
PERTURBATIONS OF SPECTRAL OPERATORS,
AND APPLICATIONS

I. BOUNDED PERTURBATIONS

J. SCHWARTZ

1. Introduction. Λ principal theorem on self-adjoint boundary-value problems

is the existence of a complete orthonormal set of eigenfunctions. This corre-

sponds to the diagonal reduction of a hermitian matrix, and to the spectral

theorem for self-adjoint operators in Hubert space. How much remains true if we

drop the fundamental condition of self-adjointness? Infinite dimensional ex-

amples show that, in general, we cannot expect even the existence of a single

eigenvector.

Nevertheless, there does exist a class of operators which behave in a "reg-

ular" fashion from this spectral theoretic point of view, namely, the spectral

operators introduced in [4, p. 560]. The paper [4] , while extensively devel-

oping the theory of these operators, still leaves open a very significant question.

Are many (or any) of the nonsymmetric integral, differential, and so on, oper-

ators arising in the more "c lass ica l" branches of analysis spectral? The main

result of the present paper is a positive answer to the foregoing question.

The principal indication that a positive answer is to be expected comes from

a classical series of papers [ l ; 2; 3; 11; 13; ],in which it is demonstrated that for

certain general types of boundary-value problems involving nonsymmetric linear

differential operators, expansions in eigenfunctions exist and converge in much

the same way as ordinary Fourier series. The method in all of these papers is

"analytic;" that is, it operates with asymptotic estimates of the solutions of

the various differential equations and of the partial sums of the various series

arising. The method in the present paper is abstract, and is phrased in terms of

Banach spaces, linear operators, and so on. This has the advantage of greater

simplicity in proof, and greater generality in applications. For instance, we shall

be able to prove results on certain types of partial differential operators which

appear difficult to prove by an analytic method.

The general idea of our abstract method is the following. Let 7 be a spectral
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operator. Let B be an operator which is, in some sense, small relative to 7.

Then T + B will be a spectral operator. A less stringent restriction on B will

yield a weaker conclusion on the spectral nature of 7 + B. In particular, there

are many cases in which it can be asserted that the set of generalized eigen-

vectors of 7' + B spans our Banach space, but not that 7 + B is spectral.

2. Preliminaries. Let X be a (complex) reflexive Banach space. A bounded

operator in X is an everywhere-defined continuous linear mapping of X into it-

self. An unbounded operator is a linear mapping of a dense linear subspace of X

into X. The set on which the operator T is defined is its domain, denoted by

Jy ( 7 ). The open set of λ in the complex plane, for which

( Γ - λ/)" 1 = ( I - λ ) " 1

is everywhere defined and bounded, is the resolvent of 7. Its closed comple-

ment, which is bounded for bounded operators, is the spectrum σ(T) of 7.

DEFINITION 1. An operator T is regular if its spectrum σ( T) is not the

entire complex plane, and if ( 7 - λ)" 1 is compact for some λ £. σ( 7).

REMARK. Except in the trivial case where X is finite dimensional, a reg-

ular 7 cannot be bounded. For, if 7 is bounded,

/ = ( 7 - λ ) ( 7 - λ ) ' 1

is compact; and this implies immediately that X is finite dimensional.

LEMMA 1. If T is regular, then:

(a) Its spectrum is a denumerable set of points with no finite limit point.

( b) ( 7 - λ ) " ι is compact for every λ ^ σ ( 7).

( c) Every λ0 G σ( 7) is a pole of finite order ι/(λ0 ) of the resolvent Rχ =

( 7 - λ)" *. // a vector f satisfies

(T -λo)
kf=O,

then f satisfies

( T - λ o ) v ( λ o ) / = 0 .

The set of all such vectors f makes up a finite dimensional linear space, called

the space of generalized eigenvectors of 7 corresponding to the eigenvalue λ0 .

If E{λ0) is the idempotent function of T corresponding to the analytic function



PERTURBATIONS OF SPECTRAL OPERATORS, AND APPLICATIONS 417

which is one on λ 0 and zero elsewhere on the spectrum of T9 then E (λ0) pro*

jects X onto the space of generalized eigenvectors corresponding to λ 0 .

Proof. We can suppose, without loss of generality, that θ£σ(T), and that

T~ is compact. If we then make use of the identity

parts (a ) , (b) ? and the first statement in (c ), of our result follow readily from

the corresponding statements in the ordinary Fredholm theory of compact oper-

ators. (For this theory, see, for instance, [7, Chap. VII. ].) We have

(T - λ o ) f c / = O

if and only if

so that the second and third parts of the lemma also follow by a simple applica-

tion of the corresponding result for compact operators.

To prove the last part of the lemma, we may argue as follows: If C is a small

closed curve surrounding the point λ0 and traversed once in the positive sense,

then by definition

£(λ0) = — / (λ - τyιdλ
2πi JC

1

2πi

1

2πi

where C is a small curve surrounding λ"1, and traversed in the positive sense.

This last integral can easily be evaluated in terms of the functional calculus

for bounded operators (cf [4 ] ) , and turns out to be the idempotent analytic

function E ()CQ

ι ) of T" l corresponding to the analytic function which is one on

λ"0

L and zero elsewhere on σ{T"ι)9 and now the desired result for T follows

readily from the corresponding result for Γ"1.

REMARK. It is to be noted that we have actually proved a little more than is

stated in Lemma 1. We have, in fact, proved that the points of σ(T) and the non-

zero points of σ(T" ι) are in one-to-one correspondence through the map
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\-ι

and, that if we call E (λ 0 ) ( £ ( λ 0 )) the spectral measure of the point λ0 corre-

sponding to the operator T (the operator Tι), then

E(λ0) =E(Xo

ι).

This result is, of course, merely a particular case of the "unbounded" analogue

of the general "Spectral Mapping Theorem" of Dunford [ 4 ] .

Now, by [6, Theorem 20], it follows that if S is a compact spectral operator,

and E(e) is its spectral resolution, then E{\0) is the projection associated

above, with the point λ0 ( for ΛQ Eσ(S) ; for λ0 £σ(S)9 E(λ0) = 0). Conversely

if S is a compact operator, and ^ ( λ o ) is the spectral" measure of the point λ0,

then S is spectral if and only if there is a uniform bound for all sums Σ ι = ι £ ( λ j )

taken over finite subsets λpλj , , λjς of σ(S); that is, if and only if the

various projections E(λ0), λ0 E σ ( T ) , generate a uniformly bounded Boolean

algebra of projections. We can carry this result over to unbounded operators in a

trivial way, making use of the following:

LEMMA 2. Let T be a regular unbounded operator*

(a) // (λ 0 - T)~ι is spectral for some λ0 <έσ{T), then (λ - T)~ι is spectral

for all λ ^ σ ( T). In this case we say that T is an unbounded spectral operator.

(b) The regular operator Ί is spectral if and only if the spectral measures

E{λ0) of the υaήous points λ0 Eσ(T) generate a uniformly bounded Boolean

alge bra.

Proof. Suppose that T~ι is spectral. Then the spectral measures E(λ0) of

the points λ0 E σ ( Γ ι ) generate a uniformly bounded Boolean algebra. Since

the projections E(λ0) generate a uniformly bounded Boolean algebra. The con-

verse argument to this argument evidently goes through. Moreover, since the

spectral measure Ei(λQ) corresponding to the operator Ί + c i s evidently

E{λQ — c ) , it i s evident that T has the property of part ( b ) if and only if T + c

does. But this immediately implies part ( a ) .

3. Bounded perturbations. We now come to the main point of the paper.

THEOREM 1. Let T be a regular spectral operator, and suppose that λn is an

enumeration of its spectrum. Let dn denote the distance from \ n to the rest of
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the spectrum. Suppose that for all but a finite number of n? E i\n) projects onto

a one dimensional subspace; suppose that

Σ
i-l

Let B be a bounded operator.

( a ) If Σn = ι d"n < 00, then T + B is spectral.

(b) // X is Hilbert space and T is normal^ and Δ * n = ιd~2 < co, then T + B

is spectral. 2

Proof. P u t R \ = ( λ ~ - T ) ' 1 for λ j έ σ ( T ) . T h e n w e h a v e

(1) (λ - T - BY1 = (/ -

whenever (/ - RχBY1 exists. Now, by Lemma 3 below, there exists a constant

K > 0 such that

Hence no λ at a greater distance than KB from the spectrum of T is in the spec-

trum of T + B? since, for such λ, \R-\B | < 1. It follows also that T + B is regular.

From (1) it follows that

£ λ = (λ - T - BY1 = {/ + RχB(I - RχBYι\Rχ

= R\ + R\B(I - R\BYιRχ.

That is,

l -RλBTιRλ.

Let Cn be a circle about λ^ of radius dn/2 .Then, for λ £ Cn9 we have \R\\ <

~n

ι, and thus when n is large enough to ensure ZKd^1 < 1, we have

|(/ - RχBYι\ < (1 - 2Kd'n
ιYι.

