PERTURBATIONS OF SPECTRAL OPERATORS,
AND APPLICATIONS

I. BOUNDED PERTURBATIONS

J. ScuwaARrTZ

1. Introduction. A principal theorem on self-adjoint boundary-value problems
is the existence of a complete orthonormal set of eigenfunctions. This corre-
sponds to the diagonal reduction of a hermitian matrix, and to the spectral
theorem for self-adjoint operators in liilbert space. How much remains true if we
drop the fundamental condition of self-adjointness? Infinite dimensional ex-
amples show that, in general, we cannot expect even the existence of a single
eigenvector.

Nevertheless, there does exist a class of operators which behave in a ‘“‘reg-
ular”” fashion from this spectral theoretic point of view, namely, the spectral
operators introduced in [4, p. 560]. The paper [4], while extensively devel-
oping the theory of these operators, still leaves open a very significant question.
Are many (or any) of the nonsymmetric integral, differential, and so on, oper-
ators arising in the more ““classical’’ branches of analysis spectral? The main

result of the present paper is a positive answer to the foregoing question.

The principal indication that a positive answer is to be expected comes from
a classical series of papers [1;2;3;11;13; ],in which it is demonstrated that for
certain general types of boundary-value problems involving nonsymmetric linear
differential operators, expansions in eigenfunctions exist and converge in much
the same way as ordinary Fourier series. The method in all of these papers is
““analytic;”’ that is, it operates with asymptotic estimates of the solutions of
the various differential equations and of the partial sums of the various series
arising. The method in the present paper is abstract, and is phrased in terms of
Banach spaces, linear operators, and so on. This has the advantage of greater
simplicity in proof, and greater generality in applications. For instance, we shall
be able to prove results on certain types of partial differential operators which

appear difficult to prove by an analytic method.

The general idea of our abstract method is the following. et 7 be a spectral
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operator. Liet B be an operator which is, in some sense, small relative to T.
Then T + B will be a spectral operator. A less stringent restriction on B will
vield a weaker conclusion on the spectral nature of 7 + B. In particular, there
are many cases in which it can be asserted that the set of generalized eigen-

vectors of T + B spans our Banach space, but not that 7 + B is spectral.

2. Preliminaries. Let X be a (complex) reflexive Banach space. A bounded
operator in X is an everywhere-defined continuous linear mapping of X into it-
self. An unbounded operator is a linear mapping of a dense linear subspace of X
into X. The set on which the operator T is defined is its domain, denoted by

D(7). The open set of \ in the complex plane, for which
(T =AD" = (T =)}

is everywhere defined and bounded, is the resolvent of 7. Its closed comple-

ment, which is bounded for bounded operators, is the spectrum o(7) of 7.

DEFINITION 1. An operator T is regular if its spectrum o(7) is not the

entire complex plane, and if (7 — \)™! is compact for some A £ o (T).

REMARK. Except in the trivial case where X is finite dimensional, a reg-
ular T cannot be bounded. For, if T is bounded,

I=(T-M(T-0"
is compact; and this implies immediately that X is finite dimensional.

Levva 1. If T is regular, then:
(a) Its spectrum is a denumerable set of points with no finite limit point.
(b) (T =\)""is compact for every Ao (T).
(c) Every Ay €0(T) is a pole of finite order v(\,) of the resolvent R) =
(T =XA)"t.Ifavector f satisfies
(T =x)f=o0,
then f satisfies

)V(/\Q)

(T =2 f=0.

The set of all such vectors f makes up a finite dimensional linear space, called
the space of generalized eigenvectors of T corresponding to the eigenvalue ).

If E()y) is the idempotent function of T corresponding to the analytic function
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which is one on Ay and zero elsewhere on the spectrum of T, then E (Ay) pro-

jects X onto the space of generalized eigenvectors corresponding to Aq.

Proof. We can suppose, without loss of generality, that 0 £¢(7T), and that
T"!is compact. If we then make use of the identity

/\(T'l _ )\)-1 T—l - ()\-1 _ T)-l’

parts (a), (b), and the first statement in (c), of our result follow readily from
the corresponding statements in the ordinary Fredholm theory of compact oper-
ators. (For this theory, see, for instance, [ 7, Chap. VI ].) We have

(T = A)Ef=0
if and only if
(A-Ol _ T-l)kf= 0’

so that the second and third parts of the lemma also follow by a simple applica-

tion of the corresponding result for compact operators.

To prove the last part of the lemma, we may argue as follows: If C is a small
closed curve surrounding the point Ay and traversed once in the positive sense,
then by definition

1
E(Ny) = — - TYy'
(Xo) Ty /(;()\ TY dA

1
= — / 7Tt = A Xtda
2w c

1

= — LT (- T Ny,
o /;,# (p p

’ . . - . . .
where C is a small curve surrounding )\01, and traversed in the positive sense.

This last integral can easily be evaluated in terms of the functional calculus
for bounded operators (cf [4]), and turns out to be the idempotent analytic
function E()\'ol ) of T7! corresponding to the analytic function which is one on
)\'01 and zero elsewhere on o(T" '), and now the desired result for 7 follows

readily from the corresponding result for 771,

REMARK. It is to be noted that we have actually proved a little more than is
stated in Lemma 1. We have, in fact, proved that the points of ¢(T) and the non-

zero points of o(T™!) are in one-to-one correspondence through the map
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A e XL,

and, that if we call E()\o)(E—()\o )) the spectral measure of the point )\, corre-
sponding to the operator T (the operator T~!), then

E(Xo) = E(X!).

This result is, of course, merely a particular case of the ‘‘unbounded’’ analogue
of the general ““Spectral Mapping Theorem’’ of Dunford [4].

Now, by [ 6, Theorem 20], it follows that if S is a compact spectral operator,
and E(e) is its spectral resolution, then E()\,) is the projection associated
above, with the point Ay (for Ay €0 (S); for Ay £0(S), E(Ay) =0). Conversely
if S is a compact operator, and E(),) is the spectral' measure of the point Ay,
then S is spectral if and only if there is a uniform bound for all sums Zi=1 E(A;)
taken over finite subsets A, Aj +++,A; of o(S); that is, if and only if the
various projections E(Ay), Ay €0(T), generate a uniformly bounded Boolean
algebra of projections. We can carry this result over to unbounded operators in a

trivial way, making use of the following:

LEMMA 2. Let T be a regular unbounded operator.

(a) If (A = T) ! is spectral for some Ay £0(T), then (A= T)™! is spectral
for all A\ (T). In this case we say that T is an unbounded spectral operator.

(b) The regular operator T is spectral if and only if the spectral measures
E()y) of the various points Ay €o(T) generate a uniformly bounded Boolean
algebra.

Proof. Suppose that T"! is spectral. Then the spectral measures E( Ao ) of

the points A, €o(7T"') generate a uniformly bounded Boolean algebra. Since
E(XY) = E()y),

the projections E(),) generate a uniformly bounded Boolean algebra. The con-
verse argument to this argument evidently goes through. Moreover, since the
spectral measure [, (\,) corresponding to the operator T + ¢ is evidently
E(A, - ¢), it is evident that T has the property of part (b) if and only if 7 + ¢
does. But this immediately implies part (a).

3. Bounded perturbations. We now come to the main point of the paper.

THEOREM 1. Let T be a regular spectral operator, and suppose that A\, is an

enumeration of its spectrum. Let d, denote the distance from ), to the rest of
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the spectrum. Suppose that for all but a finite number of n, E (\,) projects onto

a one dimensional subspace; suppose that

i": E()\i)=1.l

=1
Let B be a bounded operator.
(a) If Z:=1 d;ll < o, then T + B is spectral.
(b) If X is Hilbert space and T is normal, and Z:LO:I d;z <o, then T + B

is spectral.?
Proof. TTut R) = (A~ TY'for A& o(T). Then we have
(1) (A=T - B)"' = (I - R\BY'R),

whenever (/ —~R)B)"! exists. Now, by LLemma 3 below, there exists a constant
K > 0 such that

[RA| < K[dist (Ao (T))T'.

Hence no A at a greater distance than KB from the spectrum of T is in the spec-

trum of T + B, since, for such A, [R)B | <1. It follows also that T + B is regular.

From (1) it follows that
Ry=(A=T =B)' ={I + R\B(I — R\B) '{R),

=R)x+ RAB(I = R)\BY'R).
That is,
Ry = Ry = RA\B(I — R)\BY'R).

