) for lim + δ(<f)andlim _δ( <f ), we have

Σ ' ι r I < * Σ '
1 L ' ~~

( /δ (/*-/*) - A/δ( Z / _ χ ) ) (j/8(;2 /

+/4) - k/8 ( ^ ) )

where Σ denotes summation with respect to I with z^/k £ (α, ό). But

and

δ(/*;/*) <

and so

Σ | c t ι .<

If now δ(Λ ) = 0 ( 1 / Λ ) , then
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and the proof is complete.

5. The preceding result can be generalized considerably by using the fol-

lowing transfer theorem:

T H E O R E M 5 . Suppose that \ x k \ is u.d. ( m o d Δ ) , where Δ = I zn }, and that

{is a function which is differentiable except possibly at the points zίf z2> ••• ,

such that f{x) t oo a s x t oo and

( 5 ) inf / ' ( * ) ~ sup / ' ( * ) .
χ€(zn^l9zn) xe{zn-u zn)

Then the sequence \x^\ = \ fix^) i ι s u d. (mod Δ*), where Δ* = {/(z n) 1.

Put

/ V ( a , * ) = Σ 1 , N ( l 9 x ) = N ( x ) 9 N * { O L 9 X ) = Σ, 1 , N * ( l , x ) - N * ( x ) t

where Σ denotes summation with x^ < x and (x^)^ < Ot and Σ, denotes

summation with x^ < x, \ ^ ) ^ * < &>• Since / is an increasing function,

By assumption, the relation

,. N(OL,X)
hm = α

Λ -OO N(X)

holds for <X€ [0, 1] So we need only show that N*(θL, fix)) ~ Λ^(α, x) as

x—>oo, and by Theorem 1 it suffices to prove this as x runs through the sequence

{ zn I But

n
N(0L,zn)= Σ iN(zm.1 + a(zm~zm.ι))-N(zm.i)\,

m = 1

and so

ΛTία./U.))- £ IΛTί. ^ + αd - . ^ ) ) - ^ ^ . ^ !
7W sr 1

= i V ( α , z n ) + £ { ^ ( 4 _ ι + o c ( 2 * - z * _ 1 ) ) - y V ( Z m _ 1 + α ( Z m - 2 m _ 1 ) ) l .
771 = 1
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Thus the problem reduces to showing that

m = l

or what is the same thing, that

m = l

Put

Zm-1

If it can be shown that

where 6^—» 0 as m —> oo, then for every € > 0,

- N{vm(a))\
m = 1

\m = 1

*„) ) -O(eN(zn)),

which implies (6 ) .

Now

and

hence
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To maximize um{θi) - t?m(α), we must have

There is a Z 0 G ( z m - p 2 m ) such that

f(*m) -f(z
zm ~ zm-i

and a corresponding Ct0 G (0, 1) such that

( Z o ) ,

(so that u^{ αQ) - t>̂ (Cί ) = 0) for which

μ m ( α ) - , m ( α ) | < l « m ( α o ) - » m ( α o ) |

for all αG(0, 1). But

/(Zo)-/(*„-,)
()

SO that

/(Zo ) -
2/n-l +

Γ(z0)

and

whence

sup
z e δ m

1 -
f(Z)-f{zm_ι)

~ zm-m-l

< sup 1 -
/'(Z)
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and this last upper bound is o ( l ) as m —• oo. Thus (7) holds, and the proof is

complete.

If the /of Theorem 5 is taken to be an arbitrary increasing polygonal function,

with vertices on the abscissas x = z l9 z2, , then the condition (5) on the de-

rivative is trivially satisfied. Such a transformation merely represents a change

of scale inside each interval δn, and the distribution modulo Δ of any sequence

ί xk ) is identical with the distribution of {f(χfc) 1 modulo Δ*.

In case / ' i s monotone, (5) can be replaced by the simpler condition

( 5 0 Γ U π - ι ) ~ /'(*,») as 7i—»oo.

Combining this version of Theorem 5 with Theorem 4, we have:

THEOREM 6. The sequence \f(kθ)\ is u.d. (mod Δ ) for almost all θ > 0 if

f(x) t o o , f'is monotonic, and

f'(Γl(zn)) ~ / ' ( / - ι ( 2 π - 1 ) ) ,

where f"~ι is the function inverse to /.

COROLLARY. The sequence \QL \ is u.d. (mod Δ) for almost all CX> 1 if

zn ~ g{n), where g is an increasing function with monotonic logarithmic deriva-

tive such that

( 8 )

For writing ak as ek g α, we see that we can take the /of Theorem 6 to be

the exponential function, and the conditions displayed there become

log zn - log zn^ι \ 0,

log zn - log zn-ι = θ ( - ) ,
Uoe: zn I

Of these, the third is implied by the first. Since
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d
— log g(x) \ 0,
ax

it is clear that log g(n) — log g(n - 1) \ 0 . From the extended law of the mean,

G(χ)-G(x-1) G\X)

— = — , A G ( « - l , x ) ,
H{x)-H(x-l) H (X)

it follows that if G\x) =0(H\X) ), then

G{x) - G(x-l) =0(H{x) - H(x-l)).

Taking

G(x) = log g(x), H(x) = log e^ = yfx,

we have by (8) that

logg(τι) - l o g β ( Λ - l ) = 0 ( τ ι " ι / 2 ) .

But it also follows from the relation G'(X) = 0{H'(X) ) that G(x) = 0(H{x));

hence

and the proof is complete.

For sufficiently smooth g, (8) can be replaced by the condition g (#) =

0(exp \fx).
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