Since c/n—»oc, we may replace this estimate, at least for all but a finite number

The series Z^ j = 1 E (λj) converges in the strong operator topology.

^ Of course, Γ + B is also regular. This is proved in the course of the following
argument; but c.f. also Lemma 17 below.
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of Cn9 by

| ( / - R\B)'ι\ < 2.

It then follows that

8K2\B\d-n

2.

If we integrate this inequality around Cn in the positive sense, we obtain the

inequality

- En\ < 8K2\B\d;1 ,

where E(λn) i s the spectral measure of λn corresponding to the operator 7, and

where En i s the sum of the spectral measures E ( λ ) corresponding to T + B of

the points λ of the σ{T + B) lying within Cn .

Lemma 4 below then implies that for n sufficiently large, En has a one-dimen-

sional range. It follows immediately that there must be exactly one point λ ^ o f

σ(T + B) in Cn, and that En = E'{λ'n). That i s ,

\E{λn) - E\λn)\ < %K2\B\d'n
ι

for all but a finite number of n. From the above, case ( a) of our theorem follows

immediately.

To prove case (b) , we have only to refine our estimates slightly. We have,

from (1),

Rλ = {/ + RχB + (RλB)2 (I - RλB)'1 \Rλ.

We then obtain the expression

so that for λ G Cn, and n sufficiently large,

\Rλ-Rk-RλBRλ\ <

The question now is, what is the integrated form of this inequality? The only

problem is to find

Fn = -A- / R\BRλdλ,
2πι JCn
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and this is easily done.

Indeed, ί{^ has the Laurent expansion

- λnT
ιE(λn) + R°(λn) - kn)

around \n. In this expression R°(λn) is a "partial resolvent" of T; that is, we

have

Λ ° ( λ n ) = lim (/ - E{λn))Rχ.

Thus, R°(λn) is that analytic function of T which corresponds to the analytic

function f{z) which is equal to ( z - λn)"ι everywhere on σ(T) but in the im-

mediate neighborhood of \n9 where we put f(z)=0 In terms of this Laurent

expansion, we readily find that

Having majorized

Fn = E(,λn)BR°(.λn) + R°(λn)BE(λn).

\E\λ'n) - E(λn) - Fn\

by the terms iβK3 \ B \2 d^2 of an absolutely convergent series, we have only to

prove that a uniform bound exists for finite sums ΣI i = ι F W £ of the terms Fn .

Since a term of the form E(λn) BR° (λn) can be treated as an adjoint of a term

of the form R° (λn) BE (λn)9 we have only to show that a uniform bound exists

for finite sums

of these latter terms. It follows from Lerαma 3 below that a constant K exists

such that

| K ° ( λ n ) | < K-V

Thus

R0(λn.)BE(λn.)f <\B\κ
I = 1
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ί l 1 ^ ί l ? 11//2 f °° Ί

Σ ^ 2 Σ l £ ( λ B ί ) / ι < i s i κ ' Σ 4"2

' ι = l *- i = i * * ί = i

VI.

since the normality of T implies that the projections £ ( λ ; ) are orthogonal per-

pendicular projections in the Hubert space X. Thus both parts of our theorem are

proved.

Before continuing with the main line of our discussion, we shall state and

prove the lemmas referred to in the foregoing proof.

Lemma 3, below, depends on the functional calculus for our unbounded oper-

ators; before proceeding to the proof of this lemma, we must discuss the func-

tional calculus. We consider a regular unbounded operator S with a denumerable

spectrum ί \n \. We shall allow a finite set λ p λ 2 , ••• , λ^ of the eigenvalues to

be multiple poles of the resolvent, but shall require that all the remaining eigen-

values are simple poles of the resolvent. In addition, we require that

In this situation, we can set up the functional calculus for T by setting

/ ( π = Σ Σ, a - λiVHλi) + 2^
i -1 / =0 / / =N +1

for every function / which is uniformly bounded on the spectrum σ(S) and which

belongs to the class Cv( λ ^ near the spectral point λ;( 1 £ ί <./V). It may be

remarked that, here and in all that follows, the finite number of multiple poles

λi,λ2> ••• 9 λjv of the resolvent function (λ— 5)" 1 contribute only a finite number

of terms, whose influence on any of our arguments it will be trivial to determine

by inspection. Thus, to avoid notational complications, we shall assume, without

loss of generality, that all the λj are simple poles of the resolvent; that is, that

/V = 0. In this case, our proposed expression for the functional calculus is

f(T) = £ f(λi)E(λi),
1=1

where / ( λ ) is any function uniformly bounded on the spectrum.

Functional calculi of this sort are discussed in [6] , in a much more general

situation. In particular, it follows from [6, Lemma 6] that the series defining

f (T) converges in the strong topology, and that there exists an absolute con-
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s t a n t K ~ K{T) s u c h t h a t we h a v e

| / ( Γ ) | < A'- max | / ( λ ) | .

λeσ(T)

From this fact, we have:

LEMMA 3. // S is a regular spectral operator all but a finite set of whose

eigenvalues \ n are simple poles of the resolvent^ and S also satisfies

then there exists an absolute constant K such that

| ( λ -Syι\ < K d i s t (λ , σiS))'1

for all λ not within a fixed radius e of any multiple pole of the resolvent.

Lemma 3 involves the operator R° (λn) defined as the constant term in the

Laurent expansion

(x-sr1" £ ί M +R°{λn) + ...
A - An

of the resolvent function around λn» Since

it is evident that

(2) R°(λn) = Σ(λn - λ ί Γ
ι £ ( λ ί ) .

We obtain, as an immediate consequence of this formula:

LEMMA 3 . If S is a regular spectral operator having the properties described

in Lemma 3S then there exists an absolute constant K such that if λn(Ξσ(S) and

dn = min dist ( λn, λ ;) ,
iftn

then for the operator R° (λn) defined by formula ( 2 ) we have

|Λ ° (λ n ) | <K'd'n
ι.
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LEMMA 4. 3 Let E be a projection of X onto an n-dimensional space, E' is a

projection in X satisfying

\E-E'\ - i μ r 1 ,

then E' also projects X onto an n-dimensional space.

Proof We have

l £ - EE'\ <-\E\ \E\'1 < 1

and

so that

\ E ' \ < \ E \ + ^ \ E Γ ι < 2 \ E

\ E Έ - E ' \ < 2 \ E \ . - \ E \ ~ ι = 1 .

If we then consider £ £ ' as a mapping of £ ( X ) into itself, it follows that £ £ '

has an inverse. Thus E' maps X onto a space of dimension n at least. Applying

the same argument to £'£, we see that £ ' maps X onto a space of dimension n at

most. It follows that the dimension of £'( X) is exactly n.

Part (b) of Theorem 1 is capable of some improvement. Inspection of the

proof of this result reveals that the only thing essential is that the spectral

measures E{X() should be orthogonal projections. But, by a theorem of Lorch and

Mackey (proved in [17]), any uniformly bounded Boolean algebra{£i of projec-

tions in ίlilbert space can be reduced to a Boolean algebra of orthogonal pro-

jections by an inner automorphism

£ —>D" ι £D,

where D is a bounded operator in Hubert space with a bounded inverse. Since

such an inner automorphism evidently preserves all operator theoretic properties

of the sort involved in our proof, we may state:

Corollary lb ' . 4 // T is a regular spectral operator in Hilbert space, if all but

3 A similar lemma is found in [ 18, remark after Corollary 2.5] .

This improvement of Theorem lb was pointed out to the author in conversation with
N Dun ford.
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a finite number of its eigenvalues λn are simple poles of the resolvent and corre-

spond to one-dimensional eigenspaces, if

I s 1

and ίfy putting

dn = min dist (\ n,,

we have Σ α Γ 2 < oo , then T + B is a spectral operator for any bounded B.

4. Two counterexamples. It would be useful to be able to prove Theorem 1

without the restriction to simple eigenvalues. Unfortunately, the appropriate

generalization is not true, even if the eigenvalues are restricted to be simple

poles of the resolvent, and even if the eigenvalues go to infinity very rapidly

The following example shows this to be the case:

EXAMPLE 1. We take two infinite sequences φ + and φ" of vectors to be,

together, an orthonormal basis for Hubert space X. We let T be the self-adjoint

unbounded operator defined by

Then λft =n\ is a simple pole of the resolvent, but a double eigenvalue. We then

let B be the compact operator defined by

It may be noted that if we realize X as a space of L2 functions, taking

φ + = cos 2πnx, φ~n - sin 2πnx,

say, then B is an operator defined as an integral transform with an analytic

kernel. At any rate, this peturbation breaks up the double eigenvalue n\ into two

single eigenvalues n\ and n\+(n\)~ι, with the corresponding eigenfunctions

nφ* - φ" and φ*. A brief calculation shows that the corresponding projections

E{n !) are defined by
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(re !)</>.* = 0 for n έ j ,

Thus, the spectral measures of the points in the spectrum of 7 + B are not

uniformly bounded, so that / + B is surely not spectral.