Let C, be a circle about A, of radius d,/, .Then, for A € C,, we have |R)| <

ZKd;l‘, and thus when n is large enough to ensure .‘Zl(d;ll <1, we have
[ = RABY | < (1 — 2Kd ')t

Since d, —» cc, we may replace this estimate, at least for all but a finite number

! The series Z?;l E (A;) converges in the strong operator topology.

2 0f course, T +B is also regular. This is proved in the course of the following
argument; but c.f. also Lemma 17 below.
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of C,, by
(I = R)AB)! < 2.
It then follows that
| R\ -~ R)\| < 8K?|B|d;2.

If we integrate this inequality around C, in the positive sense, we obtain the

inequality

|E(N) = E,| < 8K2|B|d71,

where E(A,) is the spectral measure of A, corresponding to the operator 7, and

where E, is the sum of the spectral measures £ (\) corresponding to T + B of
the points A of the o( T + B) lying within C,, .

Lemma 4 below then implies that for n sufficiently large, £, has a one-dimen-
sional range. It follows immediately that there must be exactly one point A, of

o(T +B)in C,, and that £, = £ ()},). That is,

|E(A) = E"(Ap)| < 8K2|B|d !

for all but a finite number of n. From the above, case (a) of our theorem follows

immediately.

To prove case (b), we have only to refine our estimates slightly. We have,

from (1),

Ry ={I+ R\B + (R\B)2(I - RA\B) ' {R).
We then obtain the expression
Ry — Ry = R)\BR) = (R\B)2(I = R\B)'R).
so that for A € C,, and n sufficiently large,
IRy — Ry~ RA\BRA| < 16K3|B|2d73.

The question now is, what is the integrated form of this inequality? The only
problem is to find

1
F, = — /(; R)\BR )d\,

2mi n
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and this is easily done.

Indeed, R) has the Laurent expansion

Ry = (A= M) PE(A) + RO(A,) + ¢, (X = Ap) + v ee

(X3

around A,. In_this expression R°(),) is a “‘partial resolvent” of T; that is, we

have

RO(x,) = lim (I — E(A))Ry .
A=A

Thus, R°(),) is that analytic function of T which corresponds to the analytic
function f(z) which is equal to (z—A,)"! everywhere on o(7) but in the im-
mediate neighborhood of \,, where we put f (z) =0. In terms of this Laurent

expansion, we readily find that
Fy = E(A) BRY (M) + RO(Ag)BE(A).

Having majorized
[E° () = E(Ag) = Fp|

by the terms 16K | B|*d 2 of an absolutely convergent series, we have only to
prove that a uniform bound exists for finite sums Zl i I, of the terms Fy .

Since a term of the form E£(),) BR®(A,) can be treated as an adjoint of a term
of the form R°(A,)BE(),), we have only to show that a uniform bound exists

for finite sums

=

z O (Agg) BE (M)

’ ’ .
of these latter terms. 1t follows from Lemma 3 below that a constant K exists
such that

|[R°(\,)| < K'Y,

Thus

l l

> RO BEQG ) f| < |BIK™ 20 ot E(As) |
i=1

i=1
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—~

Y%

1=1

<18k |z d;f]% [éIE(Ani)flzl s|8|f<’[§ a2},

since the normality of T implies that the projections £ (A;) are orthogonal per-
pendicular projections in the Hilbert space X. Thus both parts of our theorem are

proved.

Before continuing with the main line of our discussion, we shall state and

prove the lemmas referred to in the foregoing proof.

Lemma 3, below, depends on the functional calculus for our unbounded oper-
ators; before proceeding to the proof of this lemma, we must discuss the func-
tional calculus. We consider a regular unbounded operator S with a denumerable
spectrum { \, }. We shall allow a finite set A, Ay «++ sAy of the eigenvalues to
be multiple poles of the resolvent, but shall require that all the remaining eigen-

values are simple poles of the resolvent. [n addition, we require that

i E(x) =1.
i=1

In this situation, we can set up the functional calculus for T by setting

N v(A;) f(j)()\i) ) 00
[(H= 3 5 —= (T-MWEM+ X fOIEM)

=1 j=0 ] j=N+1
for every function { which is uniformly bounded on the spectrum ¢ (S) and which
belongs to the class C*(X) pear the spectral point \;(1< i< N). It may be
remarked that, here and in all that follows, the finite number of multiple poles
AsAgs o+, Ay of the resolvent function (A — S)™! contribute only a finite number
of terms, whose influence on any of onr arguments it will be trivial to determine
by inspection. Thus, to avoid notational complications, we shall assume, without
loss of generality, that all the \; are simple poles of the resolvent; that is, that

N =0. In this case, our proposed expression for the functional calculus is

o0

f(Ty= 20 fODEN),

=1

where f(\) is any function uniformly bounded on the spectrum.

Functional calculi of this sort are discussed in [6], in a much more general
situation. In particular, it follows from [6, LLemma 6] that the series defining

f(T) converges in the strong topology, and that there exists an absolute con-
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stant K = K(T) such that we have

[f(T)] < K- max |f(A)].
AES(T)

From this fact, we have:

LeEmMA 3. If S is a regular spectral operator all but a finite set of whose

eigenvalues M\, are simple poles of the resolvent, and S also satisfies
2 Ey) =1,
i=1
then there exists an absolute constant K such that
LA =S)Y!| < Kdist (), 0(S))?

for all A not within a fixed radius € of any multiple pole of the resolvent.

Lemma 3 involves the operator R® (\,) defined as the constant term in the

Laurent expansion

E(An)

(/\—S)-l= +R0(,\n)+...

n

of the resolvent function around \A,. Since

E(N)
(A=8SY! = + z()\-—)\i)-IE()\i),
)\“‘)\n i;én
it is evident that
(2) RO(A) = 2= (Ag = MY'E(A).
i;én

We obtain, as an immediate consequence of this formula:

Lemma 3" If S is a regular spectral operator having the properties described

in Lemma 3, then there exists an absolute constant K  such that if A\, €0 (S) and

d, = min dist (A, A;),
i;én

then for the operator R®(\y,) defined by formula (2) we have

|[RO(\,)| < Kd3t.
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LEMMA 4.3 Let I be a projection of X onto an n-dimensional space. E’is a
projection in X satisfying

, |
£~ B == |E,
2
then £’ also projects X onto an n-dimensional space.
Proof. We have
I -
VB = EE"| <—|E[[E]"T <1

and

£ < |

1 .
+=|E|"t < 2| E],
2
so that
210 e , 1 -
| E'E - E \<2|bl-E|E\l=1.

[f we then consider FE” as a mapping of £(X) into itself, it follows that £L*
has an inverse. Thus £ maps X onto a space of dimension n at least. Applying
the same argument to E'F, we see that £” maps X onto a space of dimension n at

most. It follows that the dimension of E’( X) is exactly n.

Part (b) of Theorem 1 is capable of some improvement. Inspection of the
proof of this result reveals that the only thing essential is that the spectral

measures £ ();) should be orthogonal projections. But, by a theorem of Lorch and
Mackey (proved in [17]), any uniformly bounded Boolean algebrat E} of projec-
tions in Hilbert space can be reduced to a Boolean algebra of orthogonal pro-

jections by an inner automorphism
E—DYED,

where U is a bounded operator in Hilbert space with a bounded inverse. Since
such an inner automorphism evidently preserves all operator theoretic properties

of the sort involved in our proof, we may state:
Corollary 1b".* If T is a regular spectral operator in Hilbert space, if all but

3 A similar lemma is found in [ 18, remark after Corollary 2.5].

* This improvement of Theorem 1b was pointed out to the author in conversation with

N. Dunford.
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a finite number of its eigenvalues A, are simple poles of the resolvent and corre-

spond to one-dimensional eigenspaces, if

> BN =1,
=1

and if, putting

d, = min dist (A, A;),

i#n
we have Zd;z <o, then T + B is a spectral operator for any bounded B.

4. Two counterexamples. [t would be useful to be able to prove Theorem 1
without the restriction to simple eigenvalues. Unfortunately, the appropriate
generalization is not true, even if the eigenvalues are restricted to be simple
poles of the resolvent, and even if the eigenvalues go to infinity very rapidly

The following example shows this to be the case:

ExAMPLE 1. We take two infinite sequences (z'),: and &, of vectors to be,
together, an orthonormal basis for Ililbert space X. We let T be the self-adjoint
unbounded operator defined by

+

Tg, =nlg s T¢ =nld .

