COMMUTING SPECTRAL MEASURES ON HILBERT SPACE

Joun WERMER

1. Introduction. By a ‘‘spectral measure’’ on Hilbert space H we mean a
family of bounded operators £ (o) on H defined for all Borel sets o in the plane.

We suppose:
(i) If 0y denotes the empty set and o, the whole plane, then
E(oy)=0, E(oy)=1,

where [ is the identity.

(ii) For all 04, o9,
E(oynoy)=E(0,)E(0y);

and for disjoint 0, 0y,
E(oyvoy)=E(0;)+E(0y).

(iii) There exists a constant M with ||£(o)|| < M, all o. Tt follows that
E(0)? = E (o) for each 0, and E (0, )E (0, ) = 0 if 04, 0, are disjoint.

Mackey has shown in [3], as part of the proof of Theorem 55 of [3], that if
E (o) is a spectral measure with the properties just stated, then there exists a
bicontinuous operator A such that A"'E (o)A is self-adjoint for every o. In a

special case this result was proved by Lorch in [ 2]. We shall prove:

THEOREM 1. Let E (o) and F (y) be two commuting spectral measures on
H; that is,

E(c)F(n)=F(n)E (o)

for every g, 1. Then there exists a bicontinuous operator A such that A" E (o)A

and A"' F (n)A are self-adjoint for every o, 7.

As a corollary of Theorem 1, we shall obtain:
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THueorEM 2. If T,, T, are spectral operators on H, in the sense of Dunford
(1], and TyT, =T, T, then Ty + Ty and T, T, are again spectral operators.
2. Lemmas. We shall use two lemmas in proving Theorem 1.

Lemma L. Let Py,P,, -+, P, be operators on Hilbert space with

n

PiPi=0 (i#j), P:=P, 3 P=I.

i P 13
=1

Suppose that, for every set 61 ,82,+++,0, of zeros and ones,

< M.

n
> 8P
i=1

Then for every x we have

1 n
— ||x]|? Pix||? M2 || x]|?
T xfl® < ; WPz ||® < 4l |[x]]

This Lemma is proved in [ 3, p.147]; we include the proof for completeness.

Proof. We note that

> 1Pl = = EllecPin o enborll?,

where the sum is taken over all possible sets (€, €,,+++, €, ), where €; = t1.
Hence

n
ax=|le{Pix+eee el P x||? < 3 ||Pxl?
i=1

< |l € Prx+oee+ €y Pyxl||?=b,

for some choice of the ei' and €;. Now

2

by =

?

n n
28 Px~3 5 Px
i=1 i=1
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where the 5; and the 51' are 1 or O.

Hence

~

o l]? < am? o lxl)?.
=1

Let now PY=22P, summed over those i with €/=1; and let P" = 2P,
summed over those i with €=~ 1. 'Then
(PP =2 =Pty = and [P e =P x||P = ax.

lience

Hall?2= et =P x| < [IPT =P [P - P || 2.

1ty
I !

Now [ ' < Mand [[ 7]} <1 and so

n
2112 < (20 %ay < (202 57 || Pix |2

(=1

LEMMA 2. Let E(o) and F(n) be commuting spectral measures on Hilbert
space. Then there is a fixed K such that for any set o1, 0g,+++, 0, of disjoint

Borel sets, and set 1,5 1,5 « ++, 1, of arbitrary Borel sets,

n

> (o) F(n)

=1

< K.

Proof. Fix x. By (iii) there exist constants L and M, with ||E(o)|| < ¥,
|F ()| < L for any 0, n. Leto, ,, be the complement of

n
‘U o,
=1
Then
n 2 nti n 2
S E@IFGx|| <an® 3 |E(au)(2:E<ai)F(qi)x) -C
=1 v=1 i=1

by Lemma 1;
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C=4aM* 3" ||E(a ) F (9 )x]||?,
v=1
since E (0,)E (0;) = E(0,n0;);
C=aM* 3 ||F(n)E (0))x]|?,
v=1
by commutativity of the £ (o) and F(n);
C<am*.L* S ||E(o,)xl|?,
v=1
since || F(n,)|| < L;
C < (aM®)? . L2||x]|?,
by Lemma 1. Hence

2 E(a)F(n,)

i=1

<4aM?*L.

In the proof of Theorem 1 we shall use the method of Mackey in [ 3], together

with Lemmas 1 and 2.

3. Proof of Theorem 1. By a ‘“‘partition’’ 7 of the plane we mean a finite
family of Borel sets oy, 03,+++,0,, mutually disjoint and with union equal to

the whole plane. If (x, y) denotes the given scalar product in H, and

771 = (0.,, )21:1 Ty = (77] );‘n=l

are two partitions, set

(x,y)ﬂl',,.@:. . (E(OL)F(T[]).'XJ, E(OL)F(T]]):)’)O

=1 j=1

It is easily verified that the quantity (x,y)771 is a scalar product in H.