This example also indicates that the spectral property of 7 + B fails because

we do not group the two projections arising out of the double eigenvalues of /

together in forming our spectral sums. We shall see later that this is very typical

behavior.

In view of the importance for our proof of the property described in Lemma 3,

we shall give an example which shows it to fail if we allow regular operators

with an infinity of double poles of the resolvent. This is:

EXAMPLE 2. We introduce an orthonormal basis for ίiilbert space X con-

sisting of two infinite sequences of vectors φ , φ~, as in Example 1. We let 7

be the smallest closed operator satisfying

TΦn = n2Φn + "Φή* TΦn = n^n'

Ί hen σ( Ί) is the set of points n2, and (λ - T)~ι is defined by

(λ - TYιφ+

n = (n2 - KΓHφ* - n{n2 - λ ) " 1 ^ )

( λ - TT1Φ; = (n2 - λ Γ ' 0 ; .

Hence 7 is regular. If we put kn = n2 — w2, then

d(kn,σ(T)) = nA

for all large n, while

has norm at least 1.

5. Basic properties of ordinary differential operators. We wish ultimately

to apply our abstract theory to the study of linear differential operators. We shall

take our formal differential operators to have the form
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n I dV

where

α^(%) = 1, an,ι (x) = 0 ,

and where the coefficient function α ; ( # ) belongs to the c lass C°° [ 0, l l . The

restriction on the coefficients an and an.x is not as severe as might at first

appear, since any operator r of the form ( 3 ) in which an{x) ψ 0 and an(x) is

real can be reduced to one of the restricted form we have chosen by an elementa-

ry transformation.

In connection with the study of the rc-th order differential operator T, it is

convenient to introduce the Banach space Λn - An[0, l ] consisting of those

functions / i n Cn~ ι such that f^n"1' (x) i s absolutely continuous and such that

/ ' " ' G L 2 [ 0 , 1 ] . We introduce the norm in An by the definition

I / I = ( [l \f{n)(x)\2dx\K + max max | / ( i ) U ) | .
'^° J o < χ< l o< i< Λ-1

A fundamental formula in the study of r is then the Green's formula, which we

can obtain readily by partial integration:

(4) Λ τf{x)JUΓ)dx- Γ f{x)τ*g(x)dx = F^f.g) - F0(f>g).

ϊlere, / and g are arbitrary elements of ^ " [ θ , l ] , T is the formal differential

operator

n

and r * is the formal differential operator

ι = 0

where
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The operator r * is called the formal,, or Lagrange, adjoint of τ The bilinear

forms Fi ( / ^ ) and Fo (/, g) are given by the formulas

n- i

M/,g) = Σ

i , 7 = 0

rc- 1

i,7=o
where the coefficients Ci;y and βij are calculated readily from the functions
ai(x)> We can see, in particular, that

ft; = «*/ = 0 for i + 7 > n - 1,

Thus, the matrices /3;y and Cί;y are nonsingular subdiagonal matrices, and hence

define nonsingular bilinear forms.

If a formal differential operator r is given, we set up a corresponding un-

bounded operator TQ in the Hubert space L2 [ 0, l ] as follows:

( a ) J9 ( To ) is the set of all Cn functions / defined in [0, l ] and vanishing

outside some compact subset of the interior of [0, 1 ].

(b ) If / G J9 ( To ), Tof is defined simply as rf.

Our principal analytic problem at this point is to determine the adjoint of Γo

The solution is contained in the following:

LEMMA 5. The adjoint Γ* of the operator To is the operator 7\ defined as

follows:

( a ) Its domain is A .

(b) lffeA^\ T*f=τ*f.

Proof. It follows immediately from Green's formula that Tι C 7*. To prove

the opposite inclusion, we proceed by stages.

( a ) Consider first an element z E L2 such that TQz = 0. That is, (z9TQ y)

= 0 for every Toy in the range of To. We shall show that z G Cn. Let Σ be the

n-dimensional space of solutions of τ*σ = 0. We shall show that if /G L2 is

orthogonal to Σ, then (/«, z) = 0. Since Σ is finite dimensional and hence closed,
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we shall be able to conclude that z G Σ, which will give us the desired result

z^Cn.5 *$e begin by proving the somewhat weaker statement contained in:

SUBLEMMA 5. //

(a) / is orthogonal to Σ>

(b) /eC",

(c) /(%)== 0 outside some compact subset of (0,1),

then f is orthogonal to z.

Proof. We know by the standard theory of ordinary differential equations that

the equation rf = / has a unique solution / e Cn which satisfies the boundary

conditions

0 = f ( 0 ) = / ' ( 0 ) = . . = f ( " - l ) ( 0 ) .
A

If we c a n only verify t h a t f (x) = 0 o u t s i d e s o m e c l o s e d s u b i n t e r v a l of ( 0 , 1 ) , w e
A A A

will know that / £ J9 ( To ), so that / = Tof, and therefore (f9z) - 0. Now / is ,

in some interval [0 , e ] , the unique solution of the equation rf = 0 satisfying the

boundary conditions

0 = f ( 0 ) = / ' ( 0 ) = • • • = / ( n - ι ) ( 0 ) = 0 .
A

ί ίence f (x) Ξ 0 in [ 0, e ] . 7v'e could apply the same argument to an interval

L1 — £, l ] , if only we knew that

and it is this which we propose to verify. This we can do as follows: let

Then we have, from Green's formula,

0 = / τf(x)σ{x)dx- fl f{x)τ*σ(x)dx
Jo Jo

That is , F\ {f> σ) = 0 for every σ G l Since there exis ts a σ £Z with any pre-

assigned values

σ ( l ) , σ ' ( l ) , . . . . σnn-ι(l),

It may be noted that the method of proof of this lemma is actually that adapted to
proving the following result:

THEOREM. Let a distribution δ satisfy an ordinary linear differential equation with
C coefficients. Ίhen 8 is itselj a C junction.

In connection with tins proof, see 19, Theorem 1.1 J, where the same result is proved
by a different method.
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it follows that

A A A/ λ

Γ / Ί \ __ f ( Λ \ _ . . . _ / V^~ U / l ] _ Λ

A

by the nonsingularity of the form Fγ (f?σ). This concludes the proof of the sub-

lemma.

Now we must show that hypotheses (b) and ( c ) of the sublemma can be

dropped without invalidating the conclusion. Indeed, let / be a function which

is orthogonal to Σ. Let cri,<72? * ? on be an orthonormal basis for Σ Then, by

approximating σ{ sufficiently closely by a Cn function φi which vanishes out-

side a compact subinterval of (0,1) , we can ensure that the matrix (φi,σj) — mij

is nonsingular. Now, let / be approximated by a sequence f^ of Cn functions

which vanish outside a closed subinterval of (0,1) . Then, if m . • is the inverse

matrix of m/y,

A n n

/=i l=ι

is a sequence of Cn functions orthogonal to Σ which vanish outside a compact

subinterval of (0,1) , and such that lim k _ ^ fu — /• Since, by the sublemma,

(f^z) = 0, we are able to conclude that (/s z ) ~ 0.

To complete the proof of Lemma 5 it still remains to consider the case

T*z - gs where g Φ 0 and g GL2, and to show that z E An. We know by the stand-

ard theory of ordinary differential equations that there exists a solution Zγ E An

of the equation τ*2 x = g. Now, as remarked at the beginning of the proof of

Lemma 5, Zi E J9 ( T*). Henceu

By what we have already proved, z - z ι E C71 and

τ * ( z - ^ ) = 0.

Hence it follows that z £ An and that

Thus the proof of Lemma 5 is complete.

Lemma 5 has as a consequence an interesting topological property of our

formal differential operators, expressed in:
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LEMMA 6. Suppose that fm is a sequence of elements of An

9 and that fm and

τfm conυerge {weakly) in the topology of L2 [θ, 1]* Then fm converges {weakly)

in the topology of An[0, l ] {and conversely).

Proof. Let us introduce a norm in J9 ( T ) in two ways:

\f\2 = I / I , + m a x m a x \fU)(x)\.
o<i<n-ι

Then, since 7* is closed, 35 ( 7Q ) is complete in the first norm. On the other

hand, it follows from this that J9 ( 7 * ) is complete in the second norm. Since

I/Ί2 — I/Ίi> ^ f°HOΛWS fΓorn a well-known principle in the theory of Banach

spaces [7, Theorem 11.7] that | / | t and | / | 2 are equivalent. On the other hand,

it is evident on inspection that \f\2

 a n ( ^ t n e n o r n Ί introduced for An determine the

same topology. Hence it follows that \f\γ determines the same topology in An as

the norm of An

9 and this proves our lemma.