Then A, =n! is a simple pole of the resolvent, but a double eigenvalue. We then

let B be the compact operator defined by

Bo, = (g, Bg=l(n -1 e

It may be noted that if we realize X as a space of L, functions, taking

+ - _ .
d)n = cos 2w nx, q')n = sin 27 nx,

say, then Bis an operator defined as an integral transform with an analytic
kernel. At any rate, this peturbation breaks up the double eigenvaluen!into twe
single cigenvalues n! and n!+(n!)”!, with the corresponding eigenfunctions

nqS;—- ¢, and ¢n+ A brief calculation shows that the corresponding projections

E(n!) are defined by
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15(,1!)(,;].* =0 for n #j,
l','(n!)g’)’:':O,

E(n) g, = &, ~ nqﬁrt.

Thus, the spectral measures of the points in the spectrum of T + B are not

uniformly bounded, so that 7 + B is surely not spectral.

This example also indicates that the spectral property of 7 + B fails hecause
we do not group the two projections arising out of the double eigenvalues of 7'
together in forming our spectral sums. We shall see later that this is very typical

behavior.

In view of the importance for our pmof of the property described in Lemma 3,
we shall give an example which shows it to fail if we allow regular operators

with an infinity of double poles of the resolvent. This is:

ExavwrLe 2. We introduce an orthonormal basis for Hilbert space X con-
sisting of two infinite sequences of vectors ¢’:r’ ¢, as in Example 1. We let 7

be the smallest closed operator satisfying
ot 2, + - - -
Tg, = n’¢, + ng, Ty = n?e .

Then o (7T) is the set of points n2, and (A — T)™! is defined by

il

(A= D)7ty = (n? = A) (g = n(n? = A1)

(A=T)Y' ¢~ =(n® = A)'e .

n
Hence 7 is regular. If we put k, =n? - nl/2, then
Y,
d(kp,a(T)) = n”?
for all large n, while
- -l, -
(kn - T1) 1¢n+ - n/2¢n+ _ Sén
has norm at least 1.
5. Basic properties of ordinary differential operators. We wish ultimately

to apply our abstract theory to the study of linear differential operators. We shall

take our formal differential operators to have the form
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n d i
(3) T:Zai(x)(d—) ’
i=0 x

where
ap(x) =1, a,, (x)=0,

and where the coefficient function a;(x) belongs to the class C* [0,1]. The
restriction on the coefficients a, and a,.; is not as severe as might at first
appear, since any operator 7 of the form (3) in which a,(x)# 0 and a,(x) is
real can be reduced to one of the restricted form we have chosen by an elementa-

ry transformation.

In connection with the study of the n-th order differential operator 7, it is
convenient to introduce the Banach space A" = A™[0, 1] consisting of those
functions fin C*"! such that f(n'l) (%) is absolutely continuous and such that

f(") € L,[0,1]. We introduce the norm in A™ by the definition

1f\=[f0‘|f<"><x>12dx|%+ max  max |

0<x<1 0<i<n-1

A fundamental formula in the study of 7 is then the Green’s formula, which we

can obtain readily by partial integration:

@ [t e - [N TR = Fife) - Falfg).
0 0

Hlere, f{ and g are arbitrary elements of A"[0, 1], 7 is the formal differential

operator

n d i
T= Z al(x)(_) ’
i=0 dx

and 7* is the formal differential operator
n d i
SE
igo B dx

where

" iV AV ——
bi(x)=z (-—1)](])(('{—) a]-(x).
12

j=i x
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The operator 7* is called the formal, or l.agrange, adjoint of 7. The bilinear

forms [ (f, g) and Fy (f, g) are given by the formulas

n-=1i

Folfg) = S iy fOMg,
i,j =0
n-1 ) -
Fo(fg) = X Fif @000y,
i,j =0

where the coefficients o;; and f£;; are calculated readily from the functions

a;(x). We can see, in particular, that
ﬁij=0(ij=0f0ri+j_>_n—l,

En-t-k,ke = = %n-1-k,k = (-1,

Thus, the matrices f3;; and o;; are nonsingular subdiagonal matrices, and hence

define nonsingular bilinear forms.

If a formal differential operator 7 is given, we set up a corresponding un-

bounded operator T, in the Dilbert space L, [0,1] as follows:

(a) O(To) is the set of all C" functions f defined in [0,1] and vanishing

outside some compact subset of the interior of [0, 1].

(b) It f€N(T,), Tof is defined simply as 7f.

Our principal analytic problem at this point is to determine the adjoint of T,.

The solution is contained in the following:

LemmA 5. The adjoint T: of the operator Ty is the operator T, defined as

follows:
(a) Its domain is A™.

(b) Iff € A1), T¥f = 7xf.

Proof. It follows immediately from Green’s formula that 7| C T:. To prove
the opposite inclusion, we proceed by stages.

(a) Consider first an element z € L, such that T:z =0. That is, (2, T y)
=0 for every Tyy in the range of T,. We shall show that z € C". Let X be the

n-dimensional space of solutions of 7*0=0. We shall show that if f€ L, is
orthogonal to 2, then (f,z) = 0. Since X is finite dimensional and hence closed,
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we shall be able to conclude that z € Z, which will give us the desired result

z €C".° We begin by proving the somewhat weaker statement contained in:
SUBLEMMA 5. If

) f is orthogonal to Z,
(b) fecC™,

(e) f(x) =0 outside some compact subset of (0,1),

then [ is orthogonal to z.

Proof. We know by the standard theory of ordinary differential equations that
the equation ’I’f f has a unique solution f C" which satisfies the boundary

conditions
A

0=1/(0)= f’(O) = ;(ﬂ-l)(o).

If we can only verlfy that f(x) = () outside some closed subinterval of (0, 1) we
will know that fE 0(Ty), so that f= TOf and therefore (f,z) = 0. Now f is,
in some interval {0, €}, the unique solution of the equation ’Tf 0 satisfying the

boundary conditions

S 7(0) = f(0) =+ea= [ V(0) = 0

A
Ience f(x) = 0 in [0,€]. We could apply the same argument to an interval
[1-¢1), if only we knew that

= ;(]-) = f,(l) = e e = ?(ﬂ-l)(l)’

and it is this which we propose to verily. This we can do as follows: let o € .

Then we have, from Green’s formula,

0= ["rf ot - [T TG
0

= B (f o) — Folf o) = Fy(f, o).

That is, F; (f,0) =0 for every o € 2. Since there exists a ¢ €2 with any pre-

assigned values

(1), ¢7(1), -+, ™ (1),

————

h may be noted that the method of proof of this lemma is actually that adapted to
proving the following result:

THEOREM. Let a distribution 8 satisfy an ordinary linear differential equation with
™ coefficients, Then § s itself a C% function,

In connection with this proot, sec |8, Theorem 1.1], where the same result is proved
by a different method.
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it follows that
?(]_) = f’(l) =‘“=f(n-l)(1) =0,

by the nonsingularity of the form F, (f, 0). This concludes the proof of the sub-
lemma.

Now we must shiow that hypotheses (b) and (c) of the sublemma can be
dropped witkout invalidating the conclusion. Indeed, let f be a function which
is orthogonal to 2. I.et 0,,02, +++,0, be an orthonormal basis for 2. Then, by
approximating o; sufficiently closely by a C" function ¢; whick vanishes out-
side a compact subinterval of (0,1), we can ensure that the matrix (¢;, ;) = m;;
is nonsingular. Now, let f be approximated by a sequence f, of C" functions
which vanish outside a closed subinterval of (0,1). Then, if r?zi]- is the inverse

matrix of m;j,
A n n A
fo = 1fi = 2 2 (o Im ¢
j=r [=1 7o

is a sequence of C” functions orthogonal to X which vanish outside a compact
subinterval of (0,1), and such that limy_  f, =f Since, by the sublemma,
(fps z) =0, we are able to conclude that (f,z) = 0.

To complete the proof of Lemma 5 it still remains to consider the case
To*z =g, where g #0 and g € L,, and to show that z € 4™. We know by the stand-
ard theory of ordinary differential equations that there exists a solution z; € A"
of the equation 7*z, =g. Now, as remarked at the beginning of the proof of
Lemma 5, z;, € 0( T:). Hence

T:(Z —Zl) =0.

By what we have already proved, z — z; € C" and

'T*(Z - Zl) = 0.
Hence it follows that z € A™ and that
T*z = T¥z, = g = To*z.

Thus the proof of .emma 5 is complete.