» T2

Further, it follows by l.emma 2 that the operators
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,,]‘—-li((f )F(ﬂ]) (i=1:2""’n;j=132’°",m’)

satisfy the hypotheses of Lemma 1.

Hence Lemma 1 yields
1 n m i
e x[? < < ]Z=_:, Hb(ai)F("j)tz < 4K?||x |2,

. But

where K depends only on sup_ || £ (0)|| and sup,,

2 Z MNE@IF)=l? = (o %)y o= Ix 1T

=1 j=t1

Finally, each E(0;) and F(r]].) (i=1,2,¢+en; j=1,2,00+,m) is self-

adjoint in the scalar product (x; y)ﬂl ny 35 is readily verified.

For each pair of vectors x,y € H, now, let Sy, be the disk in the complex

plane consisting of all z with

|z <4K? |[x]] - [Iyll-

If S denotes the cartesian product of the disks Sy, over all pairs x,y, then S
is a compact topological space, by Tychonoff’s theorem. Further, as we saw

above,

112, < aK? x|

Hence by Schwarz’s inequality, applied to the scalar product (x,y)77 iy WE

see that the number (x,y) s lies in the disk Sy, for every pair x,y. Hence

there is a point Py, in S whose x, y-coordinate is (x,y )W 1yt

Let us now partially order the set of points - in S by saying that

?
p'm’ - is “‘greater than’ Pry
finement of the partion 7, and 7y is a refmement of the partition 7,. This

(in symbols p,, ¢y P, 712) if #{ is a re-

ordering makes the set of points Py, my in S into a directed system. Since S is
a compact space, this directed system has a point of accumulation p. Let (x,y),

denote the (x,y) coordinate of p.

Then given a finite set of vector pairs (xi,yi), i=1,2,++,n, and € > 0,

and a pair 7, 772 of partitions, we have
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|(xlg}’L)p—(xl,)’l) l < € (i=1,2,---,n)

1. T2
for some

> .
p”l:”z p 0'772

Since (x,y)771 is a scalar product for all 7, 7, it thus follows that (x,y)

b

is a scalar product, and since the norm || x || is equivalent to the original

1,72
norm with constants cf equivalence independent of 7y, 7, it follows that

%11, = V(z3),

is also equivalent to the original norm.

Finally, fix a Borel set ¢ and vectors x,v. Let 77(1) be the partition defined

by o and its complement, and ﬂg be arbitrary. Then, if

>
Pry,m, p‘ﬂ?.ng ’

we have

(E(o)x,y), o= (%, E(0)y)

Ty, °

since 7; is a refinement of 77?, and so o is a finite union of sets involved in

the partition 7;. Thus

(E(a)xy), = (5 L(o)y),,

and so the E (o) are self-adjoint with respect to the scalar product (x,y)p,
and similarly the F(n) are self-adjoint with respect to this scalar product.

Since || x HP is equivalent to the given norm, it now follows that there exists
a bi-continuous operator 4 with (x,y)p = (Ax, Ay), and hence AE (¢)A™" and
AF ()A™" are all self-adjoint.

4. Proof of Theorem 2. By Theorem 8 of [1], an operator T is spectral if
and only if there exist two commuting operators S and N such that N is quasi-

nilpotent and S admits a representation:

S=/)\E(dz\),

where E (d\) denotes integration with respect to a certain spectral measure.
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Such an S is called in [1] a ““scalar type operator.”

Now, by hypothesis, T; and T, are commuting spectral operators. e write
T1=51+N1, T2=Sz+N2,

in accordance with the preceding. Then by Theorem 5 of [1] the operators

S1, 52, N1, Ny all commute with one another. We thus have
Tl + T2 =Sl +S2 +O and TI T2=5152 +Q’,

where Q and (7 are quasi-nilpotent, ) commutes with S; + S,, and ” commutes
with $;S,. By Theorem 8, quoted above, it is thus sufficient to show that
Sy +3, and S, S, are spectral operators of type O; that is, of scalar type.

Let £E'(0) and £%(0) be the spectral measures for S; and S,, respectively.
By Theorem 5 of [ 1] it follows, from the fact that S; S, =S, S;, that £'(¢)
and £%(o) commute with one another for all o. 'y our Theorem 1, then, there
exists an operator A such that the operators AE'(c)A™" and AL?(0)A™! are

all self-adjoint. Hence
]1 ZASIA-I and .[2 =AS2A-1

are normal operators. Alsc [ [, =7/,/,, since S5; 5, =5,5,. It follows that
Ji +J, and J; J, are again normal operators, for they commute with their ad-
joints as we verify by direct computation, using the fact that /, and /J commute
and J, and J¥ commute, since /; and /, commute.

Thus 4 (S, + S, )A™ " and A (S, S,)A™! are normal operators and so of scalar
type. But if / is a scalar type operator and A bi-continuous, then, as is easily

seen, A" JA is again a scalar type operator. Hence S; + S, and S, S, are scalar

type operators, and all is proved.
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