On the basis of these two lemmas we can proceed systematically to set up

the exact operator theory of differential operators. We first make:

DEFINITION 2. Let r be a formal differential operator of order n, and let

n- l n-1 A

( 5 ) A.{f) = 2 2 4 . / ( i ) ( 0 ) + Σ, A μ f { ί ) ^ 1 ) = 0» 0" = l A)
i =0 ί = 0

be a set A; linear boundary conditions. Then we define an operator 7 in L2 [0,1]

by putting:

( a ) i 9 ( T ) = [ f £ An
]Γ Aμί

(i\θ)+ Σ, Λi}f^Hl) = 0, / = I,

(b) I f / G J 9 ( J ) , Tf=rf.

Then T is said to be the differential operator determined by the formal operator r

and the boundary conditions [31. Any such operator is called a differential

operator.

LEMMA 7. Any differential operator T is a closed operator in Hilbert space

with a dense domain. Moreover, the range of T is closed.
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Proof. Let fn —» f> Tfn —» g. Then, by Lemma 6, we have / G An

9 fn — > /

in the topology of An It is then evident that / satisfies the boundary conditions

which define Ts so that / £ J9 (7 ). Moreover, if T is defined by the formal

operator r , we have τfn —> rf in the topology of L2, so that Tf = r{ - g;

thus T is closed.

Let I\ be the differential operator defined by the formal operator r and the

boundary conditions

/ ( 0 ) = / ' ( 0 ) = . . . = / U - l } ( 0 ) = / ( l ) = / ' ( l ) = . . . = / ( Λ - ι ) ( l ) = 0.

Then 7 is an extension of T\ . Now, it is clear that the differential operator T

defined by the boundary conditions Aj(f) = 0 will remain the same if we drop

from our list of conditions all Aj which are linear combinations of Ak with k < j .

Hence, without loss of generality, we can suppose that the vectors

[A j 0

form a linearly independent set. Thus, we can find a finite set of functions

φχ9 Φ2 •> » Φk - & ( T ) such that

It follows that

w h e r e S i s the f in i te d i m e n s i o n a l s p a c e g e n e r a t e d by t h e v e c t o r s φΐ(i = 1,2,

. . . ,k) H e n c e , if R ( T) d e n o t e s t h e r a n g e of T, we h a v e

H ( T ) = H i T , ) + S}

A

where S is a finite dimensional space. Hence, we have only to show that R ( 7\ )

is closed. Now, suppose that R ( 7\ ) is not closed. Then there exists an element

g and a sequence /Λ G 19(7!) such that Γi/W—> g3 but g ^ R ( 7 t ). It then

follows from the closure of the operator 7\ that / does not converge. Hence

there exists e > 0 and a sequence m^ni of indices approaching infinity such that

\frni ~ fnt\ > C-

Putting
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we have | g; | > e, 7\ gι —> 0. If we then put

gi = gi/ \gi\,

we have \gι\ = 1, 7\ gi—> 0. A subsequence of gi converges weakly: we can

suppose without loss of generality that this subsequence is the sequence gi

itself. It then follows by Lemma 6 that gi converges weakly in the topology of

An

9 and hence in the topology of C°. Therefore gi(x) is a uniformly bounded

sequence which converges at each x (0 < x < 1); this implies that ^converges

in the topology of L2 [ 0,1J. From the closure of Tί we find, putting

g = lim gi9

i -»oo

that | g | = 1, Txg =0. But then g is a nonzero function in Cn which satisfies the

equation Tg = 0 and the boundary conditions

this contradiction proves Lemma 7.

If we examine the part of the foregoing proof which concerns the operator 7\ 9

we see that we have actually shown:

COROLLARY. Let T be a differential operator with an inverse T~ι. Then

T~ι is a continuous mapping from the range K(T) of T to L2

We strengthen this conclusion in:

LEMMA 8 Let T be a differential operator with an inverse T~ . Then T~

is a continuous mapping from the range R( T) of T into An? and a compact map-

ping from R( T) into L 2 [ 0,1 ].

Proof. We know that if Tfn converges, fn converges. It follows by Lemma 6

that fn converges in the topology of An, proving the first part of the lemma. Now

suppose that Tfn converges weakly: since T ι is continuous, fn converges weak-

ly. It follows by Lemma 6 that fn converges weakly in the topology of An

9 and

hence in the topology of C°; so fn{x) is a uniformly bounded sequence of func-

tions converging at each x £ [0, 1 ]. Then it follows that fn converges in the

topology of L 2 Since T"ι thus transforms weakly convergent sequences into

strongly convergent sequences, T ι is compact.

LEMMA 9. Let T be the differential operator defined by the formal operator

T of order n and by the boundary conditions (5). Then T is the differential
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operator T± defined by the formal operator T* and by a set of boundary conditions

Bi(f)-Σ β f / / ( / ) ( O ) + Σ, Bijfli){l) = O ( ί = 1,2,-.,* ')
/=o /=o

obtained from the conditions (5) as follows:

Let Si [σ^ e 2 " " 1 ] (i = 1 k') be a basis for the set of solutions of
the equations

Ai(σ)= Σ, Aijσi + Σ Aij°n+J (i = 1 . . . A)
;=0 y=0

derived from equations ( 5 ) , and let

n- l

ί/ie bilinear functional arising in Green's formula ( 4 ) . ΓΛerc:

l-o l = o

Proof. It follows immediately from Green's formula that 7\ C. Γ*. To prove

the converse, let φι be a C71 function such that

Then Am(φi) = 0 (m = 1 . . . A;), so that ^ G J 9 ( 7 ) . If / G J9 ( Γ*) , it follows

that

0 = {Tφi9f) -(φi9T*f) = Ft(φi9f) -FQ(φi9f)

= Σ B l 7 / ( / ) (0 )+ Σ β ι 7 / ( / ) ( D ,
/=o 7=0

so that / £ β( 7\). From this it follows immediately that 7\ = Γ*.

LEMMA 10. Let Ί be a differential operator, and suppose that for some
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complex λ both T - λ and 7 * - λ have an inverse. Then T(T*) is a regular

operator, T and T* have spectra related by σ(T) = σ ( Γ * ) , and determine spec-

tral measures Eγ and E2 related by Ex ( λ ) = £ * ( λ ) .

In this case, we call T a regular differential operator.

Proof. By Lemma 7 and its corollary, the range of T - λ is closed and

( Ί - λ ) " 1 is continuous. To show that ( Ί - λ)" 1 is everywhere defined, that is,

that

R( T - λ) = H9

we have then only to show that no nonzero z £ H is orthogonal to ( T - λ) 19 ( T).

However, any such z would satisfy ( T — λ) z = 0, and we have ruled out this

possibility in our hypothesis. This, together with Lemma 8, proves the first part

of our lemma. The remaining parts follow, via the remark after Lemma 1, from

the corresponding results for bounded operators, all of which are well known

(Cf. [7, Lemma V.4].)

For application to the spectral theory of differential operators we shall need

the criterion contained in:

LEMMA 11. Let T be a regular operator in a Banach space X and let

λ 0 Gσ( T). Let /*,/*, ••• 9fn be a basis for the solutions of{T* - λ o ) / = O , 6

and let Σ be the space of solutions of ( T — λ 0 )σ = 0. Then λ 0 is a multiple

pole of the resolvent ( Γ — λ)~ ι if and* only if some nonzero σ G Σ satisfies

/ * ( σ ) = 0 ( » = 1,2, . . , π ) .

Proof, ^'e can readily see, by Lemma 1 ( c), that λ0 is a multiple pole of the

resolvent if and only if there exists a solution g of the equation ( T - λ0 )
2g = 0

which is not a solution of ( T - λ0 ) g = 0; that is, if and only if some nonzero

σ £ Σ is in the range of ( T - λ0 ). Now, if σ = ( T - λ0 ) g9 then

f*(σ) = f?((T - λ j g ) = ( I * - λ o ) f t ( g ) = 0 .

Conversely, if f*{σ) = 0, then it follows that σ is in the closure of the range of

T - λ 0, and our lemma will be proved once we show that T - λ 0 has a closed

6 The general theory of adjoint unbounded operators in a Banach space is discussed
more fully in Lemmas 18 and 19 below. It is well to remark, however, that we are faced
with the usual confusion as to adjoints in Hubert space, where, contrary to our practice
in other Banach spaces, we make use of the Hermitian, rather than the pure Banach-
space, adjoint. This has the effect of introducing complex conjugates in many of the
Hilbert-space formulas where the corresponding Banach-space formulas do not have
complex conjugates. This should not cause any essential difficulty to the reader.
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range. This, however, is easy to show s ince

( 7 - λ o ) J 9 ( 7 ) = ( 7 - λ o ) £ ( λ o ) i 9 ( 7 ) + ( 7 - λ o ) ( / - £ ( λ o ) ) J 9 ( 7 )

= ( 7 - λ o ) £ ( λ o ) J 9 ( 7 ) + ( / - E(λo))l.