Lemma 5 has as a consequence an interesting topological property of our

formal differential operators, expressed in:
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LEMMA 6. Suppose that f, is a sequence of elements of A", and that f, and
Tf  converge (weakly) in the topology of L, (0,11 Then f  converges (weakly)
in the topology of A"[0,1] (and conversely).

Proof. 1et us introduce a norm in 0 T;';) in two ways:

UO‘ \]’(x)\zdx}% N {/;‘ L (2|

[fl, + max max lf(i)(x)l.
0<x<1  0<i<n-1

1

[\

i

\fl,

Then, since T: is closed, 19(7":) is complete in the first norm. Cn the other
hand, it follows from this that JQ(T:) is complete in the second norm. Since
[fl, < |Ifl,, it follows from a well-known principle in the theory of Banach
spaces [7, Theorem 11.7] that |f| and |f], are equivalent. On the other hand,
it is evident on inspection that ||, and the norm introduced for A" determine the
same topology. Hence it follows that |f], determines the same topology in A™ as

the norm of A", and this proves our lemma.

On the basis of these two lemmas we can proceed systematically to set up

the exact operator theory of differential operators. We first make:

De riniTION 2. Let 7 be a formal differential operator of order n, and let
n-1 o n-1 A 0
1 l | = ¢ o0
5) A= A D0+ ¥ A rO=0,  G=1-k
10 =0

be a set % linear boundary conditions. Then we define an operator T in L, [0,1]

by putting:
n-1 . n-1 A .

(a)19<T>={fe A”|Z, Aj,-f("con > 4,9 =0, j=1,---,k}.
L=0 1=0

(b) If f €0(T), Tf = 7f.

Then T is said to be the differential operator determined by the formal operator 7
and the boundary conditions [31. Any such operator is called a differential

operator.

LEmMMA 7. Any differential operator T is a closed operator in Hilbert space

with a dense domain. Moreover, the range of T is closed.
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Proof. let f, —f, Tfn — g. Then, by Lemma 6, we have f€ A", f, —f
in the topology of A", It is then evident that { satisfies the boundary conditions
which define 7, so that f € (7). Moreover, if T is defined by the formal
operator 7, we have 7f, —» 7f in the topology of L,, so that Tf = 7f = g;

thus 7 is closed.

Let T, be the differential operator defined by the formal operator 7 and the

boundary conditions
£C0) = f(0) =eee= O D(0) =f(1) = f(1) = = f=D)(1) = 0.

Then T is an extension of T,. Now, it is clear that the differential operator T
defined by the boundary conditions 4;(f) =0 will remain the same if we drop
from our list of conditions all A; which are linear combinations of 4 with % <.

Hence, without loss of generality, we can suppose that the vectors
A A
(djo -+ Aj-1)4jo =+ Ajne1)]

form a linearly independent set. Thus, we can find a finite set of functions
Brachys ey Oy € B (T) such that

Aj(p;) = ;.
It follows that
JQ(T) = lg(Tl) + Sy

where S is the finite dimensional space generated by the vectors ¢; (i =1,2,

-+« , k). ence, if R(T) denotes the range of T, we have

R(T) = R(T,) + S,

where § is a finite dimensional space. [lence, we have only to show that R (T, )
is closed. Now, suppose that R (7, ) is not closed. Then there exists an element
g and a sequence f, € D(T,) such that Tyf,—> g, but g € R(T;). It then
follows from the closure of the operator Ty that f does not converge. Hence

there exists € > 0 and a sequence m;, n; of indices approaching infinity such that

{fmi - fnil > €.

Putting

fmi - fni = 8i»
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we have |g;| > €, Ty g; — 0. I we then put
A A
g = gi/lgil,

we have IgALI =1, T,g; — 0. A subsequence of éi converges weakly: we can
suppose without loss of generality that this subsequence is the sequence §,~
itself. It then follows by Lemma 6 that Qi converges weakly in the topology of
A", and hence in the tepology of C° Therefore z;(x) is a uniformly bounded
sequence which converges at each x (0 < x < 1); this implies that ;;\iconverges

in the topology of L,[0,1]. From the closure of 7; we find, putting

A . A
g = lim g,
i —00
that |g| =1, T, 5 =0. But then g is a nonzero function in C”* which satisfies the

equation 7g = 0 and the boundary conditions

§(0) = 57(0) == 5" (g) = 0;

this contradiction proves Lemma 7.

If we examine the part of the foregoing proof which concerns the operator Ty,

we see that we have actually shown:

CoroLLARY. Let T be a differential operator with an inverse T"'. Then
T~' is a continuous mapping from the range R(T) of T to L,.

We strengthen this conclusion in:

LEMMA 8. Let T be a differential operator with an inverse T~ '. Then T'

is a continuous mapping from the range R (T) of T into A", and a compact map-

ping from R( T) into L,[0,11.

Proof. We know that if Tf, converges, f, converges. It follows by Lemma 6
that f, converges in the topology of A", proving the first part of the lemma. Now
suppose that Tf, converges weakly: since T"! is continuous, f, converges weak-
ly. It follows by Lemma 6 that f, converges weakly in the topology of 4", and
hence in the topology of C° so f,(x) is a uniformly bounded sequence of func-
tions converging at each x € [0,1]. Then it follows that f, converges in the
topology of L,. Since T~! thus transforms weakly convergent sequences into

strongly convergent sequences, ™! is compact.

LemMMA 9. Let T be the differential operator defined by the formal operator
7 of order n and by the boundary conditions (5). Then T* is the differential
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operator T, defined by the formal operator T* and by a set of boundary conditions

n-1 n-1 A '
Bi(f) =% BijfN0)+ X Bijf1) =0 (i=1,2 -,k
j=0 j=o0
obtained from the conditions (5) as follows:

Let S;[g® «++a®™ '] (i=1--+k") be a basis for the set of solutions of
the equations

n-1 . n-1 A .
Ai(o) = 22 Ajol+ 27 Aijo'”/ (i=1---k)
j=o =0

derived from equations (5), and let

n-1 —_—
Fi(f9) =~ Fy(fg) = 2 HafO0) g (1) - 8,10 £ (0)}

i,j=0

be the bilinear functional arising in Green’s formula (4). Then:

n-1 R
_ - _ n - n+l
B.. = Z a; o; and Bij = - 'Bljgi .

i=o =0

S
—

o~

Proof. It follows immediately from Green’s formula that T, C T*. To prove

the converse, let ¢; be a C" function such that
¢L(l)(0) = U{;, QS,,(])(l) = Oij+n-l .

Then A,(¢;)=0 (m=1---k), so that qSiElQ(T). If fElQ(T*), it follows
that

0 = (Ti f) = (i T*f) = Fy (i, ) ~ Fy (&4 f)
n-1 A n-1 4 O
= Z Bijf(])(O) + Z B, [ (1),
j=o j=o0
so that f € 0( T,). From this it follows immediately that T, = T*.

LEMMA 10. Let T be a differential operator, and suppose that for some
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complex M\ both T -\ and T* — X have an inverse. Then T(T*) isa regular
operator, T and T* have spectra related by o (T) =5 ( T*), and determine spec-
tral measures E, and E, related by E, (\) = E5 ().

In this case, we call T a regular differential operator.

Proof. By Lemma 7 and its corollary, the range of 7T — )is closed and
(T -A)"!is continuous. To show that (T — \)"! is everywhere defined, that is,
that

R(T - )) =H,

we have then only to show that no nonzero z € H is orthogonal to (T - MNO(T).
However, any such z would satisfy ( T* -\ z= 0, and we have ruled out this
possibility in our hypothesis. This, together with LLemma 8, proves the first part
of our lemma. The remaining parts follow, via the remark after Lemma 1, from
the corresponding results for bounded operators, all of which are well known

(CL. [7, Lemma V.4]1.)

For application to the spectral theory of differential operators we shall need

the criterion contained in:

LEvMA 11. Let T be a regular operator in a Banach space X and let
Xo €0(T). Let ffsfp «++, fx be a basis for the solutions of (™= \y) f=0,°
and let 3 be the space of solutions of (T ~MAy)o=0. Then A\, is a multiple
pole of the resolvent (T — A)™' if and. only if some nonzero o €X satisfies

[F(0)=0(i=1,2,--+,n)

Proof. We can readily see, by Lemma 1 (c), that A, is a multiple pole of the
resolvent if and only if there exists a solution g of the equation (7 —A,)%g=0
which is not a solution of (7T — \y) g=0; that is, if and only if some nonzero

oS 2 isin therange of (T —);). Now, ifo = (7 ~),) g, then

fiflo) = [{f((T = X)) g) = (T* = ) fi'(g) = 0.

Conversely, if f{*(¢) =0, then it follows that ¢ is in the closure of the range of

T — Xy, and our lemma will be proved once we show that T — Ay has a closed

6 The general theory of adjoint unbounded operators in a Banach space is discussed
more fully in Lemmas 18 and 19 below. It is well to remark, however, that we are faced
with the usual confusion as to adjoints in Hilbert space, where, contrary to our practice
in other Banach spaces, we make use of the Hermitian, rather than the pure Banach-
space, adjoint. This has the effect of introducing complex conjugates in many of the
Hilbert-space formulas where the corresponding Banach-space formulas do not have
complex conjugates. This should not cause any essential difficulty to the reader.
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range. This, however, is easy to show since
(T = X)) O(T) = (T = X)) EM)D(T) + (T = X)L = E(X))I(T)

= (T = X)EM)D(T) + (I - E(X\))X.

The first space on the right is finite dimensional and the second is closed, so

that (T - A,) 0(T) is closed.

LEMMA 12. Let E be a projection of a B-space X onto a finite dimensional
range, and let E*: X* — X* be its adjoint. Then, if 1y gy + =+ » by is a basis

for EX we can find a unique basis Y, 5, +++,yn of £X* such that ¥( éj)
= Sij; and then

Ef = Z Sii(f) forany fe X.
i=1

Proof. Any element £f can be written uniquely as

Ef = > dii(f),
=1

where the o; (f) are linear functionals. If f — fand &; (f ) —«;, it is clear
that &; = &; (f). Hence, by the closed graph theorem of Banach spaces [ 7, Theo-

rem 11.8] the uniquely determined linear functionals &; are continuous. lience
o (f) = () for some f € X*.

From

n
Ef = 20 ¢ubi(f)
i=1
it follows readily that

E*Y = i (i)

=1

so that y*,y%, -+, ¢} span E*X*. To see that y7,vy3, +++, ¢y are linearly
independent, let Z[l:l a;i= 0; then

n

'CA]'=(Z Qi‘/’i*) ¢j =0,

=1

so that Lemma 12 is completely proved.
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As the final lemma of this section, we state a useful elementary principle in

the theory of spectral differential operators.

LEmMA 13. Let T be a spectral differential operator, and let A; be an
enumeration of the points in o(T). Then, if f € D(T), the ““expansion’

i E(\)f
=1

converges unconditionally in the topology of A™.

Proof. The series & ;=; (X;)f certainly converges unconditionally in the

topology of L,. On the other hand, so does the series

[o0)

T(i EQOT) = 3 EG)n.
=1

=1

Hence, by Lemma 6, the original series converges unconditionally in the top-

ology of A™

6. Application. The second order differential operator. In this section we
wish to apply the theory developed up to now to various second order differential

operators arising out of the formal differential operator

- (d)2 (%)
TW*E +qg(x).

Our peturbation theorem, Theorem 1, reduces the study of this operator to the
much simpler operator — (d/dx)?. What we need about the latter is summarized,

however, in:

I.EMMaA 14. The unbounded operator T defined by the formal differential
operator 7 =— (d/dx)?* and the boundary conditions

(6) [(0) = kof (0) =0, fQ1) = kf(1) =0, kg, ky arbitrary,
is a spectral operator satisfying all the hypotheses of case (b) of Theorem 1.

REMARK. We can also admit the boundary conditions determined by %, = ¢
and/or k| = cc; that is, the conditions f“(0) = 0 and f “(1) = 0, respectively.

Proof. Since it is easy to treat all special cases in which k4 or £, is zero

or infinity by a separate argument much like the argument given below, we shall



438 J. SCHWARTZ

assume for simplicity that we have none of these special cases to deal with. If

we put A =s2, the general solution of the equation
- f7(x) - AM(x) =0

is sin s (x + &), where 0. is an arbitrary constant. This satisfies the boundary
condition at zero if

tan s0 = koS,
and satisfies the boundary conditions at one if
tans (1l + &) = kys.

Thus, T — A can only fail to have an inverse if A =s2, where s is a root of the

equation

(k, — ky)s cs
(7) tan s = = , d#0.
1 + kok,s? 1 + ds?

It is readily seen by making use of Lemma 9 that T™ is the differential operator

defined by 7* and by the adjoint boundary conditions
£(0) = kf7(0) = 05 f(1) =k, f*(1) = 0.

Thus the adjoint operator 7% — X can only fail to have an inverse if T — A fails
to have an inverse; that is, if and only if s satisfies (7). Since not every s

satisfies (7), it follows immediately from Lemma 10 that T is regular.

Our next task is to locate the zeros of (7) more exactly. Since tan s is
periodic of period # and has only the zero s = 0 in its period-strip, it follows
readily that (7) has a countable sequence z,,z,,,, --- of zeros which can be

numbered in such a way that
z, = nm + O(1).
From this preliminary estimate we readily obtain the estimate

cnm
tan z, ~ ———— ~ ¢ (dnm)""

1+ d(nm)?
Hence it follows that

zp, = nm + c(dnm )™t + 0(n°?).
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We thus obtain an enumeration A, (n =k, k + 1, +++ )7 of the eigenvalues of T
such that

Moo= (nm)? + 2cd”! +0(n7Y).
Hence, if d;, is the distance from A, to the remainder of the spectrum,
d, ~ 72(2n + 1),

so that

00
z d;2<oo.

n=k

It is evident from the form of the boundary conditions defining our operator
that each A, can correspond to at most one function ¢, (up to a scalar multiple)
which satisfies

(T - An)ﬁsn = 0.

Thus, if E(X,) is to be anything but a projection onto a one-dimensional range,
A, must be a multiple pole of the resolvent. By Lemma 11, the condition for this
is (&p, Yn) =0, where i, is the (unique ) solution of

(T* -Xn)‘/’n = 0.

Since, however, T is defined by the complex-conjugate boundary conditions of
those that define 7, it is clear that

U (%) = & (%)

Hence, A, can only be a multiple pole of the resolvent of T if

1
./; (an (x))2%dx = 0.

Now, we have

¢, () = sin z,(x + Up) = sin (zpx + Bn),
where 3, must be determined so as to satisfy
k'(')lz'nl sin 3, = cos fB,.
It follows readily that

7 Note: k need not be equal to one.
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Bn = 7/2 = (nwko )™ ' + O(n"2),

so that
én(x) = cos (z,% + 8,), &, = (naky )t + O(n”2).

It follows that

SV S

1 2 g~ [ 2y de -
/(; (bn(x))?dx /0- cos? nmx dx

so that only a finite set of A, can be multiple poles of the resolvent of 7. For
those A, which are sinple poles of the resolvent of 7, the projection E(A,) is,

by Lemma 12, the operator determined by the integral kernel

én(x)(fgn(ﬁ') = En(x,9),

A
where ¢, is a scalar multiple of ¢,, the scalar being chosen so as to make

1 A
/ (pn(x))2dx = 1.
0

i A . .
We have ¢, = ¢, and a simple computation reveals that
Cp = 2% 0(n™?);
hence it follows that

(cd™'x + ky)

1
E,(x,y) = — cos nnx cos nwy —~ =————— sin nwx CcOS nmy
2 /T
(ed™ty + ko)

sin nwy cos nmx + O(n™%),

/7
which gives a decomposition of £, into four terms
(8) Epn=E, + A4, + B, + A,.

It is now trivial to find a uniform bound for

I Z Enls

n€l]

J an arbitrary finite set of integers, by making use of the decomposition (8).
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We have

| 22 Enl <1,

ncj

A
since the [7, are a family of orthogonal projections. We have

| 2° Anl <M,

nel

since

|AL]=0(n"?) and z n? < .
n=1

The operators .1, and 5, have the form
A A A A
Ay = Epdy, and 3, = Bk,
where

(4, =0 ) and |B,| =0z,

a situation studied above in the proof of part (b) of Theorem 1, where the argu-
ment given proves not only the uniform boundedness of Zné] Ap, but also,

with suitable slight modifications, the law

=0,

lim

n-—oc

>

m=n

All that remains to complete the proof of our lemma is a proof that

Do EN)=1.
i=k

By Lemma 15 below,

either projects onto an infinite dimensional space or is zero. But,

0 A

lim |(I= 3 EQ)) == 3 Eg)|=o0.

m— oo n=m n=m
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Hence, by Lemma 4,

I- 3 E(\)

n=m

has a finite dimensional range for all sufficiently large m, and hence, a fortiori,

E . has a finite dimensional range.