The first space on the right i s finite dimensional and the second is closed, so

that ( Γ - λ 0 ) 19(1) i s closed.

LEMMA 12. Let E be a projection of a B-space X onto a finite dimensional

range, and let E : X —> X be its adjoint. Then, if c^1,ς62> * ' > φn is a basis

for £X ice can find a unique basis φ*, ι//*, , φn °f £3G* such that φ*{φ;)

- δ y; and then

Ef= Σ ΦiΦUf) for any / G X.

Proof, Any element Ef can be written uniquely as

n
Ef'= ]C ΦiaiU)f

where the α t (/) are linear functionals. If fm —> / and α t (fm) —XX;, it is clear

that Cίj = C(j (/'). Hence, by the closed graph theorem of Banach spaces [7, Theo-

rem 11.8] the uniquely determined linear functionals Otj are continuous. Ilence

&ι ( f) = ψ*( f ) for some φ* G X* .

From
n

Ef- Σ ΦiΨΐU)

it follows readily that

so that 0*.ι/f2 " ' ^ s P a n £ * X * T o s e e t h a t *A*'^2' ••• »Ψπ a r e Hnearly

independent, let 2^j = 1 OLUJJ* = 0; then

V ( Σ
 α

* 1= 1

so that Lemma 12 i s completely proved.
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As the final lemma of this section, we state a useful elementary principle in

the theory of spectral differential operators.

LEMMA 13. Let Ί be a spectral differential operator, and let λ; be an

enumeration of the points in σ(T). Then, if f G J9 ( T ), the "expansion"

1=1

converges unconditionally in the topology of An.

Proof. The series Σ i = ι ( λ / ) / certainly converges unconditionally in the

topology of L 2 . On the other hand, so does the series

W = i
= Σ

1 = 1

Hence, by Lemma 6, the original series converges unconditionally in the top-

ology of Λn.

6. Application. The second order differential operator. In this section we

wish to apply the theory developed up to now to various second order differential

operators arising out of the formal differential operator

u)d \ 2
q{x).

Our peturbation theorem. Theorem 1, reduces the study of this operator to the

much simpler operator — (d/dx) . What we need about the latter is summarized,

however, in:

LEMMA 14. The unbounded operator T defined by the formal differential

operator r = - (d/dx)2 and the boundary conditions

( 6 ) / ( 0 ) - A 0 / ' ( 0 ) = 0, / ( I ) - k j ' i l ) = 0 , ko.hu arbitrary,

is a spectral operator satisfying all the hypotheses of case ( b ) of Theorem 1.

REMARK. We can also admit the boundary conditions determined by k0 = oc

and/or kγ = oc that is, the conditions / ' ( 0 ) = 0 and / ' ( I ) = 0, respectively.

Proof. Since it is easy to treat all special cases in which k0 or ^ is zero

or infinity by a separate argument much like the argument given below, we shall
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assume for simplicity that we have none of these special cases to deal with. If

we put λ = s 2 , the general solution of the equation

- / " ( x ) - λ / ( * ) = 0

is sin s (x + α), where OC is an arbitrary constant. This satisfies the boundary

condition at zero if

tan sα = kos 9

and satisfies the boundary conditions at one if

tan 5 (1 + α) = k xs .

Thus, Γ - λ can only fail to have an inverse if λ = s 2 , where s is a root of the

equation

\Kγ — /CQ )S QS

(7) tans = = , d φ 0.

I + kokχs
2 1 + ds2

It is readily seen by making use of Lemma 9 that T is the differential operator

defined by r* and by the adjoint boundary conditions

/ ( 0 ) - k f ' ( O ) = 0 ; / ( I ) - A t / ' d ) = 0 .

Thus the adjoint operator T* - λcan only fail to have an inverse if T - λ fails

to have an inverse; that is, if and only if s satisfies (7) . Since not every s

satisfies (7) , it follows immediately from Lemma 10 that T is regular.

Our next task is to locate the zeros of (7) more exactly. Since tan s is

periodic of period π and has only the zero 5 = 0 in its period-strip, it follows

readily that (7) has a countable sequence Zjς9zk + ι , of zeros which can be

numbered in such a way that

zn = nπ + 0 ( 1 ) .

From this preliminary estimate we readily obtain the estimate

cnπ
tan zn ~ ~ c{dnπ)~ι

1 + d(nπ)2

Hence it follows that

zn = nπ + c(dnπ )" ι + 0(n"2).



PERTURBATIONS OF SPECTRAL OPERATORS, AND APPLICATIONS 439

We thus obtain an enumeration λn (n = k, k + l9 ) 7 of the eigenvalues of T

such that

λn = {nπ)2 + 2cd~ι +0{n"1).

Hence, if dn is the distance from λn to the remainder of the spectrum,

dn ~ π2(2n + 1),

so that

oo

Σ dl2 < oo .

It is evident from the form of the boundary conditions defining our operator

that each λn can correspond to at most one function φn (up to a scalar multiple)

which satisfies

(T - λn)φn = 0.

Thus, if E {λn) is to be anything but a projection onto a one-dimensional range,

λn must be a multiple pole of the resolvent. By Lemma 11, the condition for this

is ( φ m φn) ~ 0, where ψn is the (unique) solution of

( Γ * -~λn)ψn = 0 .

Since, however, T is defined by the complex-conjugate boundary conditions of

those that define Γ, it is clear that

ψn (x) = Φn(χ)

Hence, λn can only be a multiple pole of the resolvent of T if

p (φn(x))2dx = 0.

Now, we have

φn (x) = sin zn(x + an) = sin (znx + βn),

where βn must be determined so as to satisfy

Z'n S i ϊ l β" = C 0 S

It follows readily that

Note: k need not be equal to one.
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βn = π/2 - (nπk0 )" ι + O ( n " 2 ) ,

so that

φn{x) = cos {znx + δ Λ ) , 8n = Uπ&o)"1 + O ( n ' 2 ) .

It follows that

Λ U 2 J ίι o ι

I \φn\χ'' dx ~ I cos nπx dx — — ,
Jo Jo 2

so that only a finite set of λ^ can be multiple poles of the resolvent of 7. For

those λn which are simple poles of the resolvent of T, the projection E(λn) is,

by Lemma 12, the operator determined by the integral kernel

A A

Φn(χ)φn(y) = &n(χ>y)>

A

where φn is a scalar multiple of φn9 the scalar being chosen so as to make

/

I A

(Φn

(x))2dx = 1 .

We have φn - cnφn, and a simple computation reveals that

cn = 2" 1 / 2 +0(n-2);

hence it follows that

j (cd~ι x + kQ)

En(x,y) = — cos nπx cos rcTry - sin nπx cos

sin nπy cos nπx +

which gives a decomposition of En into four terms

A

(8) En = £„ + /!„ + Bn + Δn.

It is now trivial to find a uniform bound for

/ an arbitrary finite set of integers, by making use of the decomposition ( 8 ) .
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We have

En\ < 1,
n£j

since the En are a family of orthogonal projections. We have

since

| Δ n | = O ( r f 2 ) and Σ n2 < oc.
7 1 = 1

The operators An and Bn have the form

^here

/ ί j = 0 ( / ι " 1 ) a n d \ B n \ = 0 ( n ι ) ,

a situation studied above in the proof of part ( b ) of Theorem 1 ? where the argu-

ment given proves not only the uniform boundedness of Σ r , An, but also,

with suitable slight modifications, the law

lim = o.

All that remains to complete the proof of our lemma is a proof that

By Lemma 15 below,

either projects onto an infinite dimensional space or is zero. But,

lim Σ E ( λ n ) ) - a - Σ
n-m n~m

= 0 .
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Hence, by Lemma 4,

has a finite dimensional range for all sufficiently large m9 and hence, a fortiori,

ECQ has a finite dimensional range.

THEOREM 2. Le£ T be the unbounded differential operator defined by the

formal differential operator τ = — (d/dx)2 and the boundary conditions

( 9 ) / ( 0 ) - kof'(O) = 0 / ( I ) - ^ / ' ( l ) = 0 ,

where k0 and hi are arbitrary, possibly infinite? complex numbers. Then if B is

an arbitrary bounded operator^ T + B is a spectral operator.

Proof. This follows from Lemma 14 and Theorem 1.

COROLLARY 1. Let T be the unbounded differential operator defined by the

formal differential operator

\dxl
+

and by the boundary conditions ( 9 ) ? where q(x) £ C°°.8 Then T is a spectral

operator.