THEOREM 2. Let T be the unbounded differential operator defined by the
formal differential operator =~ (d/dx)? and the boundary conditions

(9) fQ0) = kof7(0) =0 f(1) = &k f°(1) =0,

where ko and ky are arbitrary, possibly infinite, complex numbers. Then if B is

an arbitrary bounded operator, T + B is a spectral operator.
Proof. This follows from [Lemma 14 and Theorem 1.

CoROLLARY 1. Let T be the unbounded differential operator defined by the

formal differential operator

= (z)
=\ + q(x)

and by the boundary conditions (9), where q(x) € C®.® Then T is a spectral
operator.

This corollary is the ‘“‘convergence in mean’’ form of the theorem of Birkhoff-

Hilb. As far as pointwise convergence is concerned, we can state:

COROLLARY 2. Let T be as in Corollary 1, and let € D(T). Then if A;

is an enumeration of o(T), the series

o

2 EM)S

i=1
converges unconditionally in the topology of A2.°
Proof. This follows immediately from Corollary 1 and Lemma 13.

8 This much is what we have proved explicitly. But, with a little more ‘‘analytic

care,’’ we would see that it is sufficient that ¢ (x ) be measurable and bounded.

9 We shall see (Corollary 2 of Theorem 3) that this series converges to f.
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It may be noted, moreover, that Theorem 1 and Lemma 14 yield a much wider
class of spectral operators than the analytic method of Birkhoff-Hilb. For in-

stance, the differential-difference operator
d\2
7f(x) = =) %)+ q(2) f(x + o)

(in which x + & is understood to be taken modulo 1, and g(x) is bounded and
measurable ), with appropriate boundary conditions, is immediately seen to be

spectral, as is the integro-differential operator

d
Tf(x) =(d—x)2 f(x) + /0‘ K(%y)f(y)dy,

provided only that the integral kernel K defines a bounded operator.

7. Theorems on the spectral measure of infinity. Suppose that T is an un-
bounded regular spectral operator in a Banach space X, and that {);} is its
spectrum. Let £ ()A;) be the associated spectral measure. Then we put

E(w) =1~ 3 E(N).
i=1
It is clear that £ (o) f = if and only if
E(N)f=0, for 1 < i< cc.

This leads us to the following more general:

DerFiniTION 3. If 7 is an unbounded regular operator in the Banach space

X, with spectrum { ); } and spectral measure £ ();), we put
S (T) ={fI[E)f =0, 1< i<al.
LEMMA 15. The space Soo(T) either is infinite dimensional or consists only

of zero.

Proof. We can suppose without loss of generality that 0 Z 0(7), and put
U= T"". It then follows by the remark following L.emma 1 that

o(U) = IX' u tol,
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A

and that the spectral measure £ of U is defined by
E(xil) = E()).
Hence, if f € Soo = Soe (T), we have
E(A;‘)Uf = U!;"()\;.‘)f =0,

so that USe C Se. Moreover, by [15, Theorem 8.2c1, (U~ A)"'f is regular at
every point \;! if f € S.; thus if f € S, (U —X)™! has no singularity other than
the origin. Hence U, regarded as an operator in Se, is quasi-nilpotent. If S
were finite dimensional, it would follow that for some finite £, U*So = 0. Since

U has the inverse T, this would imply that S, contained no nonzero vector.

LLEMMA 16. The space So. (T) is the set of all f € X for which (T —=A)"'f

is an entire function of A.

Proof. Tf (T =AY 'f is entire, then if we let C be a small circle around \;
we find that
1
0= — /; (T =AY Mfdh = = E(\)f

2mi

Conversely, if £ (X;)f =0, it follows from [ 15, Theorem 8.2c] that (T —A)!f
is regular at A;. Since this holds for every A; € o(T), it follows that (T - AL

is entire.

LeEmmA 17. Let T be a regular spectral operator in a Eanach space X.
Suppose that all but a finite number of the poles B of the resolvent function
(T = A)" are simple, and that S (T) =0. Let

d; = dist (p,0(7T)),

and let B be bounded.
(a) Ifdij—c«, T + B is regular.

(b) lf.l_iﬂi_,m d; > 0, there exists an € > 0 such that T + B is regular when-
ever |B| <e

(¢) Iflim; | o d;>0and B is compact, T + B is regular.

Proof. This lemma is needed to make the statement of Theorem 3 below

plausible and possible. The proof results incidentally from the proof of Theorem
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3, so that it is not necessary to give the details here.

F'nxorem 3. Let T be a regular spectral operator in the Banach space X.
Suppose that all but o finite number of the points in o (T) are simple poles of
the resolvent function (T —A)"' and that So. (T) = 0. Let U; be a sequence of

bounded domains with U?o:l U; the entire plane, and put V; = boundary (U;);
et

Vino(l) = ¢ and d; = dist (V,;,o(T));

and let B be a bounded operator.
(a) Ifd; —> @, S {T +B)=0.

(b) If lim ; e di > 0, there exists an € > O such that Seo (T +8) =0
whenever |B| < €.

(¢) Iflim ; oo d;>0, and B is compact, Se(T +B)=0."°

Proof. We first show that if p,, 1, «++, uy is a finite set of points in the
plane, we can find a domain U containing all of them such that ' = boundary (U)
has a minimum distance from ¢(7) greater than d =1/2 lim d; (or, in case (a),
greater than an arbitrarily prescribed d) and such that the minimum distance from
V to ; is greater than a constant ) which may be as large as we please. This

is done as follows: we take j  so large that

1
di>§l_iﬂdk if i >y

J¢ — 00
and let X be a prescriled very large closed circular domain. I'ut

Jo

and let U, U,, -++, U, be a covering of A’ Then we have only to take

———

10 1t would be interesting to know that in case (b) of Theorem 3 we can dispense
with the restriction || < €, but I do not know whether or not this is possible.
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Now, let f € Soo(T + B), and let
f(A) =(T + B =AY,

We shall show that the entire function f(A) is uniformly bounded, so that f(A)
is constant, f(A)=g, and hence f=(T + B~ \)g for all \. From this it is
evident that g=0, so that {=0. To demonstrate the uniform boundedness we
proceed as follows: Let Ay, Ay, ¢+, A, be the set of all multiple poles of the
resolvent, and let A be an arbitrary point in the complex plane. Take, in the

first part of this proof,
BPistos s N = Aghiy ooy hp-

Then, by Lemma 3, there exists an absolute constant ¢ such that |R)| < cd™!

for A € V, where R) = (T = A)"L. If we put
Ry =(T + B -,
we have (cf. formula (1) in the proof of Theorem 1)
Ry = (I + RyBY''R,.
Hence, if
|B| < ¢'d(1 - 8)
with 5> 0, Ry exists for A € V, and
IRy | < & tedt.
But then
|R\fl < 87 ed M| f]
for A € V, so that, by the maximum modulus principle,
|R\fI < 87 ed™t|f]
everywhere in U. Hence we have
[fOA) | = [RAfI < 87 ed M [ 15

that is, f (A) is uniformly bounded. This proves Theorem 3 in cases (a) and (b).

To handle case (c), we observe that since Z?’:l E (X;) converges strongly
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to 1, Zi[il E(A;)f converges to f uniformly as f ranges over any compact
subset of X. Since we now assume that B is compact, it follows that Zilil
E(A;) B converges to B in the uniform topology of operators. We choose N, so
large that

N0
B - Z E(A)B| < ctd(1 - 8).
i=1
Then, if we put
No
C =8 - Z E(/\L)B’
=1

we have

— Ng -1
R)\ =(I + RAC + Z R}\E(/\i)B) [\;‘/\.

=1

However, if d, is the minimum distance from A to any of the points J;, it follows
by the discussion of the functional calculus of T preceding Lemma 3 that there

exists an absolute constant ¢, such that
REGD] < ey

for 1< i < N, and for d, sufficiently large. We now determine the domain U of

the first paragraph of this proof by putting
Btz ooty = AAy ey Ay

where Ny > N, is so large that the set Ay, Ay, + 05 Ay, includes all the multiple

poles of the resolvent, and where
D=2|B|Nye, 57 .

It then follows, as in the proof of parts (a) and (b) of Theorem 3, that E)\ exists
for A € V, and that

I['?)\I < z8tedty

from this point on we can argue just as in cases (a) and (b).

Thus all cases of Theorem 3 are proved.
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COROLLARY 1. Under the hypotheses of Theorem 1, T + B is a spectral
operator such that 5,,(1 + B) = 0.

Proof. We choose the domains U; of Theorem 3 as follows: If i is even,

i =2n, we take U; to be the interior of a circle of radius d; about the point A;,

where d; is the distance from )\; to the rest of ¢ (7). If i is odd, i =2n + 1, we
take U; to be the set of all points z with |z| <n but |z~ ;| > d;/4 for all i.

CoROLLARY 2. If T is the differential operator of Theorem 2, and 3 is
bounded, then every function f = L,[0,1] can be expanded in a series of eigen-
functions (including, vossibly, a finite number of solutions of equations of the
type

(T +B-N0f=0)
of T + B which converges unconditionally in the topology of L,. Any function of

class 1% which satisfies the appropriate boundary conditions can be expanded

in a series of eigenfunctions converging unconditionally in the topology of AZ%.

Theorem 3 also applies to a class of operators which are not necessarily
spectral. To discuss this class of operators, we shall first extend the elementary
theory of the adjoint from closed operators in Hilbert space to closed operators
in an arbitrary reflexive anach space. If X is a reflexive Banach space, so is

the direct sum X @ X (in any suitable norm), and we have evidently
(X @O =X @ x*.
The space £ @ X admits the evident automorphisms
Ay (my) — (3, %),
Ay (x5 y) — (= y,x).
We have
A2 = = A2 = 1, dydy = - Ayd,.

If ¥/ is a closed manifold in a 3anach space Y, its annihilator M is the closed

subspace of Y*defined by

Y=ty 2 YR yx(M) =01,

If ¥ is reflexive, we have evidently Wt =M If 7 is a linear transformation in



PERTURBATIONS OF SPECTRAL OPERATORS, AND APPLICATIONS 449

% (Note: we continue to suppose that J( 1) is dense in X.), its graph 1 (7)) is
the subset of X ® X defined by

I'(T) =41(x, Tx)|x = U(T)}.

Clearly, I'( 1) is closed if and only if T is closed. We have evidently

(7Y = 4,00(1),
whenever 77! is defined (or, equivalently, whenever A,I'(T) is the graph of a
single-valued operator). We define the closed linear operator 7% in X* by putting

I(T%) = [ 4, 0(T)].

The operator 7% is single valued, since (0, y*) < C(7*) is equivalent to
y¥(x) =0 for all x =L (7T); and since D(T) is dense in X, this gives y = 0.
It may also be remarked that if 7 is bounded, this definition of T* agrees with

the usual one.

LEMMA 18. (a) D(T*) is dense.
(by 7** = T.

(c¢) T and T* have both bounded inverses if either does, and (T71)*
=(T*)L.

(d) If B is a bounded operator, (T + B)* = T* + B*.

Proof. The proofs are exactly like those in the Hilbert-space case. If D(T*)

is not dense, we can find an x € X such that
*D(T*) =0,
while x # 0. Then
Ay (0,x) = (=%,0) =1 (T%) = 4,1°(T),
so that
(0,x) € A2T (1) =T(T),

and hence x = T(0) = 0, a contradiction. This proves (a ).

To prove (b), we observe that

D(T*) = (AU (T*))" = A, (U (T*)" = 4, (4, (1)) =-T(1).
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To prove (c), we observe that

CUTHY™Y) = 4, 0(T*) = 4, (A4, T(T))" = (4,(4,T(T))" =T ((T~1)*).

Thus (T*)™! = (T"!)* even if either or both of the transformations are unbound-
ed, multi-valued, or not everywhere defined, so that (c) follows as a special

case.

To prove (d) we note that it is evident that
O(T* + B¥) C T'((T + B)*).
On the other hand, if x* € D(( T + B)*), so that
*((T + B)y) = (T + B)*x*(y)
for every y € D(T), we have clearly
¥ (Ty) = {(T + B)Y*=* - B*x*}(y)
for y € D(T); thus x* € D(T*), and
T*x* + B*x* = (T + B)*x*.

LEMMA 19. (a) Ifone of T and T* is regular, both are.
(b) We khave o(T)=0(T*).

A
(¢) If Tand T* are regular, their spectral measures E and E are related by
E(N) = E*()).

(d) If T and T* are regular and one is spectral, so is the other.
Proof. ByLemma 18 (c) and (d), we have
(T = A = (T =M= (1" = A)!

with both sides of this equation existing as bounded operators for exactly the
same A. This proves (b) and (a), since for bounded operators U and U* are
either both compact or both not compact.

To prove (c), we note that £(A) may be characterized as

1
(M) = — — T — A td),
E()\) — /C( A tda

where C is a sufficiently small circle about A. But then
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] A
E*()\) = - s /C.(T"< —~ A7t = £(N)

is evident. However, since (d) follows immediately from (c), Lemma 19 is

entirely proved.

Suppose that T is a regular operator in X. Then by sp(7T), the spectral span
of T, we denote the smallest closed manifold containing all the manifolds
E(X)X. Thus, x€ sp(T) if and only if x can be approximated by linear com-
binations of solutions f of equations

(T -MFf=o0,

that is, by generalized eigenvectors of T. Thus, if T is known to be a regular

spectral operator,
sp(T) =(Z E(Ai))x.
=1
For nonspectral regular operators in a reflexive space, however, we may state:

LemMmA 20. If T is a regular operator in the (reflexive) Banach space X,
then sp(T) = Sw (T*)™

REMARK. For spectral operators, the conditions
sp(T) = X and Su(T) =0
are clearly equivalent; but for nonspectral operators the condition for sp(7) = X
given by the lemma is Seo(7T*) =0 and not Se(7) = 0. Indeed, H. Hamburger
[10, pp. 74-79] has constructed an example of a compact operator U in Hilbert
space X whose generalized eigenvectors span X, and which is such that an
infinite dimensional closed subspace X, of X exists such that UX, C X,, and

U is quasi-nilpotent in X,. If we put T =(U*)™!, we have sp(T) # X, while
S(T)=0.

Proof of Lemma 20. It is clear that if A € 0(T) and we have
E(N)f = f, while E(p)*g* = 0 for every p€o(T) = a(T"),
then

g*(f) = g*(E(M)f)=EA)*g*(f)=0.
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£

Thus, it is clear that sp(7) C Se(T*)™ Conversely, if f¢ sp(T), there exists

a functional g* € X* such that
g*(f) =1, g*(sp(T)) = 0.
Since g* (E(X)f*) =0 for any f”€ X and any A€ o(T), it follows that
E(M)*g* = 0 forevery A< o(T) = o(T™).
Thus g* € Se ( T*); and since g*(f) =1, it follows that f Z S, (T*) .

Lemma 20 and Theorem 3 together give us a fairly general insight into the
range of situations in which a ““spectral density’” property sp(T) =X is to be
expected of an operator 7. However, in applying these results it is convenient to
be able to deal, wherever possible, with solutions of the equation (T —~\) [ =0,
rather than with solutions of the equation (7T - )\)kf= 0. The next lemma

describes a simple case in which this is possible.

LEmMA 21. Let T be a regular spectral operator in the Banach space X.
Suppose that all but a finite number of the countable set { A} of points in o (T)
are simple poles of the resolvent function and correspond to one-dimensional
eigenspaces. Let d,, be the minimum distance from A, to the other points in
o(T). Then all but a finite number of points in o(T + B) are simple poles

corresponding to one-dimensional eigenspaces if

(a) d; approaches infinity, and B is bounded; or

(b) l_i_n_]i_’oo d; >0, and | B| is less than some positive constant € (T); or

(c¢) lim,  d;>0, and B is compact.

Proof. The proof in each of these three cases is very much like the proof in
the corresponding case of Theorem 3. We shall show that there exists an N such
that y€o(7 + B) and |p| > N imply that u is a simple pole of the resolvent

Ry of T + B and corresponds to a one-dimensional eigenspace. Indeed, if
A€o (T + B), there exists an f€ X such that | f| =1 and such that

(T +B=A)f=0, sothat (T — A)f = —Bf.