This corollary is the "convergence in mean" form of the theorem of Birkhoff-

Hilb. As far as pointwise convergence is concerned, we can state:

COROLLARY 2 Let T be as in Corollary 19 and let / E J 9 ( T ) . Then if λ/

is an enumeration of σ( T\ the series

converges unconditionally in the topology of A 2 . 9

Proof. This follows immediately from Corollary 1 and Lemma 13.

8 This much is what we have proved explicitly. But, with a little more "analyt ic
c a r e , " we would see that it is sufficient that q (x) be measurable and bounded.

9 We shall see (Corollary 2 of Theorem 3 ) that this series converges to /.



PERTURBATIONS OF SPECTRAL OPERATORS, AND APPLICATIONS 443

It may be noted, moreover, that Theorem 1 and Lemma 14 yield a much wider

class of spectral operators than the analytic method of Birkhoff-Hilb. For in-

stance, the differential-difference operator

rf(χ) = ( — J f(χ) + q ( χ ) f ( χ + α )

(in which x + Cί i s understood to be taken modulo 1, and q{x) is bounded and

measurable), with appropriate boundary conditions, i s immediately seen to be

spectral, as is the integro-differential operator

K ( x > y ) f { y ) d y ,

provided only that the integral kernel K defines a bounded operator.

7. Theorems on the spectral measure of infinity. Suppose that T is an un-

bounded regular spectral operator in a Banach space X, and that { λj} is its

spectrum. Let E(λi) be the associated spectral measure. Then we put

£ ( o o ) = / - £

i-l

It is clear that E (oo) / = / if and only if

E(λι)f = 0 , for 1 < i < oc.

This leads us to the following more general:

DEFINITION 3. If T is an unbounded regular operator in the Banach space

X, with spectrum ί λi i and spectral measure E(λι)9 we put

S^iT) = \f\E{λi)f = 0, I < i < ocl

LEMMA 15. The space Soo(T) either is infinite dimensional or consists only

of zero.

Proof. We can suppose without loss of generality that 0 ί σ{T)9 and put

U = T ι . It then follows by the remark following Lemma 1 that

σ ( V ) = u : ι l u \o\,
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A

and that the spectral measure E of U is defined by

E(λγ) = c ( λ . ) .

Hence, if / G S^ = Soo ( T ), we have

E(λ'.ι)Uf = LΈ(λ]ι)f = 0,

so that US^C^Svo. Moreover, by [15, Theorem 8.2c], (U - λ)~ι f is regular at

every point λ̂  ι if / G S^; thus if / G S^, ( ί/ - λ)" ι has no singularity other than

the origin, lience £/, regarded as an operator in S^, is quasi-nilpotent. If S^

were finite dimensional, it would follow that for some finite k, U S^ — 0. Since

U has the inverse T, this would imply that S^ contained no nonzero vector.

LEMMA 16. The space S o o ( 7 ) is the set of all / G X for which (T - λ ) " 1 /

is an entire function of λ.

Proof. If (T — λ)" / is entire, then if we let C be a small circle around λj

we find that

0 = — f (T - λ Y ' f d λ = - E { λ i ) f
2πi JC

Conversely, if E (λj) / = 0, it follows from [15, Theorem 8.2c] that (T - λ ) " 1 /

is regular at λ;. Since this holds for every λj G σ( T ) , it follows that ( T - λ ) " 1 /

is entire.

LEMMA 17. L e i T be a regular spectral operator in a Banach space X.

Suppose that all but a finite number of the poles μ of the resolvent function

( T - λ ) ~ ι are simple, and that S ^ ( Γ ) = 0. Let

dι = d i s t { μi, o( T)) 9

and let B be bounded.

( a ) If dι—>oc> T + B is regular.

( b ) // lim^ _̂  ̂  di> 0, ί/iβre exists an € > 0 swc/i ί/m£ Γ + β is regular when-

ever I β I < e.

( c ) // lim j _ oo (/ j > 0 and B is compact, T + B is regular.

Proof. This lemma is needed to make the statement of Theorem 3 below

plausible and possible. The proof results incidentally from the proof of Theorem
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3, so that it is not necessary to give the details here.

THEOREM 3. Let Ί be a regular spectral operator in the Banach space X.

Suppose that all but a finite number of the points in σ{T) are simple poles of

the resolvent function ( ΐ - λ ) " 1 and that S^ ( T) = 0. Let Ut be a sequence of

bounded domains with U°°=1 Uι the entire plane, and put Vι -boundary (Ui);

*let

Vi n σ ( 2 ) = φ and dt = d i s t {Vi9σ(T));

and let B be a bounded operator.

( a ) // di — » o o , SoolT + B) - 0 .

( b ) // lira i^oo di > 0, there exists an e > 0 such that Soo ( 7 + B ) = 0

whenever \ B \ < £ .

( c ) // lim i ^ oc dt> 0, and B is compact, S^ ( T + B ) = 0 . ι °

Proof. We first show that if μl9 μ2, , μ/v is a finite set of points in the

plane, we can find a domain U containing all of them such that V = boundary ( U )

has a minimum distance from σ(T) greater than d = 1/2 lim c?t (or, in case ( a ) ,

greater than an arbitrarily prescribed d) and such that the minimum distance from

V to μι is greater than a constant D which may be as large as we p l e a s e . This

is done as follows: we take j Q so large that

di > " lim dk if i > ; 0 *

and let K be a prescril>ed very large closed circular domain. Γut

/o

A'' = A u U Ut,
1 = 1

and let Uί > U2, , I'\} be a covering of A . Then we have only to take

M

U= U Ui.

1 0 I t w o u l d be i n t e r e s t i n g t o know t h a t i n c a s e ( h ) of T h e o r e m 3 w e c a n d i s p e n s e

w i t h t h e r e s t r i c t i o n {El < £ , but I do not know w h e t h e r or not t h i s i s p o s s i b l e .
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Now, let / £ Soo( T + B), and let

f(λ) = (Γ + B - λTιf.

We shall show that the entire function /(λ) is uniformly bounded, so that /(λ)

is constant, /(λ) = g, and hence f=(T + B~λ)g for all λ. From this it is

evident that g = 0? so that / = 0 . To demonstrate the uniform boundedness we

proceed as follows: Let λ1»λ2> > λn be the set of all multiple poles of the

resolvent, and let Λ be an arbitrary point in the complex plane. Take, in the

first part of this proof,

Mi> 2̂> * •* 'IJ-N = A, λ t , •• ,λn.

Then, by Lemma 3, there exists an absolute constant c such that \R\\ < cd"1

for λ E V, where Rχ = ( 7 - λ ) ' 1 . If we put

Rλ = (T + B - λ ) " 1 ,

we have ( cf. formula (1) in the proof of Theorem 1)

Hence, if

| β | < c ' ι d { l - 8 )

with δ > 0, Rχ exists for λ G F, and

But then

I V I ^ δ-ιcd-*\f\V
for λ G V9 so that, by the maximum modulus principle,

I V I < δ - 1 erf-1 i / l

everywhere in V. Hence we have

| / ( Λ ) | = \RfJ\ < 8-ιcd-ι\f\;

t h a t i s , / ( λ ) i s uniformly b o u n d e d . T h i s p r o v e s T h e o r e m 3 in c a s e s ( a ) and ( b ) .

T o h a n d l e c a s e ( c ) , we o b s e r v e t h a t s i n c e Σ £ = = 1 E(λi) c o n v e r g e s s t r o n g l y
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to /, 2^i-{ E(λi)f converges to / uniformly as / ranges over any compact

subset of X. Since we now assume that B is compact, it follows that Σ j = 1

E(λι)B converges to B in the uniform topology of operators. We choose I\'o so

large that

Then, if we out

we have

B - c'ιd(l - δ ) .

* 0

C = β - Σ E(λi)B,
ι = l

However, if d^ is the minimum distance from λ to any of the points λt , it follows

by the discussion of the functional calculus of T preceding Lemma 3 that there

exists an absolute constant c x such that

r - i

for 1 <_ i <_ /Vo and for dχ sufficiently large. We now determine the domain V of

the first paragraph of this proof by putting

where Nι >_ NQ is so large that the set λ1,λ2> > λ^ includes all the multiple

poles of the resolvent, and where

D = 2 | β | Λ ' o c 1 δ " 1 .

It then follows, as in the proof of parts ( a) and ( b) of Theorem 3, that Rχ exists

for λ G V, and that

r ^ λ | < z8'ιcd'1;

from this point on we can argue just as in cases ( a) and ( b ) .

Thus all cases of Theorem 3 are proved.
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COROLLARY ]. Under the hypotheses of Theorem 1, Ί + B is a spectral

operator such that S^ (7 + B) - 0.

Proof. \̂ e choose the domains {// of Theorem 3 as follows: If i is even,

i = 2rι, we take TJι to be the interior of a circle of radius d[ about the point λi,

where dι is the distance from λ; to the rest of σ( T). If i is odd, i = 2n + 1, we

take V i to be the set of all points z with \z\ <n but | z - λ; | > rf^/4 for all i.