From this last equation it is evident that if (7 —A)"! = R) exists, it must have
a norm which is at least | B|™!. By Lemma 3, there exists an absolute constant
¢=c(T) such that

(T =AM < ed™
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if A is not within a distance d of any point in ¢(7), and if N is so great that
every multiple pole Ay of i) satisfies | Ay | < N. It follows that every point y of
o(T + B) with | p| < N is within a distance ¢! | B| of a point A, € o(T). More-
over, if we suppose that ¢™'|B| < d,/2 (which covers cases a and b), then we

see as in the proof of Theorems 1 and 3 that the resolvent
Ry =(T + B -x)"

exists everywhere on the circle C, with center )\, and radius d,/2, at least if
N is chosen to be sufficiently large (or, in case b, for | B| sufficiently small).
We have, as usual,

Ry = (I + R\B)Y'R);

and, for N sufficiently large (or | B| sufficiently small), this leads, as in the

proof of Theorems 1 and 3, to an estimate
! -1
IE(/\n)'“Enl<'2' |E()\n)l .

In this formula, £, is the sum of all the projections E(y) for w interior to Cp,
where £ is the spectral measure corresponding to T + B. If follows by Liemma 4
that £, is a projection onto a one-dimensional subspace, so that there is exactly
one point u, € o( T) interior to C,, and E(#n) is a one-dimensional projection.
Since we have already shown that every = o(7T) with || < N must belong to

the interior of some £, our Lemma is proved in cases (a) and (b).

It is not hard to see that the same argument will work in case (c) as soon as
we are able to show that |R)*B|—> 0 if A’ is a sequence with [A” | — o, and
n
with

dist (A;,a(T )) > € > 0.

However, since it is evident from the functional calculus that R}\r: converges
strongly to zero as n — a, and since B is compact, it follows that | R)7 B |—0
as n — . In this way we are able to dispose successfully of case (c), so that

Lemma 21 is proved in entirety.

REMARK. Itis not hard to see that a proof like that of LLemma 21 will estab-
lish the existence of certain cases in which the hypothesis that the resolvent R)
of T has only simple poles corresponding to one-dimensional eigenspaces will
yield the corresponding property for T + B, so that we can be sure that not even

one pole of the resolvent Ry of 7 + B is multiple. In general, the situation is
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this: Multiple poles of R) can only arise out of multiple poles of R), or out of
simple poles of R) which are multiple eigenvalues, or, finally, out of the
“fusion” of several poles of T uander the influence of the perturbation B. If we
rule out the first two causes, and demand that B be too small to move any pole
of R) far enough to cause two poles of R) to meet, we can be sure that R) has
only simple poles. On the other hand, it is clear that if ;) has multiple poles or

multiple eigenvalues, no demand that B be small can be strong enough to ensure

that R) has no multiple poles.!!

8. Applications to differential equations. Theorem 1 is usually inapplicable
in the theory of partial and singular ordinary differential operators because the
very simple behavior of the eigenvalues required in the hypotheses of Theorem 1
ordinarily fails. However, even in these cases, Theorem 3 can often be applied

to yield interesting results. Let us begin by considering the ordinary singular

d\2
== () e

on the half-open interval /=[0,c ), and make the assumption that ¢q’(x) >0,
q(x) — . Then, as is well known (cf. [16, p. 19]), any boundary condition

differential operator

f(0) + kf"(0) =0 (0< k<)

determines a self-adjoint operator T as follows:

(a) D(T) is the set of all functions f which belong to A2[0,N] for every
N >0, such that 7f € L ,, and such that f(0) + £f"(0) =0.

(b) Tf=7f forfe H(T).

Moreover (cf. [16, p. 113 and p. 134]), the operator T is without continuous
spectrum, and has only a finite number N()) of eigenvalues (counted with
appropriate multiplicities) below any fixed A. This number is given asymp-

totically as A — + a by the formula

A ,
N(A) = /#( : (A = g(x))%,
0

where p(\) is the uniquely determined solution of g(u(A)) =A. This formula
makes it easy for us to evaluate

11 For a detailed discussion of this type of question, c.f. [ 18].
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Cc = C(T) = Li_m )\-IZV()\)p
)\—'00

and by use of Theorem 3 we are able to state:

THEOREM 4. (a) If the singular differential operator T is such that c(T)
=+, and T is the self-adjoint operator in Hilbert space X associated above
with 7 , then sp(T + B) =X for every bounded operator B.

(b) If instead of ¢(7) =+oc we have c¢(T) >0, then sp(T + B) =X for all
bounded operators B with |B| < e= €(T), and for every compact operator B.

REMARK. It is easy to see that €(7) =1/2¢(7) is an acceptable deter-

mination.

Proof. The proof results immediately from Lemma 20 and Theorem 3, the
only point in question being the method by which we are to choose the domains
U; of Theorem 3. However, it is clearly possible to choose arbitrarily large real
A; such that the distance from \; to o (T) is not less than ¢(7)/2. If we put

U; = tx + iy|x < A8,
we complete our proof.

The same argument evidently applies to any self-adjoint operator 7 which is

is without continuous spectrum, and for which we have

e(T) = lim X'N(A) >0,
A oo

where N()) is the number of eigenvalues p ( counted with multiplicities and
supposed finite) such that—A < p < A. This observation applies to an extensive
class of elliptic partial differential operators. Thus, for instance, Hilbert-Cour-
ant [ 12, Chap. 6, Theorem 17] gives the value

c(T) = (4m)7! {/ p ' (x,y) dxdy

for the partial differential operator 7 defined in terms of the formal operator

) ( )8 J ( )8 ( )
T == e — s — e — Xy — x’
8xpxy 0x ayp Y dy 7 Y
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and in terms of any one of a wide family of boundary conditions. Here, G is a
bounded domain whose boundary is of measure zero, and I is an unbounded
self-adjoint operator in the Hilbert space X = L,(G). The functions p(x,y) and
q(x,y) are required to be real and infinitely differentiable in a neighborhood of
the closure of G, while we assume that p(x,y) >0 everywhere on the closure of
G. This means, however, that the corresponding partial differential operator

T + B, defined in temms of the formal operator!?

‘ i ( )a i ( )a (x,5) (%,y)
[ A — R — e —]) N — y g’ 5 ,
axPxY E ay{ Xy 8y+qu g %y

has the property sp(7 + B) =X, provided only that |g“(x,y)| < € for some
sufficiently small €> 0.

Many other instances are known in which a self-adjoint formal elliptic oper
ator 7 has nonzero constant ¢( 7). For instance, G&rding [ 8] shows that if the
domain G C E" is bounded, and 7 is real, formally self-adjoint, or order m, and

has constant coefficients, then we have an asymptotic expression of the form

N(AYX ™~ (7).

This allows us to apply Theorem 3, case (a) whenever n < m, and cases (b) and

(c) of Theorem 3 whenever n = .

To apply Theorem 3 when n > m, we must proceed in a slightly different way.
Let us suppose that T is an unbounded self-adjoint operator without continuous

spectrum such that N()) is finite and

lim N(AMA€ >0,
)\-—)00

where € > 0. Then the operator TF satisfies

lim N, (M)A =
A— oo

for some sufficiently large £ (N, (A) is the number of eigenvalues y, of T* such

12 Ty define exactly the functional domains and boundary conditions involved in the
theory of partial differential equations would involve us in a very extensive analytic
discussion, which has, after all, nothing to do with our problem, since we can take the
same domain for 7 + B as was required to make T self-adjoint (or, more generally, spec-
tral ), This difficulty leads to a slight vagueness in the formulations of the rest of this
section, but not to any real lack of rigor in the results.
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that =\ < p, < A; that is, the number of eigenvalues y of 7 such that Ak <

n< Ak ). Now, if B is a bounded operator such that every product
rvphirte L iy

with at least one j nonzero, is a bounded operator, it follows readily that
(T + B)k satisfies all the hypotheses of Theorem 3. It then follows that

sp((T + BY%) = %.

However, from [ 15, Theorem 9.4] it follows readily that

sp(S) = £ and sp(5F) = %

are equivalent restrictions on a regular operator S. That is, we can conclude that

sp(1 +B)=X%.

To give a concrete example of a case in which this argument applies, we
have only to use the result of Garding, and consider the formal operator 7+ K,
in which 7 is self-adjoint elliptic partial differential operator with constant co-

efficients in a bounded domain G, and K is an integral operator

Kf(x) = /G.K(x,y)f(y)dy

in which the kernel is a C* function of both its arguments, defined when each
argument is in a neighborhood of the closure of G. We are able to conclude that
the appropriate unbounded operators 7 defined in terms of such formal operators

(X3

also have the “‘spectral spanning’ property sp(7) = X.
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