COROLLARY 2. // T is the differential operator of Theorem 2, and B is

bounded, then every function f Z L 2 [ 0 , 1 ] can be expanded in a series of ei gen-

functions (including, possibly, a finite number of solutions of eq nations of the

type

(T + 8 ~ λ)kf= 0)

of Ί + B which converges unconditionally in the topology of L2 Any function of

class Λ2 which satisfies the appropriate boundary conditions can be expanded

in a series of ei gen functions converging unconditionally in the topology of A2.

Theorem 3 also applies to a class of operators which are not necessarily

spectral. To discuss this class of operators, we shall first extend the elementary

theory of the adjoint from closed operators in Hubert space to closed operators

in an arbitrary reflexive Canach space. If X is a reflexive βanach space, so is

the direct sum X © X (in any suitable norm), and we have evidently

(X © X)* = X* © X*.

The space X © X admits the evident automorphisms

A x : (x,y) — > ( y , x ) >

Λ2 : (x,y) — > ( - > , % ) .

We h a v e

A\ = - Λl = / , Λ-i2 = - -VIi

If HI is a closed manifold in a Uanach space Y, its annihϋator M is the closed

subspace of Y defined by

, i r = \y* = Y*\y*{M) = ϋ } .

If Y is reflexive, we have evidently ί/̂  = M. If 7 is a linear transformation in
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X (Note : we continue to suppose that 19 ( 7 ) i s dense in X.)? i t s graph Γ ( T) i s

the subset of X © X defined by

Γ ( Γ ) = \ ( x , T χ ) \ x £ D ( T ) \ .

Clearly, Γ( T) is closed if and only if T is closed. We have evidently

Γ ( Γ ' ) = Axr(T),

whenever T 1 is defined (or, equivalently, whenever Λ^ViT) is the graph of a

single-valued operator). We define the closed linear operator 7 in X* by putting

Γ(Γ*) = U 2 Γ(7)]-\

T h e o p e r a t o r 7 * i s s ing le va lued, s i n c e ( 0 , y*) G Γ ( Γ * ) i s e q u i v a l e n t to

y* (%) = () for all x Ξ D( T); and s i n c e D{T) i s d e n s e in X, t h i s g ives y - 0 .

It may also be remarked that if T i s bounded, t h i s definit ion of 7 * a g r e e s with

the u s u a l o n e .

LEMMA 18. ( a ) U(T*) is dense.

( b ) 7** = T.

( c ) T and Γ * h a v e b o t h b o u n d e d i n v e r s e s if e i t h e r d o e s , a n d ( T ~ ι )

= ( I*)" 1 .

( d) If E is a bounded operator, ( 7 + B) = T + B .

Proof. The proofs are exactly like those in the Ililbert-space case. If D ( Γ*)

is not dense, we can find an x G X such that

χD( T*) = 0,

while x 7̂  0. Then

Λ2(0,χ) = ( - * , 0 ) Ξ Γ ( 7 * ) = A2Γ(T),

so t h a t

(0,χ)eΛ2

2Γ(T) = Γ(T),

and hence x - T (0) = 0, a contradiction. This proves ( a ).

To prove (b) , we observe that

Γ ( Γ * * ) = { A 2 V { T * ) ) J - = A 2 ( Γ { T * ) ) M = A 2 ( A 2 Γ ( T ) ) = - Γ ( ϊ ) .
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To prove ( c ) , we observe that

Thus ( T )~ ι = ( T~1)* even if either or both of the transformations are unbound-

ed, multi-valued, or not everywhere defined, so that ( c) follows as a special

case.

To prove ( d ) we note that it i s evident that

Γ ( J * + β*) c Γ ( ( Γ + β ) * ) .

On the other hand, if %* G D (( T + B )* ), so that

* * ( ( 7 + B)y) = (T + B)*x*(y)

for every y £ D(T), we have clearly

**(T;y) = {(T + β)*Λ;* - β V } ( > )

for> eD{T); thus%* G D ( Z * ) , and

T*** + β*Λ;* = ( T + β )* * * .

LEMMA 19. (a) If one of T and T* is regular, both are.

(b) 9ehaveσ{T)=σ(T*).
A

( c) // Tαrcd Γ* are regular, their spectral measures E and E are related by

E{λ) = E*(X).

( d ) If T and T* are regular and one is spectral, so is the other.

Proof. By Lemma 18 ( c) and ( d ) , we have

((T - λ ) " 1 ) * = ((T - A ) * ) " 1 = ( Γ * - λ ) " 1

with both s ides of this equation existing as bounded operators for exactly the

same λ. This proves ( b ) and ( a ) , since for bounded operators U and U are

either both compact or both not compact

To prove ( c ) , we note that £ ( λ ) may be characterized as

E(λ) = f (T - λ)'ιdλ9
2πi JC

where C i s a sufficiently small circle about λ. But then
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£ * ( λ ) = -

is evident. However, since (d) follows immediately from ( c ) , Lemma 19 is

entirely proved.

Suppose that T is a regular operator in X. Then by sp ( T), the spectral span

of Γ, we denote the smallest closed manifold containing all the manifolds

£ ( λ ) X . Thus, xEsp(T) if and only if x can be approximated by linear com-

binations of solutions f of equations

(7 - λ ) f e / = 0,

that is, by generalized eigenvectors of T. Thus, if T is known to be a regular

spectral operator,

1 = 1

For nonspectral regular operators in a reflexive space, however, we may state:

LEMMA 20. // T is a regular operator in the (reflexive) Banach space X,

thensp(T)=SOΰ(T*)Λ-.

REMARK. For spectral operators, the conditions

s p ( T ) = X and Soo(T) = 0

are clearly equivalent; but for nonspectral operators the condition for sp( T) = X

given by the lemma is 5oo ( 7*) = 0 and not Soo(T) = 0 . Indeed, H. Hamburger

[10, pp. 74-79] has constructed an example of a compact operator U in Hubert

space X whose generalized eigenvectors span X, and which is such that an

infinite dimensional closed subspace Xo of X exists such that £/X0 C_ Xo, and

U is quasi-nilpotent in Xo. If we put Γ = (C/*)"1, we have sp( T) Φ- X, while

S o o ( Γ ) = 0 .

Proof of Lemma 20. It is clear that if λ G σ( T) and we have

E ( λ ) f = / , w h i l e E ( μ ) * g* = 0 f o r e v e r y μ G σ ( T ) = σ ( T * ) ,

then

g*(f) = g*(E
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Thus, it is clear that sp( T) ς. Soo ( Γ*)"1'. Conversely, if f£ sp( T), there exists

a functional g* G X* such that

g * ( / ) = 1, g * ( s p ( Γ ) ) = 0 .

Since g*(E{λ)f) = 0 for any / ' G X and any λG σ ( Γ ) , it follows that

E(λ)*g* = 0 for every λ G σ( I ) = σ(T*).

Thus ^ G S ^ Γ * ) ; and since g * ( / ) = l, it follows that / £ S^ ( J * ) .

Lemma 20 and Theorem 3 together give us a fairly general insight into the

range of situations in which a "spectral density" property sp ( T) = X is to be

expected of an operator 7. However, in applying these results it is convenient to

be able to deal, wherever possible, with solutions of the equation ( T - λ) / = 0,

rather than with solutions of the equation ( T - λ) / = 0. The next lemma

describes a simple case in which this is possible.

LEMMA 21. Let T be a regular spectral operator in the Banach space X.

Suppose that all but a finite number of the countable set \λn\ of points in σ(T)

are simple poles of the resolvent function and correspond to one-dimensional

eigenspaces. Let dn be the minimum distance from λn to the other points in

σ( Ί). Then all but a finite number of points in σ(T + B) are simple poles

corresponding to one-dimensional eigenspaces if

( a ) dι approaches infinity, and B is bounded; or

(b) l i m _^ ̂  dι > 0 , and \B\ is less than some positive constant e(T); or

( c ) l i m . dι > 0 , and B is compact.

Proof, The proof in each of these three cases is very much like the proof in

the corresponding case of Theorem 3. We shall show that there exists an N such

that μ G σ(T + B) and | μ | >_ N imply that μ is a simple pole of the resolvent

Rχ of T + B and corresponds to a one-dimensional eigenspace. Indeed, if

λ £ σ{T + B), there exists an /G X such that | f \ = 1 and such that

{ T + B - λ ) f = 0 , s o t h a t ( T - λ ) f = - B f .

From this last equation it is evident that if ( T - λ ) " 1 = R\ exists, it must have

a norm which is at least | β | " 1 . By Lemma 3, there exists an absolute constant

c = c( T) such that

\(T - λ ) ' ι | < α Γ 1
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if λ is not within a distance d of any point in σ( T), and if N is so great that

every multiple pole λ0 of Rχ satisfies | λ0 | < /V. It follows that every point μ of

σ(T + B) with I μ | <_ N is within a distance c" ι \ B \ of a point λn E σ{ T). More-

over, if we suppose that c~ι \ B\ < dn/2 (which covers cases a and b), then we

see as in the proof of Theorems 1 and 3 that the resolvent

lχ = (T + B - λ ) " 1

exists everywhere on the circle Cn with center λ^ and radius dn/% at least if

N is chosen to be sufficiently large (or, in case b, for | β | sufficiently small).

We have, as usual,

and, for Λ' sufficiently large (or | β | sufficiently small), this leads, as in the

proof of Theorems 1 and 3, to an estimate

E ( λ n ) -En\ < i \ E ( λ n ) \-1

In this formula, En is the sum of all the projections E{μ) for μ interior to Cn,

where E is the spectral measure corresponding to T + B, If follows by Lemma 4

that En is a projection onto a one-dimensional subspace, so that there is exactly

one point μn £ σ( T) interior to Cn, and E(μn) is a one-dimensional projection.

Since we have already shown that every μ £ σ( T) with | μ | <_ N must belong to

the interior of some Cm our Lemma is proved in cases ( a ) and (b) .

It is not hard to see that the same argument will work in case ( c) as soon as

we are able to show that | R\'B \ —> 0 if λ^ is a sequence with | λ^ | —» oo , and

with

d i s t ( λ ' , σ ( Γ )) > € > 0 .
n

However, since it is evident from the functional calculus that Rχ^ converges

strongly to zero as n —> oc, and since B is compact, it follows that | R\'n δ |—*0

as n —> oc. In this way we are able to dispose successfully of case ( c), so that

Lemma 21 is proved in entirety.

REMARK. It is not hard to see that a proof like that of Lemma 21 will estab-

lish the existence of certain cases in which the hypothesis that the resolvent R\

of T has only simple poles corresponding to one-dimensional eigenspaces will

yield the corresponding property for T + B9 so that we can be sure that not even

one pole of the resolvent Rχ of T + B is multiple. In general, the situation is
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this: Multiple poles of Rχ can only arise out of multiple poles of Rχ, or out of

simple poles of Rχ which are multiple eigenvalues, or, finally, out of the

"fusion" of several poles of T under the influence of the perturbation B. If we

rule out the first two causes, and demand that B be too small to move any pole

of Rχ far enough to cause two poles of Rχ to meet, we can be sure that Rχ has

only simple poles. On the other hand, it is clear that if Rχ has multiple poles or

multiple eigenvalues, no demand that B be small can be strong enough to ensure

that Rχ has no multiple poles . 1 1

8. Applications to differential equations. Theorem 1 is usually inapplicable

in the theory of partial and singular ordinary differential operators because the

very simple behavior of the eigenvalues required in the hypotheses of Theorem 1

ordinarily fails. However, even in these cases, Theorem 3 can often be applied

to yield interesting results. Let us begin by considering the ordinary singular

differential operator

r-/±y
\ ax)

on the half-open interval / = [ 0 , o c ) , and make the assumption that q'(x) > 0,

q(x)—»oc. Then, as is well known ( cf. [ 16, p. 19]), any boundary condition

/ ( 0 ) + A/'(0) = 0 (0 < k < oc)

determines a self-adjoint operator T as follows:

(a) J9(Γ) is the set of all functions / which belong to Λ2[09N] for every

Λ7 > 0, such that τ{ £ L 2, and such that / (0 ) + kf\ 0) = 0.

( b ) Tf = rf ίorfe J 9 ( Z ) .

Moreover ( cf. [16, p. 113 and p. 134]), the operator T is without continuous

spectrum, and has only a finite number Λ'(λ) of eigenvalues (counted with

appropriate multiplicities) below any fixed λ. This number is given asymp-

totically as λ —> + oc by the formula

Λ'(λ)

where μ(λ) is the uniquely determined solution of q{μ{λ)) = λ . This formula

makes it easy for us to evaluate

1 1 For a detailed discussion of this type of question, cf. [18].
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c = c{r) = lim λ'ιN{λ),
λ—» oo

and by use of Theorem 3 we are able to state:

THEOREM 4. ( a ) // the singular differential operator r is such that c{r)

= + oc, and T is the self-adjoint operator in Hilbert space X associated above

with T , then sp ( J + B) = X /or e^ery bounded operator B.

(b) // instead of c(r) = +oc we άαve c ( r ) > 0, ίAerc sp( Γ + 5 ) = X /or αZZ

bounded operators B with \B\ < e = e ( τ ) , and for every compact operator B.

REMARK. It is easy to see that e ( r ) = l / 2 c ( τ ) is an acceptable deter-

mination.

Proof. The proof results immediately from Lemma 20 and Theorem 3> the

only point in question being the method by which we are to choose the domains

U{ of Theorem 3. However, it is clearly possible to choose arbitrarily large real

λj such that the distance from λ t to σ(T) is not less than c ( τ ) / 2 . If we put

Ui = {x + iy \ x < λi \,

we complete our proof.

The same argument evidently applies to any self-adjoint operator 7 which is

is without continuous spectrum, and for which we have

c(T) = lim λ'ιN(k) > 0 ,
λ—* σo

where N(λ) is the number of eigenvalues μ (counted with multiplicities and

supposed finite) such that — λ <̂  μ <̂  λ. This observation applies to an extensive

class of elliptic partial differential operators. Thus, for instance, Hilbert-Cour-

ant [ 12, Chap. 6, Theorem 17] gives the value

c(T) = (477)"1 I) p'ι{x,y)dxdy
G

for the partial differential operator T defined in terms of the formal operator

d 3d d

r = _ p (x, y ) _ p (%9 j ) + a (Xf y

ox ox oγ όy
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and in terms of any one of a wide family of boundary conditions. Here, G is a

bounded domain whose boundary is of measure zero, and I is an unbounded

self-adjoint operator in the Hubert space X = L2{G). The functions p ( x, y) and

q(x, y) are required to be real and infinitely differentiable in a neighborhood of

the closure of G, while we assume that p ( x, y ) > 0 everywhere on the closure of

G. This means, however, that the corresponding partial differential operator

T + B9 defined in terms of the formal operator1 2

d d d d
r ' = - — p(χ*r) - — p(χ,r) — + q(χ,y) + iq'(χ,y)9

ax ox ay ay

has the property sp ( T + B) = X, provided only that | q\ x, y) \ < 6 for some

sufficiently small 6> 0.

Many other instances are known in which a self-adjoint formal elliptic oper-

ator T has nonzero constant c ( T ) . For instance, GSrding [8] shows that if the

domain G C En is bounded, and T is real, formally self-adjoint, or order m9 and

has constant coefficients, then we have an asymptotic expression of the form

/V(λ)λ^π / m ~ d(τ).

This allows us to apply Theorem 3, case ( a) whenever n < m, and cases (b) and

( c) of Theorem 3 whenever n — m.

To apply Theorem 3 when n > m9 we must proceed in a slightly different way.

Let us suppose that T is an unbounded self-adjoint operator without continuous

spectrum such that Λ ;(λ) is finite and

lim Λ/(λ)λ"έ > 0,

where 6 > 0. Then the operator 7 satisfies

lim /V1(λ)λ"1 = oc

for some sufficiently large k {Nι{λ) is the number of eigenvalues μχ of T such

1 2 To define exactly the functional domains and boundary conditions involved in the
theory of partial differential equations would involve us in a very extensive analytic
discussion, which has, after all, nothing to do with our problem, since we can take the
same domain for T + B as was required to make T self-adjoint (or, more generally, spec-
tral). This difficulty leads to a slight vagueness in the formulations of the rest of this
section, but not to any real lack of rigor in the results.
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that —λ <_ μL <̂  λ; that is, the number of eigenvalues μ of 7 such that — λ <_

μ < λ 1 ' ). Now, if β is a bounded operator such that every product

i B i ι f2 ... B i n

9B

with at least one /. nonzero, is a bounded operator, it follows readily that

( T + B) satisfies all the hypotheses of Theorem 3. It then follows that

s P ( ( T + B)k) = X.

However, from [ 15, Theorem 9.4] it follows readily that

sp(S) = X and sp(S ) = X

are equivalent restrictions on a regular operator S. That is, we can conclude that

s P ( 7 + B) = 1.

To give a concrete example of a case in which this argument applies, we

have only to use the result of Girding, and consider the formal operator τ+ K,

in which r is self-adjoint elliptic partial differential operator with constant co-

efficients in a bounded domain G, and K is an integral operator

Kf{ x) = / K(x,y)f(y)dy

in which the kernel is a C°° function of both its arguments, defined when each

argument is in a neighborhood of the closure of G. $e are able to conclude that

the appropriate unbounded operators T defined in terms of such formal operators

also have the "spectral spanning" property sp( T) - X.
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